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Abstract
A dynamic programming based procedure for the syn-

thesis of near-optimal controllers for sampled data sys-
tems is proposed. The main features of the proposed
procedure are the approximation of nonlinear systems
by piecewise affine systems, the synthesis of control
strategy in the form of a piecewise constant map, and
handling of state constraints and exogenous inputs. In
order to increase accuracy, the dynamic programming
equations are evaluated for an horizon consisting of
several sampling periods instead of the typical single
time step approach. The dynamic programming equa-
tions are decomposed into set-valued operations and
approximations, such that the resulting closed loop sys-
tem is ensured to be stable and safe, even though the
control strategy is computed by numerical methods.
Based on that decomposition, two different implemen-
tations, of varying complexity and accuracy, are com-
pared. Results are illustrated with the solution of a
pursuit-evasion problem.
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1 Introduction
This paper focuses on the problem of optimal feed-

back control synthesis. Exact solutions can be obtained
analytically for some dynamic optimization problems,
most notably the Linear Quadratic Regulator (LQR).
However, there is a vast range of problems for which
analytical solutions are hard of impossible to find.
Even for linear systems, dynamic optimization prob-
lems become more complex as soon as input or state
constraints are considered, hence the popularity of the
Model Predictive Control (MPC) technique (Camacho
and Bordons, 2004). The LQR, while of theoretical
and practical interest, does not take into account ei-
ther state or input constraints. Model Predictive control

and its nonlinear variation, Nonlinear MPC (NMPC)
(Grüne and Pannek, 2011), while applicable to a wider
range of problems, in general involve the on-line solu-
tion of a quadratic (in the MPC case) or nonlinear (in
the NMPC case) programming problem on each con-
trol instant. Although, given the constant technological
progress, such computation is feasible for an increas-
ing number applications, there still remain scenarios
for which minimization of computational requirements
is of prime importance.
Value function based methods, such as dynamic pro-

gramming (DP), provide, in theory, a more efficient
approach for feedback control: given the value func-
tion and the current system state, the optimal control
can be computed as a simple static optimization over
the domain of the control input and, eventually, dis-
turbances (e.g., in the framework of differential games
(Krasovskii and Subbotin, 1988)). However, for many
dynamic optimization problems, it is impossible to ob-
tain the value function in analytical form. Frequently,
numerical methods are employed to obtain an approxi-
mate solution. Moreover, in certain problems, both the
value function and the optimal feedback control law
may be non-differentiable or even discontinuous, pre-
senting an additional challenge for the derivation of ef-
fective approximation methods. Numerical approaches
based on the iterative evaluation of the Bellman equa-
tion or some temporal discretization of the Hamilton-
Jacobi-Bellman/Isaacs equations can be found in the
literature (see, e.g., (Mitchell, 2007; Cristiani and Fal-
cone, 2009; Cardaliaguet et al., 1999)). Those meth-
ods compute the solution for a discrete set of the state
space, i.e., they are grid based methods. Approxi-
mations based on a combination of some set of basis
functions – such as polynomials (Beard et al., 1997;
Hu and Shu, 1999), radial basis functions (Junge and
Schreiber, 2015; Cecil et al., 2004) and spectral meth-
ods (Dehghan and Salehi, 2010) – avoid the state space
discretization, but are less suitable to describe discon-
tinuous phenomena.



For simulation studies and scenario analysis, the type
of approximation is usually not critical. On the other
hand, for feedback control synthesis, it is essential
that the value function approximation and associated
control law ensure stability of the closed-loop system.
Set-valued methods (Cardaliaguet et al., 1999) provide
such type of solution. Besides the typical space and
time discretization, these methods rely on this particu-
lar procedure: instead of evaluating the dynamic pro-
gramming equation only at the centroid of each grid
cell, each grid cell takes the worst case value for all
states belonging to that cell.
This work is focused on sampled data systems

