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Abstract: In the present paper, we propose a new identification method by
adapting the “fictitious controller” to the obtained data in the closed loop
experiment. A fictitious controller, which is introduced in this paper, consists of the
nominal model with unknown plant parameters and the implemented controller
used in the closed loop. One of the key points of the present method is the
adaptation of such a controller to the actual experiment data. Moreover, the
adaptation can be performed by using an off-line nonlinear optimization. Since the
required material in the proposed method is only one-shot experimental data under
the normal operation like step responses, this method has a practical advantage
in the sense that the costs and time for the identification can be reduced.
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1. INTRODUCTION

As is well known, the issue on system identifica-
tion is one of the important areas in systems and
control (cf. e.g., (Forssel and Ljung, 1999), (Lee
et al., 1995), (Verhagen, 1994) and so on). This
paper also the relevant topics on system identifica-
tion, particularly, on parameter identification by
using the closed loop experimental data. Here, we
propose a new identification method by using the
fictitious controller including the plant structure
with unknown parameters. One of the key points
of the present method from the theoretical points
of view is the adaptation of such controllers to
the actual experiment data. Moreover, such an
adaptation can be performed by using an off-
line nonlinear optimization. Since the required
material in the proposed method is only one-shot
experimental data under the normal operation

like step responses, this method has a practical
advantage in the sense that the costs and time for
the identification can be reduced.

This paper is organized as follows. In Section 2, we
prepare the required notations and preparations.
In Section 3, we present the main result of this
paper. In Section 4, we show an experimental
result in order to show the validity of our results.
In Section 5, concluding remarks are given.

2. PRELIMINARIES

Let R and Z denote the set of real numbers and
the integers, respectively. Let R

n denote the set
of real vectors of size n and let R

n×m denote the
set of real matrices of size n×m. Let (R)Z denote
the set of discrete time signals. For w ∈ (R)Z,
the value of w at the time t ∈ Z is denoted with
wt. For w ∈ (R)Z and a, b ∈ Z such that a ≤ b,



w[a,b] denotes the finite time part of w in the time
interval [a, b]. We regard w[a,b] as an element of

R
[b−a+1]. Let q denote the shift operator defined

by qwt := wt+1 for a time series w ∈ (R)Z. In the
case of w[a,b], we regard (qw[a,b])b = 0.

Consider a single-input single-output, linear, time-
invariant, and finite dimensional system in dis-
crete time described by the transfer function G(q).
We denote the i−th Markov parameter of G(q)
with G[i]. Let u[0,N ] and y[0,N ] denote the input
and output data, respectively, obtained in the
interval [0, N ]. The output yt of an operator G(q)
with respect to the input u[0,t] is written by the

form of yt =
∑t

k=0 G[k]ut−k. y[0,N ] ∈ R
N+1 is

regarded as the range of the following Toeplitz
matrix operator with respect to u[0,N ]:




y0

y1

...
yN


 =




G[0] 0 · · · 0
G[1] G[0] · · · 0

...
. . .

. . .

G[N ] · · · G[1] G[0]







u0

u1

...
uN


 ,(1)

or equivalently,



y0

y1

...
yN


 =




u0 0 · · · 0
u1 u0 · · · 0
...

. . .
. . .

uN · · · u1 u0







G[0]

G[1]

...
G[N ]


 . (2)

We denote the Toeplitz operator of Markov pa-
rameters G[i] as

T G
[0,N ]:=




G[0] 0 · · · 0
G[1] G[0] · · · 0

...
. . .

. . .

G[N ] · · · G[1] G[0]


∈R

(N+1)×(N+1).(3)

Similarly, we denote the Toeplitz matrix consist-
ing of truncated time series w[0,N ] as

T w
[0,N ]:=




w0 0 · · · 0
w1 w0 · · · 0
...

