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Abstract
The paper discusses the problem of finding and quali-

tative investigation of invariant manifolds (IMs) of La-
grange systems with cyclic coordinates.
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1 Introduction
It is well known that adding the complete differential

to the characteristic function under the integral of ac-
tion does not provoke any change in the form of differ-
ential equations, which correspond to the given charac-
teristic function. This is equivalent to adding the time
derivative of the function, which is dependent on the
generalized coordinates, to the characteristic function.

This is the technique by which we propose to use
the “extended” Routh functions for purpose of deriv-
ing and qualitative investigation of invariant manifolds
of the respective Routh and Lagrange systems of equa-
tions [Arnold, Kozlov, Neyshtadt, 1985 ] on the basis
of the approach , which is similar to Routh-Lyapunov’s
method [Lyapunov, 1954], [Irtegov, 1985]. We use
proposed method to find invariant manifolds (i) in La-
grange system with two positional and with two cyclic
coordinates, (ii) for rigid body with a fixed point in Eu-
ler’s case.

2 Invariant manifolds of the system, whose re-
duced system is linear

Consider the Lagrange system with two cyclic coordi-
nates (q1, q2) and two positional coordinates (q3, q4),
whose Routh function is quadratic with respect to all

the phase variables:

R = 1
2

(
− b2p2

1 + 2b4p1p2 − b1p2
2 +B1q

2
3 +B3q

2
4

+c1(q3′)
2 + 2c3q3′q4′ + c2(q4′)

2 + 2q3(B2q4

+A1q3
′ +A3q4

′) + q4(A2q3
′ +A4q4

′)
)
,

(1)
where p1, p2 are constant of cyclic integrals of the ini-
tial Lagrange system, coefficients Ai, Bi are also ex-
pressed via p1, p2 and via coefficients of the initial dif-
ferential system:

A3 = p1ω33 + p2ω43, A4 = p1ω34 + p2ω44,

A1 = p1ω13 + p2ω23, A2 = p1ω14 + p2ω24,

B1 = g − a23p
2
1 + 2a3p1p2 − a13p

2
2,

B3 = f − a24p
2
1 + 2a4p1p2 − a14p

2
2, B2 = h.

The Routh function (1) contains the addends with the
coefficients A1, A4, that is to say contains the function
d(A1q3

2 + A4q4
2)/dt . These are not included into

the Routh differential equations. We call this Routh
function an “extended” Routh function.
Consider the stationary conditions for the function (1)

∂R/∂q3 = B1q3 +B2q4 +A1q3
′ +A3q4

′ = 0,
∂R/∂q4 = B2q3 +B3q4 +A2q3

′ +A4q4
′ = 0,

∂R/∂q4
′ = A3q3 +A4q4 + c3q3

′ + c2q4
′ = 0,

∂R/∂q3
′ = A1q3 +A2q4 + c1q3

′ + c3q4
′ = 0.


(2)

By imposing the constraints on the constant coeffi-
cients of function R, it is possible to make equations
of system (2) dependent. Hence equations (2), which
remain independent, define the invariant manifolds of
the Routh equations.
We have conducted complete analysis of the condi-

tions needed for making zero the determinant of system



(2), which is linear with respect to the phase variables.
The determinant of system (2)

∆4 = det


c1 c3 A1 A2

c3 c2 A3 A4

A1 A3 B1 B2

A2 A4 B2 B3

 (3)

can be submitted as

∆4 = ∆2
a1 −∆b∆c −∆24∆q13 + ∆23∆q14

+∆14∆q23 −∆13∆q24,
(4)

here

∆13 = A3c1 −A1c3, ∆23 = −A1c2 +A3c3,
∆14 = A4c1 −A2c3, ∆24 = −A2c2 +A4c3,

∆q24 = −A4B2 +A3B3, ∆q14 = −A2B2 +A1B3,

∆q13 = −A2B1 +A1B2, ∆q23 = −A4B1 +A3B2,

∆a1 = A2A3 −A1A4, ∆c = c1c2 − c23,
∆b = B2

2 −B1B3

When considering different variants of turning the ad-
dends into zero ∆4, so that ∆4 = 0, we obtain the con-
dition of singularity of the matrix of linear system (2).
There are right 44 variants. This has given us the pos-
sibility to identify the two groups of IMs: 1. The IM is
described by two equations; 2. the IM is described by
three equations. To investigate the stability of IMs ob-
tained we have used the Routh function for the purpose
of constructing the Lyapunov function .

