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Abstract

Recently, the fractional order continuous singular sys-
tem becomes research field that much discussed by var-
ious researchers. The normalization constitutes a vari-
ant of discussing for fractional order singular system.
The procedure to normalize positively of the fractional
order continuous disturbance singular system is dis-
cussed in this paper. Some sufficient condition that
guarantees the existence of a fractional derivative out-
put feedback such that the closed loop system consti-
tutes a fractional order usual linear system and posi-
tive, is established. The considered problem is solved
by transforming it into a usual fractional order linear
system, and afterwards it is analyzed using algebraic
principle. The final result of this paper is a sufficient
condition that guarantees the existence of a fractional
derivative feedback such that the closed loop system
constitutes a fractional order usual linear system and
positive.
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1 Introduction
Consider the following system:

(E△α −A)x = Bu+ Cω
y = Dx

(1)

where x is state vector, u is control vector, ω is distur-
bance vector, y is output vector, E,A ∈ Rn×n, B ∈
Rn×m, C ∈ Rn×q , D ∈ Rp×n and rank(E) = r < n.
In the system in (1), △α denotes the fractional-order
derivative operator of order α in sense of Caputo with
0 < α < 1, which its definition is given in [Kilbas,
Srivastava and Trujillo, 2006] as follows:

△αx =
1

Γ(1− α)

t∫
0

ẋ(τ)

(t− τ)
α dτ, (2)

where

Γ(υ) =

∞∫
0

e−ttυ−1dt

is the Euler Gamma function satisfying the functional
equation Γ(υ + 1) = υΓ(υ). If r = n and α = 1,
the system 1 is the usual linear system. If r = n and
0 < α < 1, the system (1) is a fractional order nor-
mal linear system [Chikriy, 2008]. The application of
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fractional order normal linear system is given in [Kac-
zorek, 2014] and [Metia, Oduro, Duc and Ha, 2016].
If r < n and α = 1 then the system (1) is the usual
singular (descriptor) system [Duan, 2010].
In this paper it is focused on the case r < n and
0 < α < 1. The couple equation (1) is known as the
fractional order disturbance singular system. Different
to the fractional order normal linear system that always
have a solution, the fractional order singular system
may be not have a solution for some situation. It has
a unique solution if there exists a complex number λ
such that det(λE − A) ̸= 0 and in this case it is called
regular [Kaczorek and Borawski, 2016].
As shown in [Kaczorek and Borawski, 2016], if

det(λE − A) ̸= 0 for some complex number λ then
there exists some nonsingular matrices Q1, P1 ∈ Rn×n

such that

Q1(λE −A)P1 = λ

[
Ir O
O N

]
−

[
J O
O In−r

]
, (3)

where J ∈ Rr×r is a Jordan matrix and N ∈
R(n−r)×(n−r) is a nilpotent matrix. Let

Q1B =

[
B1

B2

]
, Q1C =

[
C1

C2

]
, DP1 =

[
D1 D2

]
,

where B1, B2, C1, C2, D1 and D2 are the matrices
of suitable size. Under the transformation

z =P−1
1

[
z1
z2

]
, (4)

the system (1) can be written as

(△α − J)z1 = B1u+C1ω
(N△α − In−r)z2 = B2u+C2ω

y = D1z1 +D2z2

(5)

where z1 ∈ Rr and z2 ∈ Rn−r.
Different to the fractional order usual linear system,

the solution of fractional order singular system may
contain impulse that appear from the solution of the
second equation of (5). It is well known that the im-
pulse constitutes an unwanted behavior because it may
cause degradation in performance or even destroy the
system [Duan, 2010]. In literature [Goncharova, Sam-
sonyuk, Staritsyn, 2017] and [Matviychuk, 2018] it is
stated that the impulse must be controlled, some even
claim that impulse needs to be removed. Therefore it
is important to eliminate this impulse behavior. For the
usual singular system, the impulse can be eliminated by
normalization process [Duan and Wu, 2005], that is, by
using a state feedback of the form

u = −K1△x

for some matrix K1 ∈ Rm×n. Using this state feed-
back, the system (1) becomes

((E +BK1)△−A)x = 0. (6)