. . .
. . .

wN · · · w1 w0


∈R

(N+1)×(N+1). (4)

Moreover, we also prepare the following vector
expression like a finite time series;

[G(q)][0,N ]:=
(
G[0] G[1] · · · G[N ]

)T
∈ R

N+1. (5)

By using these notations, it is easy to see that
(G(q)u)[0,N ] = T G

[0,N ]u[0,N ]. Moreover, Eq.(1) and

Eq.(2) are described by

y[0,N ] = T G
[0,N ]u[0,N ] = T u

[0,N ][G(q)][0,N ] (6)

In Eq.(1), the invertibility of G(q) is equivalent
to the nonsingularity of the Toeplitz matrix be-
cause of g0 6= 0. For transfer functions G(q) and
H(q), it follows from the well-known commutative
property of the product of Toeplitz matrices that
T HG

[0,N ] = T H
[0,N ]T

G
[0,N ] = T G

[0,N ]T
H
[0,N ] holds.

C0(q)
r y0

−

Greal(q)
u0

Fig. 1. A closed loop system

3. IDENTIFICATION BASED ON
FICTITIOUS CONTROLLER

Consider a conventional feedback control system
illustrated in Fig.1. We assume that a plant is
a single-input single-output linear time-invariant
minimum phase system described by

G(ρ, q) =
cpsp + cp−1q

p−1 + · · · + c1q + c0

sd + ad−1qd−1 + · · · + a1q + a0
(7)

with the unknown parameter vector defined by

ρ := [a0 a1 · · · ad−1 c0 c1 · · · cp]
T ∈ R

p+d+1

in discrete time. In the following, we use the
notation G(ρ, q) as the function of a variable
parameter ρ. We also assume that there exists
ρ∗ ∈ R

p+d+1 such that the dynamics of the real
plant is described by G(ρ∗, q), say, Greal(q) :=
G(ρ∗, q). At the same time, assume that we have
the nominal plant

Gnom(q) =
c0
pq

p + c0
p−1q

p−1 + · · · + c0
1q + c0

0

a0
dq

d + a0
d−1q

d−1 + · · · + a0
1q + 1

(8)

with the known nominal parameters

ρ0 := [a0
0 a0

1 · · · a0
d−1 c0

0 c0
1 · · · c0

p]
T.

The structure of G(ρ, q), Greal(q) = G(ρ∗, q)
and Gnom(q) = G(ρ0, q) are the same, which
corresponds to the situation in which the structure
of the dynamics of the plant is known. However, it
is natural to consider that ρ0 and ρ∗ are different
because of the aging changes under operation,
uncertainty on the parameters, and so on. The
aim of this paper is to obtain ρ∗, or a parameter
ρ which is closer to ρ∗ than ρ0.

We also assume that the controller C0(q) stabilizes
the closed loop and that C−1

0 (q) is also proper.
It is possible to write the nominal closed loop
transfer function from the reference r to the
output y described by

Tnom(q) =
Gnom(q)C0(q)

1 + Gnom(q)C0(q)
. (9)

Under these settings, the first step is to perform
the initial experiment and obtain the input and
the output data, which are denoted with u0

[0,N ]

and y0
[0,N ], respectively. Next, we introduce the

fictitious reference (cf. (Safonov and Tsao, 1997),
(Souma et al., 2004)) described by

r̃(ρ)[0,N ] = (C̃(ρ, q)−1u0)[0,N ] + y0
[0,N ]

= T
(C̃(ρ)−1)
[0,N ] u0

[0,N ] + y0
[0,N ] (10)



with the “fictitious controller ” C̃(ρ, q) defined as

C̃(ρ, q) =
Gnom(q)

G(ρ, q)
C0(q) (11)

by using the plant model with an unknown vari-
able parameter ρ. Since G(ρ, q) and Gnom(q) have
the same structures, the assumption on the in-
vertibility of C0(q) guarantees that of C̃(ρ, q). It
is easily seen that y0 is not only the output of
the actual closed loop with the controller C0(q)
but also the output of the “fictitious closed loop”

T̃ (ρ, q) := G(ρ,q)C̃(ρ,q)

1+G(ρ,q)C̃(ρ,q)
with the fictitious con-

troller C̃(ρ, q) with respect to the fictitious refer-
ence r̃(ρ). This is one of the system theoretic inter-
pretations of C̃(ρ, q) and r̃(ρ), and the reason why
we use the terminology of “fictitious controller”.
As shown afterwards, C̃(ρ, q) is only used for the
off-line optimization for the identification and is
not implemented in the actual closed loop.