2.1 Example 1
Under the constraints imposed on the coefficients in

function (1)

B1 =
A2

3c1
c23

, A4 =
A2c2
c3

, B3 =
A2

2c2
c23

,

B2 =
A2A3

c3
, A1 =

A3c1
c3

independent in (2) are only the two equations, which
define the IM of the Routh equations

Γ1 =
A3q3
c3

+ q3
′ = 0, Γ2 =

A2q4
c3

+ q4
′ = 0 (5)

When represented in terms of variables Γi the Routh
function (1) writes:

∆R1 =
1
2
(
− b2p2

1 + 2b4p1p2 − b1p2
2

+c1Γ1
2 + 2c3Γ1Γ2 + c2Γ2

2
)
.

For the purpose of investigation of stability of IM (5)
let us choose

V1 = ∆R1 + (b2p2
1 − 2b4p1p2 + b1p

2
2)/2 =(

c1Γ1
2 + 2c3Γ1Γ2 + c2Γ2

2
)
/2

in the capacity of the Lyapunov function, whose deriva-
tive due to the Routh equations

V ′
1 =

A3c1Γ1
2

c3
+

(A2c3 +A3c3)Γ1Γ2

c3
+
A2c2Γ2

2

c3

is the quadratic form of its variables. IM (5) is asymp-
totically stable when the following conditions of defi-
nite positiveness of form V and definite negativity of
V ′

1 hold:

c1 > 0, c2 > 0, c1c2 − c23 > 0,
A3c1
c3

< 0,

−4A2A3c1c2 + (A2 +A3)
2
c23 < 0.

2.2 Example 2
If coefficients in (1) are bound up by the relations

B1 =
B2

2(c1c2 − c23)
A2

4c1 +A2
2c2 − 2A2A4c3

,

A1 =
A2B2(c1c2 − c23)

A2
4c1 +A2

2c2 − 2A2A4c3
,

B3 =
A2

4c1 +A2
2c2 − 2A2A4c3

c1c2 − c23
,

A3 =
A4B2(c1c2 − c23)

A2
4c1 +A2

2c2 − 2A2A4c3
,

then the Routh equations assume the IM:

Ψ2 = q4
′ +

((
(A4c1 −A2c3)

(
B2

(
c1c2 − c23

)
q3

+
(
A2

4c1 +A2
2c2 − 2A2A4c3

)
q4

))
/((

A2
4c1 +A2

2c2 − 2A2A4c3
)(
c1c2 − c23

)))
= 0,

Ψ1 = q3
′ +

((
(A2c2 −A4c3)

(
B2

(
c1c2 − c23

)
q3

+
(
A2

4c1 +A2
2c2 − 2A2A4c3

)
q4

))
/((

A2
4c1 +A2

2c2 − 2A2A4c3
)(
c1c2 − c23

)))
= 0.


(6)

When represented in terms of variables (6) the Routh
function (1) has the form

∆R2 =
1
2
(
− b2p2

1 + 2b4p1p2 − b1p2
2

+c1Ψ1
2 + 2c3Ψ1Ψ2 + c2Ψ2

2
)
.

Introduce the function

V2 = ∆R2 − (−b2p2
1 + 2b4p1p2 − b1p2

2)/2 =(
c1Ψ1

2 + 2c3Ψ1Ψ2 + c2Ψ2
2
)
/2



and compute its derivative due to the Routh differential
equations:

V ′
2 =

(
(A2Ψ1 +A4Ψ2)

(
B2

(
c1c2 − c23

)
Ψ1

+
(
A2

4c1 +A2
2c2 − 2A2A4c3

)
Ψ2

))
/(

A2
4c1 +A2

2c2 − 2A2A4c3
)
.

Unfortunately, this derivative cannot be sign-definite
with respect to all its variables. Let B2 = 0, A2 = 0.
Hence V ′ = A4Ψ2

2, and the IM under scrutiny is sta-
ble when the following conditions hold: (c1c2 − c23) >
0, c1 > 0, A4 < 0.