It is clear that if rank(E +BK1) = n, then the system
(6) is a usual linear system. Some condition for the
existence of the matrix K1 such that rank(E+BK1) =
n has been reported in [Duan, 2010].
In this paper the concept of normalization for the usual

singular system is extended to the fractional order dis-
turbance singular system, by constructing a fractional
derivative output feedback of the following form:

u = −(KE△α −KA)y (7)

where KE ,KA ∈ Rm×p are the gain matrices to be
determined. Using (7) the system (1) becomes the fol-
lowing closed loop system:

((E +BKED)△α − (A+BKAD))x =Bω. (8)

It is obvious that if rank(E + BKED) = n, then the
system (8) is a fractional order usual linear system and
it is free impulse. It is a task in this paper to estab-
lish the criteria to ensure the existence of the matrix
KE ,KA ∈ Rm×p such that rank(E +BKED) = n.
In the application field in which the system (1) appears

as a model of some real problems, the positiveness of
the state variable is a must. A fractional order usual
linear system is called positive if for all t > 0, it holds
x ∈ Rn

+ and y ∈ Rp
+ for each control u ∈ Rm

+ and
ω ∈ Rp

+ [Kaczorek, 2008]. It is well known that if
r = n and α = 1, the system (1) is positive iff E−1A
is a Metzler matrix, E−1B ∈ Rn×m

+ , E−1C ∈ Rn×q
+

and D ∈ Rp×n
+ [Muhafzan and Stephane, 2013]. This

criterion holds for the case r = n and α < 1 as well
[Kaczorek, 2008]. It is obvious that if E−1A ∈ Rn×n

+

then E−1A is a Metzler matrix. Therefore, the objec-
tive of this paper is to establish a criterion that ensure
the existence of matrices KE ,KA ∈ Rm×p such that
rank(E+BKED) = n and the closed loop system (8)
is positive. To the best of the authors knowledge, there
is no research yet on how to normalize a fractional or-
der singular continuous system.
This paper is organized as folows. Section 2 discusses

some useful materials related to the desired results. The
procedure to normalize the fractional order continuous
disturbance singular system positively is discussed in
section 3. A numerical example is presented to illus-
trate the result. We end this study by the conclusion
which is given in section 4.

2 Some Useful Results
In order to find the desired goal, some the following

results is useful.
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Definition 1. [Kaczorek, 2008] A matrix A ∈ Rn×n

is said to be monotone if it is nonsingular and A−1 ∈
Rn×n

+ . A matrix M ∈ Rn×n
+ is said a monomial matrix

if there exist exactly one nonzero entry in every row and
column of M.

It has been proved in [Kaczorek, 2008] that the matrix
A−1 ∈ Rn×n

+ if and only if A is a monomial.

Definition 2. [Kaczorek, 2008]

1. Two matrices M,S ∈ Rn×n
+ is said positively

equivalent if there exists two monomial matrices
P,Q such that S = QMP.

2. A matrix M ∈ Rn×n
+ with rank M = s is said s-

monomial if it is positively equivalent to the matrix
diag(MS , O), where MS is monomial.

The s-monomial matrices have the following proper-
ties.

Theorem 1. [Kaczorek, 2008]

1. The matrix M is s-monomial iff M has (n − s)
rows and column with entries equal to zero and s
rows and column with only one entry different to
zero.

2. If the matrix M is s-monomial then it is positively
equivalent to the matrix diag(IS , O).

3 Positive Normalization
In this section we present the desired results. First of

all, it will be generated KE ,KA ∈ Rm×p such that
rank(E + BKED) = n. Assume that the matrix E
is positively equivalent to s-monomial matrix M , then
there exists some monomial matrices Q and P such that

QEP =

[
MS O
O O

]
. (9)

Moreover, let

QAP =

[
A1 A2

A3 A4

]
, QB =

[
B1

B2

]
, DP =

[
O D2

]
(10)

where A1 ∈ Rs×s, A2 ∈ Rs×(n−s), A3 ∈
R(n−s)×s, A4 ∈ R(n−s)×(n−s), B1 ∈ Rs×m, B2 ∈
R(n−s)×m and D2 ∈ Rp×(n−s). Assume that D2 and