Next, we introduce the cost function described by

J̃(ρ) :=
N∑

t=0

(y0
t − (Tnom(q)r̃(ρ))t)

2

= ‖y0
[0,N ] − (Tnom(q)r̃(ρ))[0,N ]‖

2
2. (12)

Since J̃(ρ) is not linear quadratic function with
respect to the parameter ρ, the minimization
of J̃(ρ) should be performed by the nonlinear
optimization in the recursive way, e.g., Gauss-
Newton method. The quantities required in the
nonlinear optimization, like Gradient , Hessian
and so on, consist of ρ, the initial data and
the nominal plant model. Thus, the nonlinear
optimization can be perfectly performed off-line
by using only one-shot experiment data.

The problem is how the minimization of J̃(ρ) is
related to the identification of Greal(q). The next
theorem gives an answer to this question, which
is core of the proposed method of this paper.

Theorem 3.1. Consider the closed loop system de-
scribed by Fig. 1 and assume that we have nom-
inal model Gnom(q) and the stabilizing controller
C0(q). Let u0

[0,N ] and y0
[0,N ] be the real experimen-

tal data from this closed loop systems. Assume
that u0

0 is nonzero and that

Snom(q):=
1

1 + Gnom(q)C0(q)
=1 − Tnom(q)(13)

is invertible. Then, a parameter ρ̃ yields J̃(ρ̃) = 0
if and only if ρ̃ yields [Greal][0,N ] = [G(ρ̃)][0,N ].

[Proof]: Here we give the sketch of the proof. Now
it is easy to see that J̃(ρ̃) = 0 is equivalent to

y0
[0,N ] − T Tnom

[0,N ] r̃(ρ̃)[0,N ] = 0. (14)

The left-hand side of Eq.(14) can be calculated as
follows;

y0
[0,N ] − T Tnom

[0,N ] r̃(ρ)[0,N ]

= y0
[0,N ] − T Tnom

[0,N ]

(
T

(C(ρ̃)−1)
[0,N ] u0

[0,N ] + y0
[0,N ]

)

=y0
[0,N ]−T

Tnom

[0,N ]

(
T

((GnomC0)−1)
[0,N ] T

G(ρ̃)
[0,N ] u

0
[0,N ]+y0

[0,N ]

)

= T Snom

[0,N ] y0
[0,N ] − T Tnom

[0,N ] T
((GnomC0)

−1)
[0,N ] T

G(ρ̃)
[0,N ] u

0
[0,N ]

= T Snom

[0,N ]

(
y0
[0,N ] − T

G(ρ̃)
[0,N ] u

0
[0,N ]

)

= T Snom

[0,N ]

(
y0
[0,N ] − T u0

[0,N ][G(ρ̃)][0,N ]

)
. (15)

At the same time, since y0 is the real output of
Greal with respect to the real input u0,

y0
[0,N ]=T Greal

[0,N ] T
u0

[0,N ] =T u0

[0,N ][Greal][0,N ] (16)

holds. Together with noting that Toeplitz matrix
of Snom(q) is nonsingular due to its invertibility,
we see that Eq.(14), Eq.(15) and Eq.(16) yield

T u0

[0,N ][G(ρ̃)][0,N ] = T u0

[0,N ][Greal][0,N ]. (17)

Due to u0
0 6= 0, T u0

[0,N ] is nonsingular. Hence

[G(ρ̃)][0,N ] = [Greal][0,N ] holds.

Conversely, assume that [Greal][0,N ] = [G(ρ̃)][0,N ]

holds. By using the fact that u0 and y0 are the
real data and the similar calculation performed in
Eq.(15), we see that Eq.(14) holds. (Q.E.D.)

Exactly speaking, the case in which the cost
function is to equal to zero is rare. Moreover, the
statement of this theorem is related to Markov
parameter instead of the real coefficients of the
transfer function. From the practical points of
view, however, Theorem 3.1 implicitly guarantees
that if we sufficiently minimize J̃(ρ) then we
obtain the parameter which is sufficiently close to
ρ∗ of the real transfer function Greal(q).

