
 
 

 
 

 
 

 
 

 
 
 
 

MODEL-BASED PREDICTIVE ADAPTIVE DELTA MODULATION 
 
 

Anas Al-korj     Sandor M Veres 
 
 

School of Engineering Scienes,, University of Southampton, 
 Highfield, Southampton, SO17 1BJ, UK, Email:s.m.veres@soton.ac.uk 

 
 
 

 
Abstract: This paper presents a new technique in digital communications, called model-
based-predictive adaptive-delta-modulation (MBP-ADM). MBP-ADM uses system 
identification tools to identify a model of the signal which is used for prediction. The 
prediction helps the system to respond adaptively to a varying input signal, in order to 
achieve improved performance. The results show a substantial improvement in the signal 
to noise ratio (SNR) with MBP-ADM’s compared to the ‘classical adaptive’ and ‘non-
adaptive’ Delta Modulators. 
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1. INTRODUCTION 
 
Delta Modulation (DM) performs high resolution 
Analog to Digital Conversion (ADC) using low 
complexity components. The main steps in DM (or 
any other differential-based digital modulator) are 
shown in Fig. 1. 
 

 
 

Figure 1. The main steps in Delta Modulation 
 
The analog signal x(t) is sampled at a rate higher 
than the Nyquist rate in the over-sampler block in 
Fig. 1. At the modulator each sample x(n) is 
converted into digital values y(n). Delta modulation 
is a predictive quantizing system and is essentially 
a one-digit differential pulse code modulation [1]. 
In linear DM, the predicted value is a linear 
function of the past values of the quantized signal. 
In adaptive DM (ADM), the predicted value of the 
input signal is a nonlinear function of the past 

values of the quantized signal. To get an optimum 
performance in DM, it is required to introduce 
nonlinear prediction to force the system to respond 
adaptively to any changes in the slope of the input 
signal. Optimal performance is achieved by 
extending the dynamic range over which DM 
operates [1]. Another modified and important 
version of DM is called the Sigma-Delta Modulator 
(SDM). The SDM is well-known and was 
developed for the purpose of coding DC signals, 
and for further simplifying the demodulator. 
Adaptive SDM (ASDM) is also a well-established 
area in the ADC field (see for example [2]-[4]). 
Several adaptation techniques for DM and SDM 
have been investigated over the last five decades 
[1]-[4].    

 
The main objective of the new method of model-
based predictive adaptive delta modulation (MBP-
ADM), which is introduced in this paper, is to 
employ the advantages of Model-Based Predictive 
Control (MPC) in the field of digital 
communications. This approach has been 
developed and implemented as an alternative to the 
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existing ‘classical’ capacitor-based mechanism for 
one-step-ahead prediction in classical DM. MBP-
ADM applies k-step ahead model-based predictive 
control as an alternative to the one-step ahead 
classical prediction, which is often implemented by 
simple integrators using capacitors.  Some of the 
on-line implementation issues of MBP-ADM are 
also addressed in the paper, by studying methods 
for finding the optimum selection of parameters to 
minimize the error to noise ratio and the processing 
time. It will be shown that this union between long-
range-MPC techniques and digital communications 
helps to overcome many problems in digital 
differential communication systems. 
 
In this paper, techniques of k-step-ahead model-
based prediction are introduced to help in resolving 
the following three problems:  
• To overcome the problems associated with the 

classical integration which is used as the 1-
step-ahead predictor.  

• To overcome the undesirable effects of the 
variations in the uncontrollable variables, 
namely, the amplitude and the frequency of the 
input signal. This means that MBP-ADM 
generates a minimum value of the sum of all 
noises: the slope overload noise, and granular 
noise. This feature is inherited from the fact 
that the integrator is not needed anymore.  

• To avoid the problems associated with the 
integrators that are related to the tracking 
mechanisms and direct prediction using a 
transfer function.  

Further advantages of direct long-range prediction 
includes: better detection of the synchronization 
signals, which are usually embedded within the 
data stream, (when dealing with command signals 
for example), and handling constraints which 
usually come from the electrical characteristics of 
the participating components. Section II illustrates 
both the classical adaptive and non-adaptive DM. 
Section III introduces MBP-ADM. An example and 
the results are in Section IV. 
 

2. CLASSICAL ‘DELTA’ & ‘ADAPTIVE 
DELTA’ MODULATIONS  

 
Delta modulation, and all the issues associated with 
the noise and performance have been extensively 
studied in [6]. A block diagram of DM is shown in 
Fig. 2. 