B2 have full rank. Choosing KE = B⊤
2 D⊤

2 , it is found

E +BKED = Q−1

[
MS O
O O

]
P−1

+Q−1QBKEDPP−1

= Q−1

([
MS O
O O

]
+

[
B1

B2

]
B⊤

2 D⊤
2

[
O D2

])
P−1

= Q−1

([
MS O
O O

]
+

[
O B1B

⊤
2 D⊤

2 D2

O B2B
⊤
2 D⊤

2 D2

])
P−1

= Q−1

[
MS B1B

⊤
2 D⊤

2 D2

O B2B
⊤
2 D⊤

2 D2

]
P−1.

Since D2 and B2 have full rank, the matrix
B2B

⊤
2 D⊤

2 D2 is nonsingular. This implies that
rank(E +BKED) = n.

Furthermore, it will constructed the conditions such
that (E + BKED)−1 ∈ Rn×n

+ and (A + BKAD) ∈
Rn×n

+ . Consider that

(E +BKED)−1 = P

[
MS B1B

⊤
2 D⊤

2 D2

O B2B
⊤
2 D⊤

2 D2

]−1

Q

= PLQ

= PGHQ,

where

L =

[
MS B1B

⊤
2 D⊤

2 D2

O B2B
⊤
2 D⊤

2 D2

]−1

=

[
M−1

S −M−1
S B1B

⊤
2 D⊤

2 D2(B2B
⊤
2 D⊤

2 D2)
−1

O (B2B
⊤
2 D⊤

2 D2)
−1

]−1

,

G =

[
M−1

S O
O O

]
,

H =

[
IS −B1B

⊤
2 D⊤

2 D2(B2B
⊤
2 D⊤

2 D2)
−1

O (B2B
⊤
2 D⊤

2 D2)
−1

]
.

Based on Definition 2, it is obvious that M−1
S ∈

Rs×s
+ and one can see that if (B2B

⊤
2 D⊤

2 D2)
−1 ∈

Rn×n
+ and (−B1B

⊤
2 D⊤

2 D2) ∈ Rs×(n−s)
+ , then (E +
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BKED)−1 ∈ Rn×n
+ . Moreover

A+BKAD = Q−1

[
A1 A2

A3 A4

]
P−1

+Q−1QBKADPP−1

= Q−1

([
A1 A2

A3 A4

]
+

[
B1

B2

]
KA

[
O D2

])
P−1

= Q−1

([
A1 A2

A3 A4

]
+

[
O B1KAD2

O B2KAD2

])
P−1.

One can see that the matrix KA ∈ Rm×p can be choose
such that

(A2 +B1KAD2) ∈ Rs×(n−s)
+

and

(A4 +B2KAD2) ∈ R(n−s)×(n−s)
+ .

Thus we have been proved the following theorem that
constitutes a sufficient condition for the existence a
fractional derivative output feedback (7).

Theorem 2. Consider the system (1) with C ∈
Rn×q

+ and ω ∈ Rq
+. If there exists the matrices

Q,P ∈ Rn×n such that A1 ∈ Rs×s
+ , A3 ∈

R(n−s)×s
+ , (B2B

⊤
2 D⊤

2 D2) is a monomial matrix and
(−B1B

⊤
2 D⊤

2 D2) ∈ Rs×(n−s)
+ , where D2 is a full rank

matrix, then there exists the fractional derivative out-
put feedback (7) with KE ,KA ∈ Rm×p such that
rank(E + BKED) = n and the closed loop system
(8) is positive.

Compare this with the results in [Muhafzan and Zu-
lakmal, 2017].
The following example illustrates the Theorem 2.

Consider the system (1) with

E =


2 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 , A =


1 3 2 1 1
3 1 2 1 1
1 1 0 4 1
1 1 1 1 1
1 1 3 0 1

 ,

B =


−0.5 0

0 0
0 1
0 0
2 0

 , C =


2
0
1
0
1

 and D =

[
0 0 0 0 1
0 0 0 1 0

]
.