At this point, the minimization of J̃(ρ) is per-
formed by using recursive nonlinear optimization
like Gauss-Newton method. Thus, it is preferable
to provide the properties on the convergence to
the minimizer ρ̃. From this points of view, next
theorem is more relaxed than Theorem 3.1.

Theorem 3.2. In addition to the assumptions
stated in Theorem 3.1, assume that J̃(ρ) is contin-
uous around ρ̃ ∈ R

p+d+1. Then limρ→ρ̃

√
J(ρ) = 0

⇔ limρ→ρ̃[G(ρ)][0,N ] = [Greal][0,N ].

[Proof]: Here we also give the sketch of the proof.
Firstly, from the proof of Theorem 3.1, we see that
limρ→ρ̃

√
J(ρ) = 0 is equivalent to



lim
ρ→ρ̃

‖y0
[0,N ] − T Tnom

[0,N ] r̃(ρ)[0,N ]‖2

= lim
ρ→ρ̃

‖y0
[0,N ] − T u0

[0,N ][G(ρ)][0,N ]‖2

=lim
ρ→ρ̃

‖T u0

[0,N ]

(
[Greal][0,N ]−[G(ρ)][0,N ]

)
‖2=0. (18)

Secondly, now suppose that limρ→ρ̃ ‖[G(ρ)][0,N ] −
[Greal][0,N ]‖2 does not converge to 0, i.e., for all
δ > 0 there exists ∃ε > 0 such that

‖[G(ρ)][0,N ]−[Greal][0,N ]‖2>ε,∀ρ s.t.‖ρ−ρ̃‖2<δ.(19)

Rewrite ‖[G(ρ)][0,N ] − [Greal][0,N ]‖2 as

‖(T u0

[0,N ])
−1T u0

[0,N ]

(
[G(ρ)][0,N ] − [Greal][0,N ]

)
‖2

≤ λ‖T u0

[0,N ]

(
[G(ρ)][0,N ] − [Greal][0,N ]

)
‖2 (20)

where λ is the maximum singular value of
(T u0

[0,N ])
−1 (which is well-defined from the non-

singularity of T u0

[0,N ] ), and this is positive. From

Eq.(19) and Eq.(20), we see that for all δ > 0
there exists ε > 0 such that

‖T u0

[0,N ]

(
[G(ρ)][0,N ] − [Greal][0,N ]

)
‖2 >

ε

λ
∀ρ s.t. ‖ρ − ρ̃‖2 < δ (21)

which contradicts to Eq.(18). Hence, we see that
if limρ→ρ̃

√
J(ρ) = 0 then limρ→ρ̃ ‖[G(ρ)][0,N ] −

[Greal][0,N ]‖2 also converges to 0. Thirdly, we have
to show that limρ→ρ̃ ‖[G(ρ)][0,N ]− [Greal][0,N ]‖2 =
0 implies limρ→ρ̃([G(ρ)][t] − [Greal][t])

2 = 0 for all
t = 0, 1, · · · , N . Note that limρ→ρ̃ ‖[G(ρ)][0,N ] −
[Greal][0,N ]‖2 = 0 is equivalent to that for all ε > 0
there exists δ > 0 such that

‖[G(ρ)][0,N ]−[Greal][0,N ]‖2<ε,∀ρ s.t.‖ρ−ρ̃‖<δ.(22)

Now, suppose that for all δ1 > 0 there ex-
ist τ ∈ Z and ε1 > 0 such that ([G(ρ)][τ ] −
[Greal][τ ])

2 > ε1 for all ρ such that ‖ρ −
ρ̃‖2 < δ1. Due to the arbitrariness of ε in
Eq.(22), it is possible to substitute ε1 into
Eq.(22). Thus, we see that ε1 > ‖[G(ρ)][0,N ] −
[Greal][0,N ]‖2 =

∑
t=0,t6=τ ([G(ρ)][t] − [Greal][t])

2 +

([G(ρ)][τ ] − [Greal][τ ])
2 for all ρ such that ‖ρ −

ρ̃‖ < δ, which implies ([G(ρ)][τ ] − [Greal][τ ])
2 <

ε1. This is the contradiction to ([G(ρ)][τ ] −
[Greal][τ ])

2 > ε1. Thus, we see that the conver-
gence of limρ→ρ̃ ‖[G(ρ)][0,N ] − [Greal][0,N ]‖2 = 0
implies limρ→ρ̃([G(ρ)][t]−[Greal][t])

2 = 0 for all t =
0, 1, · · ·N . Hence limρ→ρ̃[G(ρ)][0,N ] = [Greal][0,N ]

holds. The converse direction can be shown in
similar way, we omit it here. (Q.E.D.)

