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Abstract: Accuracy for main class of Simultaneous Perturbation Stochastic Approximation (SPSA) procedures is
being researched. The model of observation is considered to be one of the most general among SPSA research. The
power of moments of expectation for which the estimates of the procedure do converge is lowerized from 2 to 1 (not
including lower bound). The conditions for the convergence are presented, with additional generalisations made

about noise and trial perturbation properties.
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1 Introduction

The interest to complex systems with different kinds of
uncertainties leads to non-classical methods of system
identification and control. So called stochastic control
is highly discussed in contemporary science. Different
approaches to model systems with uncertainties do ex-
ist, each usually leading to separate class of methods
of control. In this paper simultaneous perturbation
stochastic approximation (SPSA) group of methods is
discussed, and the set of tasks for which these methods
are applicable is made wider.

Firstly we describe some typical closed-loop
discrete-time system. In these terms the task typically
solved by SPSA can be easily formulated. So, the sys-
tem consists of object and controller. Uncertainty is
being expressed by wy, and vy sequences, first is about
internal system undeterminism of behaviour, second is
external noise which is added to the true object output
during measurement or transfer of this discrete signal
through some noisy channel.

Following [6], we can divide optimization problem
statement to offline, stochastic and online classes. Of-
fline statement is classical. The approach considered
here is stochastic, where there is one function F(x,w)
being optimized, but it is measurable with noise. On-
line statement of optimization problem is new and in-
teresting. It assumes that on each iteration new func-
tion is measured, but the cost function is formulated
depending on all the functions, for example we need
to find point closest in average to minimum of all the
functions [6].

We continue investigations started in [3, 4] describ-

ing the types of convergence for the SPSA procedures.
The convergence of E{||0 — 6,]|°} for p € (1,2] (mo-
ments of estimates of degree p) is being researched.
Conditions from [7] are taken as sufficient for SPSA
in general. Additional assumptions of existence of p-
moment of F(z,w), and some complex condition((E)
in Section 2) on v, and A,, should be satisfied for the
results of the paper.

We try to develop SPSA algorithms theoretical
framework in the very general form. Instead of as-
sumption of triple-differentiable F' as it is in [8], we
consider only one-time differentiable F'. Also, the si-
multaneous perturbation vector should be of the form
K, (A,) where A,, is Bernoulli random vector and K,
is vector-function (kernel) with some condition on it
instead os straight usage of Bernoulli random variables
in [8]. The model with two kinds of uncertainty is also
more general than preseted in [8] and [9], and we be-
lieve that SPSA technique becomes more useful with
these generalisations.

In [3] this convergence was proved for SPSA proce-
dure with one measurement. Using the same approach,
in [4] convergence for two-measurement per iteration
is proved. Here we present these results together with
another procedure of this class convergence result, de-
liver common framework for such methods and add
some generalisations, discussed in [7] but not provided
in [3, 4]



2 Problem statement and SPSA algo-
ritms

Let F(x,w) : RYxRP — R! — be differentiable by
the first argument function, x1,x2,... — is chosen by
author of experiment sequence of points for measure-
ment (plan of experiment), in which at every moment
n = 1,2,... value of a function F(-,w,) is available
with additive disturbances v,,.

Yn = F(xn; wn) + Un, (1)

where {w,} — uncontrolable sequrnce of random val-
ues from RP, having equal, but unknown distribution
Pu().

Problem. It is needed to construct using observa-
tions y1,¥2,... a sequence of estimates {én} of un-
known vector #, minimizing a function

f(2) = B {F(z, 0)}) = / F(z, w)P.y (dw)
Rp
of average cost functional type.
Usually the problem of minimization of function
f(-) with simpler model of observations is discussed:

Yn = f(xn) + Un, (2)

which easily suits to the proposed scheme. More com-
plicated model

Yn = wnf(xn) + Un, (3)

which suits the general model with F(z,w) = wf(x),
was earlier investigated in [10].

When distribution P,,(+) is unknown, the problem
discussed is outside the scope of classical optimization
theory.

If measurements of function F'(x,,w,) are done in
fact with some additive random centered independent
noise v, € R, then this extra complexity us not prin-
cipal. Adding to vector w additional component v and
denoting

it is possible to use instead of F'(z, w) another function

F(z,w) = F(z,w) + v

with observation scheme without additional distur-
bances and new common unknown distribution Py, ()
instead P, (:), which was unknown before. If noise
added by measurement doesn’t have good statistical
properties, then it is impossible to simplify the prob-
lem. It is needed to use a model with additional dis-
turbances v,,.

