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Abstract

   We explain a solitonic mode in DNA dynamics relying on the Peyrard-Bishop-Dauxois model (PBD). This mode happens when the envelope and the carrier components of the modulated solitonic wave are equal. Particular attention is devoted to an impact of viscosity. One relationship for the intrinsic parameters of DNA dynamics is derived.
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1   Introduction
   Biological macromolecules undergo complex dynamics and the knowledge of that dynamics provides insights into various biological phenomena. Deoxyribonucleic acid (DNA) is doubtlessly one of the most important biomolecules and probably the most sophisticated one. 
    The possibility that nonlinear effects might focus the vibrational energy of DNA into localized soliton-like objects was first contemplated by Englander et al. [Englander, Kalenbach, Heeger, Krumhansl and Litwin, 1980]. Several authors [Homa and Takeno, 1984; Muto, Scott and Christiansen, 1989; Peyrard and Bishop, 1989; Salerno, 1991; Volkov, 1990; Yamosa, 1984; Zhou and Zhang, 1991] have suggested that either topological kink solitons or bell-shaped breathers would be good candidates to play a basic role in DNA nonlinear dynamics. A hierarchy of the most important models was presented by Yakushevich [Yakushevich, 1980]. In the present paper, we strongly rely on the Peyrard-Bishop-Dauxois (PBD) model for DNA dynamics first proposed by Peyrard and Bishop [Peyrard and Bishop, 1989] and later extended by Dauxois [Dauxois, 1991].

2   The PBD model
   The B-form DNA molecule, representing a double helix, consists of two strands. One can assume a common mass 
[image: image1.wmf]m

 for all the nucleotides as well as the same value for coupling constants 
[image: image2.wmf]k

 for longitudinal interac-tions [Peyrard and Bishop, 1989; Dauxois, 1991]. The PBD model takes into consideration the fact that the DNA molecule is twisted. This helicoidal structure of the DNA chain implies that nucleotides from different strands become close enough so that they can interact. This means that a nucleotide at the site 
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 of one strand interacts with both (
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)th and (
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)th nucleotides of the other strand. As there are approximately ten nucleotides per one turn a value 
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 will be used in this paper [Zdravković, Tuszyński and Satarić, 2005]. We also assume the same value for coupling constants 
[image: image7.wmf]K

 for the helicoidal interactions along the chain. These simplifications mean that the DNA chain is treated as a perfectly homogenous periodic structure. The strands are coupled to each other through hydrogen bonds, modeled by Morse potential, which are supposed to be responsible for transverse displacements of nucleotides.
    According to the PBD model, only transversal motions are taken into consideration. Let the displacements of the nucleotides at the site 
[image: image8.wmf]n

 from their equilibrium positions be 
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 and 
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 for the two strands. The Hamiltonian for the DNA chain has the form [Dauxois, 1991]
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where parameters 
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 and 
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 are the depth and the inverse width of the Morse potential and 
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)

K

k

 is the harmonic constant of the longitudinal (helicoidal) spring. The elegance of the PBD model is that by using the centre-of-mass coordinates representing the in-phase and the out-of-phase transverse motions
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one can obtain perfectly decoupled dynamical equations of motion. These equations are
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The first of them describes usual linear waves (phonons) while the second one describes nonlinear waves (breathers). Hence, we restrict our attention on the second nonlinear equation. A corresponding frequency, usually called optical frequency, is [Dauxois, 1991]
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    To solve Eq. (4), a long and tedious procedure should be performed [Dauxois, 1991; Zdravko-vić, Tuszyński and Satarić, 2005; Remoissenet, 1986]. All the tedious derivations and important explanations can be found in [Zdravković, 2006].

    First, we assume small oscillations as
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which means that the nucleotides oscillate around the bottom of the Morse potential well. However, those oscillations are still large enough to be anharmonic. Then, we use the semi-discrete approximation [Remoissenet, 1986] and expect the solution to be a modulated solitonic wave [Dauxois, 1991; Zdravković, Tuszyński and Satarić, 2005; Remoissenet, 1986; Zdravković, 2006]:
              
[image: image26.wmf][

]

n

n

i

i

n

e

F

F

e

F

t

q

q

x

x

e

x

2

2

0

1

)

(

)

(

)

(

)

(

+

+

=

F

                         

[image: image27.wmf])