Remark 3.1. IFT (cf. (Hjalmarsson et al., 1998)),
VRFT (cf. (Campi et al., 2002), (Campi and
Savaresi, 2006)) and FRIT(cf. (Souma et al.,
2004)) are known as the novel ideas of tuning
methods for the controller. The key idea of the
present paper is to tune a variable parameter of
a fictitious controller which includes the plant

parameter by using the data directly . Thus, our
identification method can be regarded one of the
interesting applications of these controller tuning
methods to identification. 2

Remark 3.2. In (Kaneko et al., 2005), some of
the authors provided the identification method
based on the tuning of the feedforward controller
in the two-degree of freedom of control scheme
with only (one-shot) experiment data as one of
the applications of the tuning method stated in
Remark 3.1. In the real plant in the industries, the
augmentation of the controller to the two-degree
of freedom control system needs a lot of costs, it is
preferable to perform identification in one-degree
of freedom of control system from the practical
points of view. This is another motivation of this
study and one of the advantages over the previous
work by the authors in (Kaneko et al., 2005).2

Remark 3.3. The reference (Sala, 2007) discussed
how conventional closed loop system identification
and controller tuning method are unified. On the
other hand, as explained in Remark 3.1 and 3.2,
the issue of this paper is not an unification of
the controller parameter tuning and closed loop
system identification but one of the applications
of the controller tuning to system identification.
Thus, the issue treated in this paper differs from
that in the work by Sala (Sala, 2007). 2

Remark 3.4. The real measured data u0 and y0

include the noise. If it is difficult to neglect the
effect of noise, we repeat the experiment with
respect to the same controller C0(q) twice.
This technique is also taken by IFT or VRFT
(cf.(Hjalmarsson et al., 1998) and (Campi et
al., 2002)). We denote the first experimental data

with {y
0(1)
n := y0(1) + n

(1)
y , u

0(1)
n = u0(1) + n

(1)
u }

and the second experimental data with {y
0(2)
n :=

y0(2) + n
(2)
y , u

0(2)
n = u0(2) + n

(2)
u }, respectively.

Here, n
(i)
y and n

(i)
u denotes the noise in the i-th

experiment on the input and the output, respec-
tively. y0(i) and u0(i) denotes the pure signal we
require in this method. The experiment is per-
formed in the closed loop, the correlation between

e.g., n
(1)
y and u

0(1)
n can not be neglected. However,

the two experiments are performed in the different

time, it is possible to assume that n
(i)
y and n

(i)
u in

the first experiment have no correlation with n
(j)
y ,

n
(j)
u , y

0(j)
n and u

0(j)
n , where i, j = (1, 2) or (2, 1).

Thus, by modifying Eq.(12) as

J̃n(ρ) =
(
yn

0(1)
[0,N ] − Tnom(q)r̃(ρ)1[0,N ]

)T

×
(
yn

0(2)
[0,N ] − Tnom(q)r̃(ρ)2[0,N ]

)
(23)

(where, r̃i(ρ)[0,N ] := C(ρ)−1un
0i′
[0,N ] + yn

0i′
[0,N ], i =

1, 2), we can approximate the cost function so as
to eliminate the effect of the noise. 2



Remark 3.5. The characteristics of the obtained
parameter depends on Tnom(q), because it deter-
mines the frequency band in which we can obtain
the accurate mathematical model. Moreover, since
the initial experimental data reflects on not only
the plant dynamics but also the feedback loop
property, the initial feedback controller C0(q) and
the reference signal r also play crucial roles in this
algorithm. The detailed observations for them are
also the issues of the future studies. 2