It is clear that r = 3 and there exists λ such that
det(λE −A). Using the matrices

Q =


1 0 0 0 0
0 1 0 0 0
0 0 0 3 0
0 0 0 0 1
0 0 1 0 0

 and P =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1

 ,

one can finds that the matrix E is positive equivalent to
the matrix

M3 =

 4 0 0
0 2 0
0 0 3

 .

Furthermore we have

QB =


1 −1
0 1
0 0
2 0
0 1

 , DP =

[
0 0 0 0 1
0 0 0 1 0

]
,

and

QAP =


2 3 2 1 1
6 1 2 1 1
6 3 3 3 3
6 3 3 0 1
6 3 0 4 1

 .

Moreover, it is found

B2B
⊤
2 D⊤

2 D2 =

[
0.25 0
0 1

]
,

B1B
⊤
2 D⊤

2 D2 =

−0.5 0
0 0
0 0

 ,

A2 +B1B
⊤
2 D⊤

2 D2 =

3 0
1 1
3 3

 ,

A4 +B2B
⊤
2 D⊤

2 D2 =

[
4 1
4 2

]
.

Therefore, using

KE = KA =

[
0 1
2 0

]
,

one find

(E +BKED)−1 =


0.5 0 0 0 0.125
0 0.5 0 0 0
0 0 0 1 0
0 0 0 0 0.5
0 0 0.5 0 0

 ∈ R5×5
+ .
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This shows that rank(E + BKED)−1 = n and the
closed loop system (8) is positive.

4 Conclusion
A sufficient condition that ensure the existence of the

gain matrices KE ,KA ∈ Rm×p and the closed loop
system (8) is positive has been established. This result
constitutes a procedure to normalize positively the frac-
tional order continuous disturbance singular system.

Acknowledgements
The work was supported by Universitas An-

dalas under Grant KRP1GB-PDU-Unand-2018 No.
04/UN.16.17/PP.RGB/LPPM/2018.

References
Chikriy, A. A. and Matichin, I. I. (2008) Presentation of

solutions of linear systems with fractional derivatives
in sense of Riemann-Liouville, Caputo and Miller
Ross. Journal of Automation and Information Sci-
ences, 40(6), pp. 1-11.

Duan, G. R. (2010) Analysis and Design of Descriptor
Linear Systems, Springer. London.

Duan, G. R. and Wu, A. G. (2005) Impulse elimina-
tion via state feedback in descriptor linear systems,
Dynamics of Continuous, Discrete and Impulsive Sys-
tems A, 3, pp. 722-729.

Goncharova, E., Samsonyuk, O. and Staritsyn, M.
(2017) Dynamical systems with states of bounded p-
variation: A new trend in impulsive control, Cyber-
netics and Physics, 6(4), pp. 208-214.

Kaczorek, T. (2014) Minimum energy control of frac-
tional descriptor positive discrete-time linear systems
with bounded inputs, In Proceedings of the 19th
World Congress The International Federation of Au-
tomatic Control. Cape Town, South Africa, 24-29
August, pp. 2909-2914.

Kaczorek, T. and Borawski, K. (2016) Fractional de-
scriptor continuous-time linear systems described by
Caputo-Fabrizio derivative Int. J. Appl. Math. Com-
put. Sci. 26(3), pp. 533-541.

Kaczorek, T. (2008) Fractional positive continuous-
time linear systems and their reachability Int. J. Appl.
Math. Comput. Sci. 18(2), pp. 223-228.

Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.
(2006) Theory and Applications of Fractional Differ-
ential Equations. Elsevier. Amsterdam.

Metia, S., Oduro, S. D., Duc, H. N. and Ha, Q. (2016)
Inverse air-pollutant emission and prediction using
extended fractional Kalman filtering IEEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing. 9(5), pp. 2051-2063.

Matviychuk, O. G. (2018) State estimation for bilinear
impulsive control systems under uncertainties. Cy-
bernetics and Physics, 7(1), pp. 35-41.

Muhafzan and Stephane, I. (2013) On Stabilization of
Positive Linear Systems. Applied Mathematical Sci-
ences, 7(37), pp. 1819-1824.

Muhafzan and Zulakmal (2017) Impulse elimination
for positive singular systems using derivative output
feedback, In Journal of Physics: Conference Series,
Pahang, Malaysia, 8-10 August. 890(012029).