(Ragazzini and Franklin, 1958; Franklin et al., 1997;
Chen and Francis, 1995). A sampled data system is
a system whose state evolves in continuous-time but
is observed only at discrete instants, the sampling in-
stants. Additionally, control is assumed to change only
at the sampling instants.
The set-valued methods described in (Cardaliaguet

et al., 1999) are tailored specifically for pure
continuous-time systems, i.e., both the plant and the
controller are continuous-time. Moreover, very few de-
tails are given concerning computational implementa-
tion. Related work can also be found in (Habets et al.,
2006), in the context of continuous-time piecewise-
affine systems. The authors employ dynamic program-
ming and computational geometry techniques to ap-
proach the reach-avoid problem. However, only control
inputs are considered, and the feedback control law is
also continuous-time.
This paper proposes an algorithm specifically tailored

for sampled data systems. A method for improving the
accuracy of the solution, loosely inspired on the reced-
ing horizon techniques, is described. This method of-
fers an efficient way, both computationally and in terms
of storage requirements, of increasing solution accu-
racy without resorting to increasing grid resolutions.
A concept of generalized value function, which allows
for best effort control action even if the system state
is out of guaranteed safe region (the maximal robustly
controlled invariant set (Blanchini and Miani, 2008)),
is also proposed. Finally, two different implementa-
tions of the numerical solver for arbitrary dimensions
are compared: one based on over-approximation of
reachable sets by general convex polytopes and other
based on over-approximation of reachable sets by axis-
aligned hyper-rectangles (AAHR).
The paper is organized as follows. Section 2 presents

the problem targeted by the proposed algorithm, along
with main assumptions and some background. Sec-
tion 3 discusses the approximation of the original prob-
lem by one with a fully discrete-time system. Section 4
presents the set-valued formulation. Section 5 dis-
cusses proposed extensions to the standard DP method.
Section 6 describes the main aspects of the implemen-
tation of the numerical solver. An illustrative problem
is solved on section 7 and some conclusions are drawn
on section 8.

2 Problem Formulation
2.1 System model
The model of the system to be controlled is of the form

ẋ(t) = f(x(t),u(t),v(t)), (1)

where x ∈ Rn is the system state, u(t) ∈ Uu is the
control input, v(t) ∈ Uv is a disturbance input and
f(x,u,v) is a Lipschitz continuous function in a given
domain of interest D ⊂ Rn, i.e.,

‖f(x,u,v)− f(y,u,v)‖
≤ λ‖x− y‖, ∀x,y ∈ D, u ∈ Uu, v ∈ Uv. (2)

The set Uu is discrete and finite, with cardinality nu,
as typically happens for computer controlled systems.
The system dynamics are bounded as follows:

|fi(x,u,v)| ≤ fi,max

∀x ∈ D,u ∈ Uu,v ∈ Uv (3)

where fi(x,u,v), with i ∈ {1, . . . , n}, is the
ith component of f(x,u,v). Define fmax :=
(f1,max, . . . , fn,max).
As usual for this type of systems, the control value is

assumed to be constant between sampling instant, in a
process denoted zero-order hold (ZOH). In this sense,
define USD(U,∆t) as the set of all possible control se-
quences generated from a discrete-time controller sub-
ject to a ZOH conversion, sampling interval ∆t, and
amplitude constrained to the finite discrete set U :

USD(U,∆t) := {u : R≥0 → U : u(k∆t + s) =

u(k∆t), ∀(k, s) ∈ N0 × [0,∆t)}. (4)

It is assumed that the computer based control system
has a base clock with a period of ∆t, with k defined as
the number of clock cycles since the initial time t = 0.
The input sequence a(.) is the output of a zero-order-
hold converter, with minimal hold time ∆t (one clock
cycle):

u(.) ∈ Uu,∆ := USD(Uu,∆t) (5)

The set of admissible input sequences for b(t) is

Uv := {b : R≥0 → Uv,measurable}. (6)

Define x(s;x0,u,v) as the system state s units of
time after departing from state x0 with inputs u(.) ∈
Uu,CT and v(.) ∈ Uv .
In what follows, the unit step function is denoted by
h(t). Additionally, the same symbol will be used for
constants (e.g., u ∈ Uu) and functions (e.g., u ∈
Uu,CT ) whenever the distinction is clear from the in-
dicated domain.