Remark 3.6. In the standard approach, the iden-
tifability is clarified as the conditions on the de-
gree of the numerator and the denominator of the
controller, PE characteristics of the noise, and the
property of the reference signals explicitly. In our
approach, the identifability of G(q) depends on
whether ρ̃ is the desired local minimum or not,
which is related to the issues on numerical com-
putations of non-linear optimization like Gauss
Newton method. 2

4. EXPERIMENTAL RESULT

In this section, we give an experimental result to
show the validity of our approach. The system
we address here is described by Fig. 4. The cart

PC

The cart

The pulley

u

The servo motor

y

The belt
Fig. 2. The cart system

is attached to the belt which is moving by the
rolling of the servo motor. The location y (output)
from the initial position of the cart is measured
by the potentiometer attached in the pulley and
is send to the personal computer (PC). And the
servo motor is driven by the voltage u (input) from
PC. The sampling time of this control system is
0.001[sec].

From the physical points of view, it is known that
the transfer function of this plant is described by
y = β/(s2 + αs)u in continuous time case. Thus,
our aim is to obtain the parameters of the discrete
time transfer function as G(ρ, q) = c1q+c0

q2+a1q+a0

where ρ := [a0 a1 c0 c1]
T ∈ R

4 is a variable
parameter vector. The nominal plant model is
described by Gnom(q) = G(ρ0, q) with ρ0 :=
[4.479×10−3, −1.05, 8.898×10−3, 2.278×10−3].
We also use a conventional PI controller described
by C(q) = 1+0.01 q

q−1 . Moreover, we also prepare
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Fig. 3. Output data y0
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Fig. 4. Input data u0

the nominal close loop transfer function Tnom(q)
consisting of Gnom(q) and C0(q) as Eq.(9).

By using C0(q), we perform the first experiment
with the reference signal r = 0.1[m]. The output
y0 and the input u0 are illustrated as Fig.3 and
Fig.4, respectively. Next by using the fictitious
reference r̃(ρ) in Eq.(10) and the fictitious con-

troller ˜C(ρ, q) in Eq.(11), we perform the off-
line nonlinear optimization so as to minimize
J̃(ρ) in Eq.(12). After the off-line Gauss-Newton
optimization with 500 [times] iterations, we ob-
tain G(ρ̃, q) with ρ̃ = [0.1121, −1.112, 1.927 ×
10−2, 3.9 × 10−2]. We illustrate the result of this
tuning in Fig.5 where the real line, the chained
line, and the dotted line are y0, Tnom(q)r̃(ρ̃) and
Tnom(q)r, respectively. Since the minimization of
J̃(ρ) can be sufficiently achieved, Tnom(q)r̃(ρ̃) al-
most coincide with y0 as shown in this figure.
Next, in order to show the validity of the obtained
ρ̃, we also perform frequency response experi-
ments. In Fig. 6, we illustrate the output y with
respect to u = sin(t) as the real line. Moreover, we
also illustrate the simulation using the obtained ρ̃,
and the nominal ρ0, as the chained line and the
dotted line, respectively.

It is clear to see that the output response simu-
lated by using the obtained parameter ρ̃ is much
closer to the real response than the response sim-
ulated by using the nominal parameter ρ0.
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Fig. 5. Identification result (The real line:y0

The chained line Tnom(q)r̃(ρ̃), The dotted
line:Tnom(q)r)
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Fig. 6. The validation result w.r.t the frequency
response : 1[rad/sec] (The real line: the ac-
tual response, The chained line: The simula-
tion using ρ̃, The dotted line: The simulation
using ρ0)

Similarly, we illustrate the case in which u =
sin(100t) is applied to this system in Fig.7. In
this figure, we also see that the simulation using
ρ̃ is much closed to the actual response than the
simulation using the nominal parameter ρ0. Thus,
we observe that the obtained parameter reflects
the dynamics of this plant sufficiently.

5. CONCLUSION

In this paper, we have proposed a system identi-
fication method based on the adaptation of ficti-
tious controllers, which is introduced in this pa-
per, including the structure of a plant model. This
method requires only one-shot experiment data, it
has a practical advantage in the sense that we can
reduce the costs and time for the identification. As
future studies, we are studying the issues which
have been written as some remarks in Section 3
and the extension to non-minimum phase plants.
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