O(

2

e

+

+

cc

                                (7)
where
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 is the optical frequency of corresponding linear approximation, 
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 is the distance between neighbouring nucleotides of the same strand and  
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 is the wave number of a carrier wave, while cc stands for complex conjugate. For the most favourable mode, that is the most probable one, we suggested [Zdravković, Tuszyński and Satarić, 2005; Zdravković, 2006] the mode for which 
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 as [Dauxois, 1991; Zdravković, Tuszyński and Satarić, 2005; Remoissenet, 1986; Zdravković, 2006]
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 while the function 
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 appears to be a solution of the nonlinear Schrödinger equation (NLSE):


[image: image40.wmf]0

1

2

1

1

1

=

+

+

F

F

Q

F

P

iF

SS

t

          (10)
where 
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 and 
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 are dispersion and nonlinear parameter, respectively. 
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and 
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 are rescaled time and space variables [Peyrard and Bishop, 1989; Dauxois, 1991; Zdravković, Tuszyński and Satarić, 2005; Zdravković, 2006] defined as
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where 
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 is a group velocity. Before we proceed, we want to point out that the modulation factor 
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 is treated in a continuum limit while the carrier wave is not. In other words, the carrier component of the modulated wave includes the discreteness and the procedure is called semi-discrete approximation [Zdravković, Tuszyński and Satarić, 2005]. A continuous variable 
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 comes from a limit 
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. As was mentioned above, the whole method is explained in much more details in [Zdravković, 2006], while its mathematical basis is given in [Kawahara, 1973; Dodd, Eilbeck, Gibbon and Morris, 1982].

    For 
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 the solution of the NLSE (10) is [Dauxois, 1991; Zdravković, Tuszyński and Satarić, 2005; Zdravković, 2006]

[image: image52.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

e

e

L

u

S

A

S

F

t

t

sech

)

,

(

1



 EMBED Equation.3  [image: image53.wmf]P
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where 
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 are the velocities of the envelope and the carrier waves, respectively. Finally, one can obtain the expression for the function 
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, defined by Eqs. (6)-(8), as [Dauxois, 1991; Zdravković, Tuszyński and Satarić, 2005; Zdravković, 2006]
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The expressions for all the parameters existing in Eqs. (13) and (14), like the amplitude 
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, the envelope width and speed 
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, the nonlinear optical frequency 
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 etc., can be found in the aforementioned references. 
    One example of the soliton (14) is given in Fig. 1. For the parameters existing in the Hamiltonian (1), called intrinsic, we picked up: 
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 [Zdravković and Satarić, 2006] and 
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. A patient reader might ask for what happened with the remaining three parameters coming from the solution of the NLSE and from the applied procedure. These parameters are 
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3   The solitonic mode in the PBD model
   It is obvious that Fig. 1 shows that the function 
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, given by Eq. (14), represents a localized modulated wave. The modulation can be described introducing a density of internal oscillations (density of carrier wave oscillations), representing the number of wavelengths of the carrier wave contained within the length of the envelope [Zdravković, Tuszyński and Satarić, 2005; Zdravković and Satarić, 2006]. If 
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, like in Fig. 1, then, according to Eq. (14), we can  recognize the length of the envelope 
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Therefore, the density of internal oscillations can be defined as [Zdravković, Tuszyński and Satarić, 2005]
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Note that we call 
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 as density for short even though, strictly speaking, this is not density, i.e. the number of wavelengths per unit length. 

[image: image81.emf]250 260 270 280

-0.2

-0.1

0.0

0.1

0.2

0.3

 

 

n 

y

 (Å)

 Fig. 1: Elongation of the out-of-phase

            motion as a function of position

    In the same way we can also define the density of internal oscillations 
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 as a ratio of the two periods, describing the function 
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. According to Eq. (14), this function is [Zdravković and Satarić, 2006]
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An analogy between modulation in DNA and in engineering was studied in [Zdravković, Satarić and Vuković, 2006].