2.2 Dynamic programming for sampled data sys-
tems

Dynamic programming can be employed to tackle a
wide range of dynamic optimization problems. In what
follows, for simplicity, the formulation is limited to
problems with boundary conditions. Define the cost
functional

J(tf ,x0,u,v) =∫ tf

0

L(x(τ ;x0,u,v),u(τ),v(τ))dτ. (7)

and consider the following dynamic optimization prob-
lem:

V (x0) := inf
fc:Rn→Uu

sup
v∈Uv

J(kf∆t,x0,u,v) (8)

subject to:
u(k∆t) = fc(x(k∆t;x0,u,v)) (9)
x(kf∆t;x0,u,v) ∈ T (10)
x(t) ∈ K (11)

as also (1) and (5), where T is a given target set for
the controlled system. Assume, for the time being, that
the target is reachable and, therefore, the problem has a
solution. Note that the final time is considered only at
the sampling instants. This is suitable for application
where the control system must be able to detect that
the target was reached, in order, for instance, to en-
ter a different mode of operation. Nevertheless, target
reachability between sampling instants can also be con-
sidered, with a slightly more complex computational
implementation.
This is a zero-sum two person deterministic differ-

ential game (Isaacs, 1965; Krasovskii and Subbotin,
1988), also denoted target problem (Cardaliaguet et al.,
1999). The objective of Player A (the controller) is to
reach the target while minimizing J , for any possible
sequence of Player B’s actions. Moreover, it is assumed
that, at each instant, Player B knows the current control
action of Player A. This corresponds to the upper value
formulation of the differential game. In this setting, the
dynamic programming principle (DPP) can be cast as

V (x0) = inf
u∈Uu

sup
v∈Uv

{
V (x(∆t;x0,uh,v))

+

∫ ∆t

0

L(x(τ ;x0,uh,v),u,v(τ))dτ
}

(12)

V (x0) = 0, x0 ∈ T (13)
V (x0) =∞, x0 6∈ K (14)

The sup search over the space of disturbance se-
quences in (12) is an infinite dimensional problem.
Infinite dimensional problems, in general, are not
amenable for numerical approaches. In order to allow

an efficient numerical solution, a suitable approxima-
tion of the system model will be considered, as de-
scribed in the next section. Moreover, in what follows,
only the case of constant L(x,u,v) is considered.

3 Simulation of sampled data system with
continuous-time disturbances by a fully
discrete-time system

3.1 General approach
Consider a function F (t,x,u,v) and a set Uv,∆ such

that

{x(t;x0,uh,v) : v ∈ Uv} ⊆
{F (t,x0,u,v∆) : v∆ ∈ Uv,∆},

∀x0 ∈ D,u ∈ Uu. (15)

Moreover, define F (x,u,v) := F (∆t,x,u,v). This
means that system

x((k+1)∆t) = F (x(k∆t),u(k∆t),v∆(k∆t)) (16)

with u(.) ∈ Uu,∆ and v∆(.) ∈ USD(Uv,∆,∆t), is able
to replicate the sequence of states at the sampling in-
stants of any trajectory of the original sampled data
system, i.e., (16) simulates the original sampled data
system (1) at the sampling instants. In order to achieve
the exact solution, it would be necessary to have an
equality in condition (15). In general, it is not trivial
to ensure equivalency. Therefore, the method settles
for an approximation of the system model, leading to a
sub-optimal solution.
System model (16) is suitable for a pure discrete-

time formulation, as employed in the numerical
schemes described in (Cristiani and Falcone, 2009) and
(Cardaliaguet et al., 1999). The key difference is that,
in this work, ∆t is a parameter with physical meaning,
as opposed to a time step that one wants to make as
small as possible in order to improve the solution accu-
racy.
Thus, in the context of sampled data systems with run-

ning cost L(x,u,v) = 1, the following dynamic opti-
mization problem is considered:

Ṽ (x0) = inf
fc:Rn→Uu

sup
v∆∈

USD(Uv,∆,∆t)

kf∆t (17)

subject to:
x(0) = x0 (18)
x((k + 1)∆t) =

F (x(k∆t),u(k∆t),v∆(k∆t)) (19)
u(k∆t) = fc(x(k∆t)) (20)
x(kf∆t) ∈ T (21)