 
 

Figure 2. Implementation of classical DM 
 
The key step for an effective use of delta 
modulation is the intelligent choice of the two 

parameters, the ‘step size’ and the ‘sampling 
period’. 
These must be chosen so that the signal can not 
possibly change too fast for the steps to follow 
accurately. If the steps cannot follow changes in the 
signal, the situation is known as overloading. Since 
the signal has a definable upper-frequency cut-off, 
we usually know the fastest rate at which this can 
change. However, to account for the fastest 
possible change in the signal, the sampling 
frequency and/or the step size must be increased. 
Increasing the sampling frequency will result in the 
delta-modulated (coded) waveform requiring a 
larger bandwidth for transmission. On the other 
hand, increasing the step size increases the 
quantization error. That is, the step approximation 
to the function becomes poorer as the step size 
increases. This is most obvious during periods 
when the function is almost constant. 

 
The two main types of noise can be easily observed 
in Fig. 3: ‘slope overload noise’ and ‘granular 
noise’.  
 

 
Figure 3. Types of Noise in DM: Slope-overload 

noise, and Granular noise. 
 
The need to minimize both of these results in 
conflicting requirements when selecting the step 
size or the integrator gain. One solution is to select 
the step size to minimize the sum of the mean 
square values of these two distortions [6].  
The complexity of the problem comes from the fact 
that, increasing the step for the sake of reducing the 
slope overload noise will increase the granular 
noise and vice versa, as shown in Fig. 3 and Fig. 4.   

 
Figure 4. Noise in DM vs. Integrator step size. 
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For a given system, and for each sampling period, 
there will be an optimum step value which should 
be determined.  To further improve the 
performance, an adaptive delta modulation scheme 
(ADM) can be used. Several schemes have 
appeared over the last three decades. Most of these 
schemes are of a feedback type, where the digital 
code in the output is used to achieve the adaptation 
(see for example [1], [7]).  Practically speaking, 
most of the ADM systems depend on monitoring 
the digital output data and try to adapt the step size 
depending on the incoming input signal as shown 
in Fig. 5.  
 
Fig. 6 illustrates the adapted signal, which offers 
much better tracking performance than the non-
adaptive case in Fig. 3. 
 

  
Figure 5. Block diagram of a continuously variable 

slope [adaptive] DM 
 

 

 

 

 
Fig. 6, The signals in classical ADM scheme – applied on audio signal (the word ‘bye’) 
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3. MBP-ADM SCHEME   
 

Signals sampled at the Nyquist rate or faster exhibit 
significant correlation between successive samples. 
In other words the average change in the amplitude 
between successive samples is relatively small. 
Consequently, an encoding scheme that exploits the 
redundancy in the samples will result in a lower bit 
rate for the source output. A relatively simple 
solution is to encode the differences between 
successive samples rather than the samples 
themselves. Since the differences between the 
samples are expected to be smaller than the actual 
sampled amplitudes, then fewer bits are required to 
represent the differences. The main structure of 
MBP-ADM will take the form shown in Fig. 7.  An 
explanation of the main blocks in MBP-ADM is 
given in the following subsections. 
 

 
 
Figure 7. Structure of MBP-ADM scheme as 
compared with classical DM: The upper feedback 
loop represents classical delta DM, and the lower 
feed forward loop represents model-based 
predictive adaptive DM (MBP-ADM). 
 

 
3.1. Model Identification  
 
The general case of a linear input-output model for 
a single-input single-output system with input u, 
and output y, is shown in Fig. 8. Here u denotes the 
input, and A, B, C, and D, are polynomials in time 
shift operator q. The noise is represented by v.   
 

 
 

Figure 8. General linear model for a single output. 
 
A and B are given by:     
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Various model forms can be achieved as special 
cases of Fig. 8, [11]. 
 
i) ARX:        A(q) y(n) = B(q) u(n-d) + v(n) 

ii) ARMAX:  A(q) y(n) = B(q) u(n-d) + C(q) v(n)               

iii) OE:          y(n) = [B(q)/F(q)] u(n-d) + v(n)   

iv) BJ:  y(n)=[B(q)/F(q)] u(n-d)+[C(q)/D(q)] v(n)  

 
When modelling time series there will be no input 
signal, and the general ARMAX model is reduced 
to the ARMA model structure [10], [11].  
            

           D(q) y(n) = C(q) v(n)                (2) 
 
Different model orders can be used for MBP-
ADM. The effect of the model order will be 
investigated at a later stage. There are many 
available algorithms and packages for modelling, 
which can be used to identify the model. The 
System Identification Toolbox in MATLAB was 
used to perform the identification in this study.  
 