    Let us get back to Fig. 1 and the function (14). A crucial question is either this wave is a soliton or not. Before answering this question, we need to discuss the values of the parameters 
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 only [Zdravković and Satarić, submitted to Europhys. Lett.]. As we only know that there must be 
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because its allowed interval is known. Hence, we deal with the two parameters, 
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    First calculations on this topic were probably carried out for 
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 [Peyrard and Bishop, 1989; Dauxois, 1991]. However, we showed that both 
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 [Zdravković and Satarić, submitted to Europhys. Lett.]. This means that, from the point of view of modulation, higher 
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 is more convenient than smaller values of this parameter. We argued [Zdravković and Satarić, submitted to Europhys. Lett.] that the optimal value for the parameter 
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 was rather close to its maximum. This is about 0.4 or higher. For example, Fig. 1 was carried out for 
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. We showed [Zdravković and Satarić, submitted to Europhys. Lett.] that DNA was more stable, i.e. the Morse potential energy was lower, for the higher 
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    It might be interesting to point out that the solution of the NLSE is not modulated for 
[image: image109.wmf]0

=

h

 [Zdravković and Satarić, submitted to Europhys. Lett.]. In other words, 
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 are equal to zero, which means that there are no internal oscillations. As for the function 
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. Hence, the wave existing in DNA is always modulated, at least to a certain degree! To be more precise, the parameter 
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    Now, we can get back to the crucial question if the wave 
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, shown in Fig. 1, represents a true soliton or not. One can see that this wave is localized, covering about 30 nucleotides. The solitonic wave, or soliton, is the localized traveling wave [Scot, Chu and McLaughlin, 1973]. The traveling wave is the one depending on space and time coordinates through 
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 only. From Eq. (14) one can see that 
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 may be the traveling wave only if the envelope and the carrier wave velocities are equal, that is 
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This practically means that Fig. 1 is the same for any time, or, in other words, the pattern shown in the figure moves preserving its shape. Such mode could be called as coherent mode [Zdravković and Satarić, 2006] but we believe that the solitonic mode is better [Zdravković and Satarić, submitted to Europhys. Lett.].

    Finally, we want to point out that, from the requirement (19), one obtains 
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. Hence, the value of 
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 mentioned above and Eq. (19) determine the wave shown in Fig. 1.

4   The impact of viscosity
   The PBD model described above and in the aforementioned references does not take DNA-environment interaction into consideration. Of course, this is just an approximation. It is well known that the DNA nucleotides interact with both water molecules and different kinds of proteins. In order to derive a realistic equation of motion for the considered system, we introduced a damping force [Zdravković, 2006; Zdravković and Satarić, 2001]
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into Eq. (4). One can show that this additional term does not affect Eq. (9) but brings about new expressions for the dispersion relation, group velocity and the parameter 
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 [Zdravković, 2006; Zdravković and Satarić, 2007]. For example, the dispersion relation (5) becomes
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where the index 
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 refers to physical values when the viscosity effects are taken into consideration. Of course, 
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and from Eq. (21) we easily obtain 
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These expressions are exactly the same as those for a classical linear oscillator. Of course, this is not something we should be surprised of as the viscous term was incorporated in the same way that is common for the simple oscillator.

    It was mentioned above that the new term in Eq. (4) brought about a couple of new terms. This yields to a different NLSE. Namely, the equation is formally the same but the parameters 
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 and 
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 are changed [Zdravković, 2006; Zdravković and Satarić, 2007]. Therefore, instead of Eq. (10) we obtain 
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One can show that the relationship between the group velocities existing in relations (11) and (25) is [Zdravković, 2006; Zdravković and Satarić, 2001; Zdravković and Satarić, 2007]
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    A key point concerning Eq. (24) is a fact that the nonlinear parameter 
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. Hence, the new term (20) brought about a complex nonlinear Schrödinger equation (CNLSE). Such nonlinear equation should be solved numerically. This research is in progress and some information about DNA dynamics described by Eqs. (24) and (6)-(9) will be published in a separate publication. At this stage, we can derive a relationship between the intrinsic parameters.
    Our preliminary results show that 
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then 
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5   Conclusion
   In this paper the PBD model of DNA dynamics is explained briefly. A special attention was given to the realistic case when viscosity is taken into consideration. A very big problem in the PBD model, as well as in any other, is the parameter selection. There have been some improvements with this respect [Zdravković and Satarić, submitted to Europhys. Lett.; Zdravković and Satarić, 2001; Zdravković, 2007; Zdravković and Satarić, 2007]. We can not know these values for sure but should try to decrease the possible intervals of them. In this paper, one more relationship between these intrinsic arameters is derived and explained. For example, the parameters used for Fig. 1 satisfy Eq. (32) as 
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