In this setting, the DP equation is cast as

Ṽ (x) = ∆t + inf
u∈Uu

sup
v∆∈Uv,∆

Ṽ (F (x,u,v∆)). (22)



The corresponding optimal feedback control law is

f∗c (x) ∈ arg min
u∈Uu

sup
v∆∈Uv,∆

Ṽ (F (x,u,v∆)). (23)

In general, (23) will be a sub-optimal control law
for the original system, because, due to the over-
approximation in (15), the DP equations may have to
take into account adversarial actions, leading the tra-
jectory to states of higher value, that will never take
place in the original system. Nevertheless, given that
Ṽ (x) ≥ V (x), this approach ensures that the perfor-
mance of the closed loop system composed of the ob-
tained control policy f∗c and the original system, will
be at least as good as indicated by Ṽ (x).
In the context of a solution by numerical methods, it

is not possible to compute ˜V (x) for the infinite num-
ber of points of the domain. In some numerical ap-
proaches (e.g., (Cristiani and Falcone, 2009; Mitchell,
2007)), the dynamic programming equations are com-
puted only for a finite set of states. In those cases, even
for a exact simulation (bisimulation) of the system dy-
namics, the right hand side of (44) will be computed
based on an approximation of V (x) (e.g., interpola-
tion). Therefore, the solution obtained by those ap-
proaches is not guaranteed to ensure the desired reach-
ability and safety (in the case of problems with state
constraints) properties. A more suitable approach will
be discussed in section 4.

3.2 Problems with state constraints
Consider the state constraint x(t) ∈ K. In order to

be considered safe, the control law must ensure that the
system state is in K at all times. The formulation pre-
sented in the previous sections gives guarantees con-
cerning the system state at the sampling instants. How-
ever, in the presence of state constraints, it is necessary
to ensure that, between sampling instants, the system
trajectory does not cross the forbidden regions R\K.
One way to achieve this is by considering a safety

margin along the boundary of K. Since ‖f(x,u,v)‖
is finite, it is possible to estimate the maximum dis-
placement of the system trajectory over a given period
of time. Define the set

K∆ := {x ∈ K : ‖x− y‖ ≥ δc,∀y ∈ Rn \K}. (24)

with δc = ‖fmax‖
2∆t

. Therefore, the safety margin is K \
K∆. Then, if the system stays at K∆ at every sampling
instant, it is impossible for it to leave K between those
instants.
In this context, let us define the maximal robustly con-

trolled invariant subset of K∆ as

Dsafe := {x : Ṽ (x) is finite} (25)

Therefore, as desired for a conservative approach,Dsafe
is an under-approximation of the maximal robustly

controlled invariant subset of K. Similarly, the over-
approximation of the set of states that, in the worst case
conditions, will be attracted to the forbidden set inde-
pendently of the choice of controls (unsafe set), is de-
fined as:

Dunsafe := K \ Dsafe (26)

4 Set-valued computation of the dynamic pro-
gramming equation

Consider an arbitrary partition of D, P :=
{C1, . . . , Cd}, composed of d subsets, and define Ṽs :
P → R as

Ṽs(Ci) = ∆t + min
u∈Uu

max
v∆∈Uv,∆

x∈Ci

Ṽ (F (x,u,v∆)) (27)

where

Ṽ (x) := Ṽs(Ci) : x ∈ Ci, i ∈ {1, . . . , d} (28)

In general, the obtained solution will be sub-optimal
with respect to original problem, since the same value
and optimal actuation is assigned to all states in each
subset Ci. However, the problem now becomes fi-
nite dimensional. Therefore, the exact solution for
this problem can be computed, ensuring that the cor-
responding controller, albeit sub-optimal, will be safe
and will ensure target reachability.
This formulation has many similarities with the

one proposed in (Cardaliaguet et al., 1999). How-
ever, it must be remarked that, that in (Cardaliaguet
et al., 1999), whose formulation is targeted to purely
continuous-time systems, ∆t is simply an adjustable
parameter whose value, along with the grid resolution,
can be changed arbitrarily to improve the solution accu-
racy. In the current case ∆t is a constant with physical
meaning.
Moreover, (27) can be cast in a more constructive

fashion:

Ṽs(Ci) = min
u∈Uu

M(Ci,u) (29)

where

M(C,u) = ∆t + max{Ṽs(Cj) :

R(C,u)
⋂
Cj 6= ∅, j ∈ {1, . . . , d}} (30)

and R(C,u) is a reachable set, namely the set of states
the disturbance can impose on the system when it de-
parts from C with constant control u:

R(C,u) =

{F (x,u,v∆) : x ∈ C, v∆ ∈ Uv,∆} (31)



5 Extensions to the standard dynamic program-
ming method

5.1 Trajectory evaluation over multiple control
periods

The proposed set based approach computation of Ṽ
implies approximation errors analogous to using a 0th
order interpolation in a traditional grid based numerical
solver. Moreover, the approximation error is specially
penalizing near the forbidden and unsafe sets. In some
cases (specially for low d), the computed unsafe set
may artificially ”absorb” all states, leading to an useless
solution. Notice that Dunsafe is an over-approximation
of the exact unsafe set, in the sense that if some part of
Ci belongs to the exact unsafe set, then the whole Ci is
marked as belonging to Dunsafe.
In order to cope with this challenge, in the proposed

approach, the dynamic programming equation are eval-
uated for state transitions over more than one single
control period. The objective is twofold: on one hand,
to make the ”truncation” error incurred by considering
Ṽ (x) constant for each x ∈ Ci insignificant with re-
spect to the running cost accumulated over several con-
trol periods; on the other hand, to allow propagation
of the trajectory emanating from Ci to terminate in a
region not marked as unsafe. Note that, since Dunsafe
is an over-approximation, a trajectory crossing Dunsafe
(specially its boundary) can still end up in a safe region,
independently of the adversary actions.
In order to avoid exponential complexity, only trajec-

tories with constant control are considered. Thus, the
dynamic programmig equation becomes:

Ṽs(Ci) = min
u∈Uu

MR(Ci,u, 1) (32)

where

MR(C,u, l) = min{MR(R(C,u),u, l + 1),

M(C,u)}, l < N (33)
MR(C,u, N) = M(C,u) (34)

and N is an adjustable parameter.

5.2 Enabling escape from unsafe regions
In some situations, due to the presence of state con-

straints, it is impossible to ensure that the target is
reachable from certain states, the unsafe states, without
violation of those state constraints. However, it must
be recalled that the solution is computed for the worst
case scenario. In practice, even if the system reaches
one of those states, it might be possible for it to return
to a safe state, should the adversary conditions be not
so extreme. Usually, the value function is defined as
infinity for the unsafe states, thus preventing the defini-
tion of a ”best effort” control law. In order to allow the
definition of such control law, the proposed algorithm
implicitly solves two problems in parallel: the main

problem, e.g., the minimization of the cost to reach the
target, and, for those states found to be unsafe, maxi-
mization of the time to reach the forbidden states. The
underlying idea is that anytime the system reaches an
unsafe region of the state space, it should try to escape
it as fast as possible. The latter problem is defined as
follows:

Vc(x0) = sup
fc:Rn→Uu

inf
v∈Uv

kf∆t + c∆c

= − inf
fc:Rn→Uu

sup
v∈Uv

−kf∆t − c∆c (35)

subject to:
x(kf∆t + c∆c) ∈ Rn \ K∆ (36)

as also (19), (20) and (40). This is a differential game
similar to (17), with L(x,u,v) = −1. Therefore, the
same computational techniques can be applied for both
problems.
The synthesis of the optimal control law is based on

the following generalized value function:

Vg(x0) =

{
Ṽ (x0), x ∈ Dsafe
−Vc(x0) + V∞, x ∈ Dunsafe

(37)

where

V∞ = max
x∈Dsafe

Ṽ (x) + max
x∈Dunsafe

Vc(x0) + ∆t. (38)