2.3 Example 3
If coefficients in (1) are bound up by the relations

A1 =
1

A3(A2
3B3 −B2

2c2)
(A4

3B2 +A2
3B2B3c1

−B3
2c1c2 − 2A2

3B
2
2c3 +B3

2c
2
3), A2 = A3,

B1 = − 1
A2

3(A
2
3B3 −B2

2c2)
(B2

2(−A4
3 −A2

3B3c1

+B2
2c1c2 + 2A2

3B2c3 −B2
2c

2
3), A4 =

A3B3

B2
,

then the Routh equations assume the invariant mani-
fold:

Φ1 = −B2

(
−A4

3 −A2
3B3c1 +B2

2c1c2

+2A2
3B2c3 −B2

2c
2
3

)
(B2q3 +A3q3

′)
+A2

3

(
A2

3B3 −B2
2c2

)
(B2q4 +A3q4

′),

Φ2 = B2
2q3 +B2B3q4 +A3B2q3

′

+A3B3q4
′, Φ3 = A3B2q3 +A3B3q4

+B2c3q3
′ +B2c2q4

′


(7)

The differential equations for Φi are as follows:

Φ1
′ = (W2Φ1 +A2

3B2(A2
3 −B2c3)(−W2Φ2

+A3W1Φ3))/(A3(A2
3B3 −B2

2c2)(c1c2 − c23)),
Φ2

′ =
(
(−B2c2 +B3c3)Φ1 +A2

3B2

(
A2

3

−B2c3
)
(B2c2 −B3c3)Φ2 −A3B2W1Φ3

)
/(

A3B2

(
−A2

3B3 +B2
2c2

)(
c1c2 − c23

))
,

Φ3
′ = Φ2,


(8)

here

W1 =
(
A2

3B
2
3c1 +A2

3B
2
2c2 −B2

2B3c1c2
−2A2

3B2B3c3 +B2
2B3c

2
3

)
,

W2 =
(
A4

3B2c2 +A2
3B2B3c1c2 −B3

2c1c
2
2

−A4
3B3c3 −A2

3B
2
2c2c3 +B3

2c2c
2
3

)
.

The Routh function is expressed by Φi

∆R3 =
1
2
(
− b2p2

1 + 2b4p1p2 − b1p2
2

)
+

B3Φ2
1

2A2
3B

2
2(A2

3B3 −B2
2c2)W1

− Φ1Φ2

B2W1
+

((
A6

3B3 − 2A4
3B

2
2c2

−A2
3B

2
2B3c1c2 +B4

2c1c
2
2 + 2A2

3B
3
2c2c3

−B4
2c2c

2
3

)
Φ2

2

)
/
(
2
(
A2

3B3 −B2
2c2

)
W1

)
+

A3B2Φ2Φ3

A2
3B3 −B2

2c2
− B2

2Φ2
3

2(A2
3B3 −B2

2c2)
.

For the purpose of investigation of stability of IM (7)
let us choose

V3 = ∆R3 −
(
− b2p2

1 + 2b4p1p2 − b1p2
2

)
/2 (9)

in the capacity of the Lyapunov function. The deriva-
tive of V3 (9) due to the equations (8):

V3
′ =

(
c2Φ2

1 +A4
3B

2
2

(
A4

3c2 +A2
3B3c1c2

−B2
2c1c

2
2 − 2A2

3B2c2c3 −A2
3B3c

2
3 + 2B2

2c2c
2
3

)
Φ2

2

−2A3
3B

2
2

(
A4

3B2c2 +A2
3B2B3c1c2 −B3

2c1c
2
2

−A4
3B3c3 −A2

3B
2
2c2c3 +B3

2c2c
2
3

)
Φ2Φ3

+A4
3B

2
2W1Φ2

3 − 2A2
3B2Φ1

(
c2

(
A2

3

−B2c3
)
Φ2 −A3(B2c2 −B3c3)Φ3

))/(
A3

3B2

(
A2

3B3 −B2
2c2

)2(
c1c2 − c23

))
(10)

The Silvester conditions of sign-definiteness of the
forms (9) and (10) cannot be satisfied simultaneously.
If form (10) is sign-definite then satisfied are the condi-
tions of Lyapunov’s theorem on instability, and hence
IM (7) is unstable.
The IMs of the Routh equations obtained may be

“brought up” into the phase space of the respective La-
grange system with Lagrangian

L == 1
2

(
gq23 + 2hq3q4 + fq24

+c1(q3′)
2 + 2c3q3′q4′ + c2(q4′)