3.2. k-steps-ahead model-based prediction 
 
This is the core element in the MBP-ADM scheme. 
The predictor in this study substitutes the classical 
prediction method in both classical DM as well as 
in classical ADM.  Traditionally, both DM and 
ADM use the integrator’s concepts and 
mechanisms with some form of automatic gain 
control (AGC), to get a predicted value of the 
tracked signal and then use a suitable speed 
(integrator’s gain) to reduce the tracking error. 
While in the proposed method of MBP-ADM, in 
order to predict the output over the prediction 
horizon, a k-step-ahead predictor is required.  
 
A k-step-ahead prediction  of the process 
output must be a function of all the data up to ‘n’, 
the future controller output sequence, some noise, 
and a model of the process

( kny +ˆ )

$H .  Such a k-step-ahead 
predictor can, thus, be described by:  

 
( ) ( )Hufkny ˆ,,ˆ ϕ=+                         (3) 

 
where ƒ is a function and ϕ is a vector represents 
all the data up to ‘n’. Clearly, the k-step-ahead 
predictor will depend heavily on the model. In 
order to take the disturbances into account when 
predicting the output of the process, the 
disturbances must also be modelled. The model 
with a disturbance term v(n) which is given by: 
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The disturbance e(n) may in general be a sum of 
deterministic and stochastic disturbances. The 
k-step-ahead predicted output is given by:    
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The disturbances which can not be predicted 
exactly are modelled by: 
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where e(k) is a signal which can be measured but 
cannot be predicted, and C and  D are polynomials 
with degree  and . The predicted e(n) is 
given by: 

Cn Dn
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where v(n+k) is a white noise sequence.  
 

3.3. The quantizer and the digital sampler 
 
This quantizer and the digital sampler block are 
exactly the same as in any classical delta or 
classical adaptive delta modulators, see ref.  [6]. 
 

4.  IMPLEMENTATION AND RESULTS 
 
In this section, a comparison will be made between 
the performance of the MBP-ADM scheme over 
the classical ADM. Both ADM and MBP-ADM 
were fully implemented and tested in 
Matlab/Simulink. Also, both systems were fully 
implemented in hardware circuits in the laboratory.  
 
4.1.   ADM versus MBP-ADM 

 
The methods were tested both on electronic 
hardware and in simulation. The results from the 
hardware testing were consistent with the results 
from the Matlab/Simulink simulations. The signal 
was modelled using Auto Regressive Moving 
Average (ARMA) model. A robustified quadratic 
prediction error criterion is minimized off-line 
using an iterative Gauss-Newton algorithm. A 
comprehensive investigation about the selection 
choice of model order for this application was 
made in [9]. The identified 10th order ARMA 
model for signal presented above was D(q) y(n) = 
C(q) v(n) with:  
 
D(q) = 1 - 1.733 q^-1 - 0.5182 q^-
2 + 1.417 q^-3 + 1.526 q^-4 - 
1.707 q^-5 - 0.8857 q^-6 + 0.8195 

q^-7 + 0.1577 q^ -8 + 0.06576 q^-9 
- 0.1327 q^-10,    
 
and  
 
C(q) = 1 - 1.09 q^-1 - 0.8757 q^-2 
+ 0.6268 q^-3 + 1.522 q^-4 - 
0.8194 q^-5 - 0.7352 q^-6 + 0.3456 
q^-7 + 0.1231 q^-8 + 0.0407 q^-9 
 
The identified model was used to predict the 
tracking signal. This predicted tracking signal was 
compared with actual signal, and the digital output 
sequence is formed. Then this digital sequence was 
sampled with the same sampling rate to generate (  
off-line) the Model-based predictive adaptive delta 
modulated signal. The adaptation is done of-line 
and digitally using hybrid circuitries. 
 
For both cases of ADM and MBP-ADM, 
performance can be measured by the sum of the 
error square divided by the maximum value of the 
signal and multiplied by 100 to give a percentage.  
 
After applying the same signal to both systems, and 
using 10-step-ahead prediction schemes, the result 
were as follows:  

• The error to signal percentage for the 
classical case was equal to 0.6 % of the 
signal in the above example. 

• The error to signal percentage for the 
MBP-ADM case equal to 0.16% of the 
same signal and in exactly the same 
conditions.  

Therefore, the improvement for k = 10 in our steps-
ahead prediction was four times better than in the 
classical case:  0.6 / 0.16  4 times improvement. ≅
 
When working with only one-step-ahead 
prediction, the model based prediction error was 
0.021616%, i.e. the improvement in MBP-ADM 
over the classical method (based on only one-step-
ahead) was as follows: 0.6/0.021616 27 times 
improvement. 

≅

 
Figure 9 (in page 6), illustrates the error differences 
in both ADM and MBP-ADM. 
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Figure 9. ADM vs. MBP-ADM applied on audio signal (the word “bye”) 

With 10-steps-ahead prediction is used, and with 10th order ARMA model. 
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