5.3 Safety margin as a design parameter
For large sampling periods, δc, as defined in sec-

tion 3.2, can become unacceptably large. In general,
it is desirable to leave δc as a design parameter. In or-
der to allow that, an artificial sampling period, ∆c, is
used in the proposed approach. This faster sampling
rate is used only at the design stage, and also just for
the purpose of preventing state constraints violations.
The control value cannot be changed at these interme-
diate steps. Thus, for design purposes, the considered
state constraints become

x(k∆t + c∆c) ∈ K∆ (39)

with k ∈ {0, . . . , kf},

c ∈
{

0, . . . , ceil

(
∆t

∆c

)
− 1

}
(40)

and

∆c ≤ 2‖fmax‖−1δc. (41)



In the latter approach, between control instants, the sys-
tem dynamics are modelled by

x(k∆t + (c+ 1)∆c) = F (∆c,x(k∆t + c∆c),

u(k∆t),v∆(k∆t + c∆c)) (42)

At the control instants, the system dynamics are mod-
elled by

x((k + 1)∆t) = F (∆c,x((k + 1)∆t −∆c),

u(k∆t),v∆((k + 1)∆t −∆c)) (43)

The DP equation becomes

Ṽ (x0) = ∆t + inf
u∈Uu

sup
v∆∈USD(Uv,∆,∆c)

Ṽ (x(∆t)),

x(0) = x0. (44)

with Uv,∆ defined for ∆c according to (15).

6 Numerical solver
Consider a partition of D composed of hyper-

rectangles of equal size, with edges aligned with the
principal axes, where ∆xi, i ∈ {1, . . . , n}, is the
length of each hyper-rectangle along the i-th dimen-
sion. This partition defines a grid over the computa-
tional domain, where each hyper-rectangle of the above
mentioned partition is a grid cell. More formally, a grid
cell is defined as follows:

Ci := {x ∈ Rn : lbi ≤ x < ubi} (45)

lbi = ci −
(

∆x1

2
, . . . ,

∆xn

2

)
ubi = ci +

(
∆x1

2
, . . . ,

∆xn

2

)

F (x,u,v∆) is assumed to be of the form B(x,u) +
v∆, which corresponds to the Euler method, or a lin-
earization of the form A(x,u)x + B(x,u) + v∆, if
the derivatives of f are Lipschitz continuous.
The main operations to be implemented are the com-

putation of the reachable set R(C,u) and verification
if two sets are disjoint. Given the assumed structure of
F (x,u,v∆), the reachable set can be defined as fol-
lows:

R(C,u) = Uv,∆⊕
{A(x,u)x +B(x,u) : x ∈ C} (46)

where S1 ⊕ S2 = {a + b : a ∈ S1, b ∈ S2} is the
Minkowski sum of sets S1 and S2, {A(x,u)x, x ∈
C} implies a rotation and scaling of set C, and term

B(x,u) implies a translation of {A(x,u)x, x ∈ C}
by B(x,u).

Minkowski sum is a non-trivial operation. The current
implementation assumes that Uv,∆ is an AAHR or a
truncated hyper-rectangle (e.g., an octagon, in the two-
dimensional case).

The reach set R(C,u), where C is a convex poly-
tope, is a convex polytope itself. Moreover, define
RH(C,u) as the smallest AAHR containing R(C,u).
The next phase consists of determining which cells in-
tersect with R(C,u) (see (30)). In order to avoid veri-
fication of all d cells, the algorithm uses RH(C,u) to
make a more efficient pre-selection of the cells that can
possibly be intersected by R(C,u).

In order to check if R(C,u) and a given Ci are dis-
joint, the algorithm takes into account that Ci is an
AAHR. Still, the verification method implies substitu-
tion of the coordinates of the 2n vertices of Ci on each
of the linear inequalities describing R(C,u).

A more efficient, albeit less accurate, algorithm is ob-
tained by replacing R(C,u) with RH(C,u) in (30)
(33). This is due to two factors. First, intersection be-
tween AAHR can be implemented with computational
complexity O(n). Second, the Minkowsky sum be-
tween AAHR is also simpler than between an AAHR
and a general convex polytope.