2

+ 1
(−M2

12+M11M22)

(
M11(q1′ + (q3ω13 + q4ω14)q3′

+(q3ω33 + q4ω34)q4′)2 + 2M12(q1′

+(q3ω13 + q4ω14)q3′ + (q3ω33 + q4ω34)q4′)
(q2′ + (q3ω23 + q4ω24)q3′ + (q3ω43 + q4ω44)q4′)+

M22(q2′ + (q3ω23 + q4ω24)q3′ + (q3ω43

+q4ω44)q4′)2
))

(here M11 =
(
b1 + a13q

2
3 + a14q

2
4

)
, M22 =

(
b2 +

a23q
2
3 + a24q

2
4

)
, M12 =

(
b4 + a3q

2
3 + a4q

2
4

)
). To this



end, it is sufficient to add equations of cyclic integrals
to the equations, which define IM for the Routh equa-
tions. This can easily be verified by using the definition
of IM [Irtegov, Titorenko, 2010].

3 A rigid body with a fixed point in Euler’s case

In the capacity of the second problem we shall con-
sider the motion of a rigid body with a fixed point in
Euler’s case. This system’s Lagrangian in terms of Eu-
ler’s angles θ, φ, ψ has the form [Macmillan, 1936]:

L == 1
2 (Acos[ϕ]2 +Bsin[ϕ]2)θ′2 + 1

2Cϕ
′2+

((A−B) cos[ϕ] sin[θ] sin[ϕ]θ′ + C cos[θ]ϕ′[t])ψ′

+ 1
2Mψ′

2
,

(11)
where

M = Ccos[θ]2 + sin[θ]2
(
Bcos[ϕ]2 +Asin[ϕ]2

)
.

It is known that the differential equations in this case
assume the cyclic integral

∂L/∂ψ′ = ((A−B) cos[ϕ] sin[θ] sin[ϕ]θ′

+C cos[θ]ϕ′ +Mψ′ = p1. (12)

Let us conduct reduction of the system. In this case,
the Legendre transformation allows one to obtain the
following Routh function

R = L− p1ψ
′, (13)

where ψ′ has to be removed with the aid of (12).

By adding the addend f [θ]θ̇ to R, we obtain the “ex-
tended” Routh function

R̃ =
(
− p2

1 +
(
ABsin[θ]2 + Ccos[θ]2

(
Acos[ϕ]2+

Bsin[ϕ]2
))
θ′

2 + Csin[θ]2
(
Bcos[ϕ]2 +Asin[ϕ]2

)
ϕ′

2

+2C cos[θ]p1ϕ
′ + (A−B) sin[θ] sin[2ϕ]θ′(p1

−C cos[θ]ϕ′)
)
/2M + f [θ]θ′

The conditions of stationarity of R̃ with respect to the

phase variables θ, ϕ, θ′, ϕ′

cos[θ]p1 + sin[θ]
(
(B −A) cos[θ] cos[ϕ] sin[ϕ]θ′

+sin[θ]
(
Bcos[ϕ]2 +Asin[ϕ]2

)
ϕ′

)
= 0,

M f [θ] + (A−B) cos[ϕ] sin[θ] sin[ϕ]p1

+
(
ABsin[θ]2 + Ccos[θ]2

(
Acos[ϕ]2 +Bsin[ϕ]2

))
θ′

−(A−B)C cos[θ] cos[ϕ] sin[θ] sin[ϕ]ϕ′ = 0,

(A−B)
(
2 cos[ϕ] sin[θ]p1 − 2

(
Ccos[θ]2

+Asin[θ]2
)
sin[ϕ]θ′ − C cos[ϕ] sin[2θ]ϕ′

)(
sin[θ] sin[ϕ]p1 + cos[ϕ]

(
Ccos[θ]2 +Bsin[θ]2

)
θ′

−C cos[θ] sin[θ] sin[ϕ]ϕ′
)

= 0,

4
(

cos[θ] sin[θ]
(
− C +Bcos[ϕ]2 +Asin[ϕ]2

)
p2
1

− 1
4 (A−B)2C cos[θ] sin[θ]sin[2ϕ]2θ′2

−C sin[θ]
(
cos[θ]2(A+B − C − (A−B) cos[2ϕ])