On both cases, each cell is classified either as target,
forbidden, safe, unsafe or undefined. The classification
as undefined is used only at design stage, to indicate
that the cell’s value was still not computed.

In order to achieve better efficiency in the verification
of state constraints, the forbidden region can be defined
as a set of larger AAHR, instead of multiple cells.

The DP equations are evaluated for each grid cell un-
til no change is detected between iterations. As soon
as a cell is assigned a label different from undefined,
the algorithm ceases to compute the corresponding DP
equation. Therefore, algorithm termination is always
ensured.

7 Numerical example
Consider the problem of designing a collision avoid-

ance controller for a vehicle constrained to planar mo-
tion. The objective of the controller is to avoid that any
obstacle reaches a given neighbourhood of the vehicle,
the forbidden zone. The vehicle dynamics can be mod-
elled by the unicycle model (Dubins vehicle (Dubins,
1957)): the vehicle has a maximum angular velocity
ωmax and it is travelling at its maximum speed Vmax.
The obstacles can be either static or moving, with a
maximum speed Vmax in the latter case. No curvature
constraints are assumed for the obstacles.

Additionally, given the position of an obstacle with
respect to the vehicle, the controller must be able to tell
whether the system is in a safe or unsafe state.



The system dynamics are modelled as follows:

(
ẋr(t)
ẏr(t)

)
=

(
0 ω(t)

−ω(t) 0

)(
xr(t)
yr(t)

)
+(

−Vmax

0

)
+ v(t) (47)

with v(t) ∈ {v ∈ R2 : ‖v‖ ≤ Vmax}, where
(xr(t), yr(t)) is the obstacle position with respect to
the vehicle’s body fixed frame, ω(t) is the vehicle angu-
lar velocity, and v(t) is the obstacle input, whose value
may change instantaneously in time. On the other hand,
the vehicle control input, ω(t), being the output of a
ZOH digital controller, is constant during each sam-
pling period. Therefore, during each sampling period,
the system can be described by an affine time invariant
model.
The forbidden set consists of a 20 m radius circle

centred at the controlled vehicle. The numerical val-
ues for the model parameters are: Vmax = 25 m/s,
Uu ∈ {−0.18, 0, 0.18} (rad/s) and ∆t = 1 s.
The value function was computed for different par-

titions of the state space, with D = [600,−100] ×
[−300, 300], and for different horizons N . The results
for the case of reachable sets consisting of general con-
vex polytopes are presented in Figure 1 and Table 1,
while the results for the case of reachable sets over-
approximated by AAHR are presented in Figure 2 and
Table 2. Both pictures were obtained from the solu-
tions for d = 601 × 401 and N = 2. The union of
regions C and D, represented in figures 1 and 2, corre-
sponds to Dsafe, while region B corresponds to Dunsafe.
Region C, although safe, requires that the vehicle does
not use controls that can drive it to the unsafe zone. For
obstacles in region D, any control is safe.
As expected, for the same number of cells and N ,

the computation by the first method takes more time
than by the second. However, the second method
seems to scale more poorly with increasing values of
N . This can be explained by the fact that, due to the
over-approximation, more intersections must be veri-
fied than in the first method. It must be noted that
the reach set tends to grow on each recursion of (33).
The advantage of the multi-period DP is also clear in
certain cases: for instance, the solutions for (d,N) =
(301× 201, 3) and (d,N) = (601× 401, 2) have sim-
ilar accuracy, but the former is computed almost 16
times faster while requiring one quarter of the memory
to store the solution.
Finally, it can be seen that the rate of improvement of

the solution accuracy for the second method becomes
very low as the number of cells increases (i.e., as the
size of the cells decreases).

8 Conclusion
This paper extends existing results on set-valued

methodologies for the solution dynamic optimization
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Figure 1. Hazard level as a function of the obstacle position, as
computed with R(C,u) based on general convex polytopes: re-
gion A - Forbidden zone; region B - Unsafe zone, obstacle avoidance
depends on obstacle trajectory; region C - Alert zone, vehicle must
follow evasive action to avoid entering unsafe zone; region D - vehi-
cle may use any control action.
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Figure 2. Hazard level as a function of the obstacle position, as
computed withR(C,u) over-approximated by axis-aligned hyper-
rectangles (see Figure 1 for label description).

Table 1. Numerical solution with reach set based on general convex
polytopes (a - number of unsafe cells and percentage relative to total
number of cells)

Number
of cells

Horizon
(control
cycles)

Processing
time (s)

Unsafe
Cells (a)

301× 201 1 380 9079 (15.0%)
301× 201 2 330 7044 (11.6%)
301× 201 3 350 6672 (11.0%)
601× 401 1 5482 30046 (12.5%)
601× 401 2 5500 26383 (10.9%)

problems to the case of sampled data systems sub-
jected to disturbances. The solution is obtained by nu-
merical methods that, by design, ensure safety of the
closed loop system at the expenses of optimality. In



Table 2. Numerical solution with reach set over-approximation by
axes aligned hyper-rectangles (a - number of unsafe cells and per-
centage relative to total number of cells)

Number
of cells

Horizon
(control
cycles)

Processing
time (s)

Unsafe
Cells (a)

151× 101 1 1 5505 (36.1%)
151× 101 2 1 4686 (30.7%)
151× 101 3 1 4370 (28.7%)
151× 101 4 1 4241 (27.8%)
151× 101 5 16 4211 (27.6%)
151× 101 6 223 4113 (27.0%)
301× 201 1 14 17929 (29.6%)
301× 201 2 16 16611 (27.5%)
301× 201 3 18 16073 (26.6%)
301× 201 4 46 15955 (26.4%)
601× 401 1 200 65349 (27.1%)
601× 401 2 1618 61239 (25.4%)
901× 601 1 1052 142617 (26.3%)
1201× 801 1 3073 248863 (25.9%)

what concerns the computation of the maximal robustly
controlled invariant set, the numerical results illustrate
that the proposed multi-period approach, with suitable
choice of the horizon, can be a more efficient way of
increasing accuracy, both in computation time and stor-
age space, than just increasing the number of subsets in
the state space partition {C1, . . . , Cd}.
One of the main building blocks of the numerical

solvers is the intersection of reachable sets with the
subsets Ci. Although introducing a larger error, over-
approximation of the reachable sets by axis-aligned
hyper-rectangles is more computationally efficient than
the one based on general convex polytopes, since, in the
former case, intersection cost is a function of the sys-
tem dimension n, as opposed to latter case, where inter-
section cost is of order O(2n). Nevertheless, in spite of
the coarser approximation of the optimal solution, the
faster method can still be preferable to choosing and
tailoring a control function based on physical intuition
and Lyapunov stability methods.
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Grüne, L. and Pannek, J. (2011). Nonlinear Model Pre-
dictive Control - Theory and Algorithms. Commu-
nications and Control Engineering. Springer Verlag,
London.

Habets, L. C. G. J. M., Collins, P. J., and van Schuppen,
J. H. (2006). Reachability and control synthesis for
piecewise-affine hybrid systems on simplices. IEEE
Transactions on Automatic Control, 51(6):938–948.

Hu, C. and Shu, C.-W. (1999). A discontinuous
galerkin finite element method for hamilton–jacobi
equations. SIAM Journal on Scientific Computing,
21(2):666–690.

Isaacs, R. (1965). Differential games; a mathemati-
cal theory with applications to warfare and pursuit,
control and optimization. John Wiley & Sons, New
York.

Junge, O. and Schreiber, A. (2015). Dynamic program-
ming using radial basis functions. Discrete and Con-
tinuous Dynamical Systems, 35(9):4439–4453.

Krasovskii, N. and Subbotin, A. (1988). Game-
theoretical control problems. Springer-Verlag, New
York.

Mitchell, I. M. (2007). A toolbox of level set methods.
Technical Report TR-2007-11, UBC Department of
Computer Science.

Ragazzini, J. R. and Franklin, G. F. (1958). Sampled-
Data Control Systems. McGraw-Hill.