+sin[θ]2
(
Bcos[ϕ]2 +Asin[ϕ]2

))
p1ϕ

′

+C2 cos[θ] sin[θ]
(
B(cos[ϕ])2 +Asin[ϕ]2

)
ϕ′

2

+θ′
(
(A−B) cos[θ] cos[ϕ] sin[ϕ](

Ccos[θ]2 + sin[θ]2
(
2C −Bcos[ϕ]2 −Asin[ϕ]2

))
p1

+
(
Ccos[θ]2 + sin[θ]2

(
Bcos[ϕ]2 +Asin[ϕ]2

))2
f ′[θ]

−(A−B)C cos[ϕ] sin[ϕ]
(
Ccos[θ]2

−sin[θ]2
(
Bcos[ϕ]2 +Asin[ϕ]2

))
ϕ′

))
= 0,


(here f [θ] is considered as unknown) have the follow-
ing of solutions:

Υ1 = −cot[ϕ]csc[θ]p1 +Aθ′ = 0,

Υ2 = cot[θ]csc[θ]p1 +Aϕ′ = 0,

Υ3 = f [θ]
(
Ccos[θ]2 +Bcos[ϕ]2sin[θ]2

+Asin[θ]2sin[ϕ]2
)

+ (A

−B) cos[ϕ] sin[θ] sin[ϕ]p1 +
(
ABsin[θ]2

+C(cos[θ])2
(
Acos[ϕ]2 +Bsin[ϕ]2

))
θ′

−(A−B)C cos[θ] cos[ϕ] sin[θ] sin[ϕ]ϕ′ = 0


(14)

where f [θ] is determined by the equation

cot[θ](csc[θ])2p2
1 == f [θ]f ′[θ].

Two families of the solutions f [θ]::

f [θ] = ±
√

2
√
C[1]− 1

2cot[θ]2p2
1, (15)

here C[1] > 0 are constant of integration.
From (14) we find

cos[ϕ] = − f [θ]√
f [θ]2 + csc[θ]2p2

1

(16)



It can readily be verified that three equations (14) de-
fine the family of IMs for the Routh equations.
Example. Define one of the subfamilies of this family.

Choose the second solution in (15)

f [θ] = −
√

2

√
C[1]− 1

2
cot[θ]2p2

1,

hence from (14) we obtain the following differential
equation for θ

θ′ =
√

2
√
C[1]− 1/2cot[θ]2p2

1/A. (17)

Equation (17) is integrated to obtain elementary func-
tions:

θ = ∓ArcSec
[2
√

2ζ
√

2C[1] + p2
1

1 + 4ζ2C[1]
]
,

here

ζ = exp(
(
it+

√
2AC[2]

)√
2C[1] + p2

1/A),
C[2] = const.

If

C[2] =
log

[
1/(4C[1])

]
2
√

2
√

2C[1] + p2
1

,

then (17) has the real solution (family)

cos[θ] ==
√

2
√
C[1] cos[tω]√

2C[1] + p2
1

, ω =

√
2C[1] + p2

1

A
.

(18)
The solution (18) we shall substitute in (16):

cos[ϕ] ==
√

2

√
C[1]

2C[1] + csc[tω]2p2
1

(19)

The family of solutions (18) and (19) lies on IM (14)
and satisfies Routh equations containing function (13).
These IMs may be “brought up” into the phase space

of the system with the Lagrangian (11). To this end it
is sufficient to add relation (12) (the cyclic integral) to
(14):

Υ4 = (A−B) cos[ϕ] sin[θ] sin[ϕ]θ′ + C cos[θ]ϕ′

+
(
Ccos[θ]2 + sin[θ]2

(
Bcos[ϕ]2

+Asin[ϕ]2
))
ψ′ − p1 = 0

All the computational difficulties, which are bound up
with a large volume of trigonometric transformations,
have been overcome with the aid of CAS MATHE-
MATICA.

4 Conclusion
So, the problem of obtaining the stationary invari-

ant manifolds with the aid of ”extended” characteristic
functions is reduced to finding the solutions of some
additional system of equations. Additional equations
respect to functions defining invariant manifolds can be
algebraic equations (as in task 1) or differential equa-
tions (as in task 2). The stationarity property of such in-
variant manifolds allows us to apply the 2nd Lyapunov
method in their qualitative analysis.
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