Let us denote simultaneous perturbation as
A, € R% {a,} and {3,} are sequences of positive
numbers, tending to zero; 6y € RY is a fixed initial
vector. To construct the sequnces of points for mea-
surements {z,} and estimates {9n} three algorithms
are proposed. First uses one observation to build an
estimate:

Tn = énfl + ﬂnAnv Yn = F(xn;wn) + vy,
A (@)
on - Hn—l - % n(An)yna

second and third use 2 observations on each iteration:

Ton = énfl + ﬂnAnv Tan—1 = énfl - ﬂnAna
(5)

0n - én—l - ;TT;IC’H(ATL)(Z/Q’H - an—l);

Tan = on—l + 671,An7 Ton—1 = Hn—la

o (6)
071 = gnfl - %]Cn(An)(an - y2n71)~

In all three algorithms some vector-functions (ker-
nels) are used: K, () : R? — R?, which satisfy together
with distributions of simultaneous perturbation P, ()
the conditions:

/ Ko ()P () = 0, / Ko (@)2 Po(dz) =1, (7)

where I is a ¢-dimensional unit matrix.

Algorithm (4) with function K, (A,) = A, was
primary founded by O. N. Granichin in the paper [11]
for constructing a sequence of estimates, well-founded
in almost arbitrary noise in observations. B. T. Polyak
and A. B. Tsybakov investigated in [12] both algo-
rithms (4) and (5) with vector-function /C,,(-) of gen-
eral form in situation of uniform testing perturbation
and with assumption about independency and central-
isation of observation noise. J. Spall [13] used algo-
rithm (5) in case of distribution of trial perturbation
with finite inverse moments and vector-function &, (+),
defined by rule:

ICn(An) -

With same vector-funcrtion K, (-) and constraints
on distribution of trial simultaneous perturbation H.-
F. Chen and others in paper [14] was proposed to use
algorithm(6).



We will use instead of algorithm (4) slightly differ-
ent one with projection when we formulate the main
result:

=0,_1+ ﬂnAnv Yn = F(xn;wn) + vy,
(8)

én = ,PG,L (én—l - g_:K:n(An)yn)a

for which it is more comfortable to prove. In this
algorithm Pg_(-) are projecting operators on some
convex closed bounded subsets ©,, C R?, which con-
tain, starting from some n > 1, the answer point 6. If
the bounded closed convex set ©: 6 € O is known, then
we can decide that ©,, = ©. In other case sets {©,,}
can be wider each time up to infinity. Some specifics
of the task can allow to construct decreasing sequence

{On}.

3 Main conditions

Counsider p € (1, 2]. We will use following notation:
E{-} — for expectation; || - ||, || - ||, and (-,-) — for Eu-
clidean norm, norm in [, space and scalar product in
R%; F,,—1 — is for o-algebra of probabilistic events, de-
rived from random values 90, él, ceey 9n,_1, constructed
by algorithm (5) (or (6), or (8)); using algorithms (5)
or (6)

_ Wan —
Wp = ; Un = K(”Qn - UQn—l);
W2n—1

- {é,for (5).
1, for (6),
Fy = max Ey { By {w?|F (2, w") = F(z,w")|"}},
and when constructing estimates by algorithm (8)
Up = U, Wy = Wy, Fuy = By {|F (0, w)|"}.

Consider a function

V(z) = ||z =05 =37, |2 — 9@,
where # — is an optimal vector which we need to find.

Let’s formulate main assumptions.
(A) Function f(z) has a unique minimum and
(VV(2),Vf(x)) > uV(x), VYxeR?
with some constant p > 0.

(B) Vw gradients of functions F(-,w) satisfy the con-

dition
[VaF (z,0)=Vo F(y,w)ll, < Mllz—yl,, Vz,y € R?

with some constant M > 0.

(C) Local condition of Lebesgue for V, F(x,-) : Va 3
neighbourhood U, : V2’ € U, 3 function ®,() :
R? - R, E,{®,(w)} < o0 :

|V F (2 ,w)| < ®,(w) for almost all w.
(D) For K,(-) m P,(-), n = 1,2,... conditions are
satisfied:

K=F, sip /||/c 2P (dz) < oo,

=S /II’C Mpllzllpllz]| ey Pr(da) < oo.

(E) For every n > 1

€n = |B{Kn(An)Tn] Fu-1}lIf < CauBy,

E{[[KCn(An)tnll5} < of.

In case of p = 2 conditions (A) and (B) have the
same form as it was in earlier papers (for example,

[10]):

(A’) — function f(-) is strictly convex, that is

(= 0,Vf(x)) > plla - 0|7, Yz eR.

(B’)— Lipschitz condition for gradients of functions
F(-,w): Vz,0 € R?

Vo (2, w) = Vo F(y, w)|| < M|z —0]].

4 Convergence of the sequence of esti-
mates

Denote:
v = 2paff;”,
Y= anpp— on(Bac(p —1) + 6, M?)
On = Qpfpc+ 2p71KVn + Xn,¢= MK + Chaq,
_ )21+ 4, for(5), (6)
A = Ny + 217P4h,,, for(8)
p
po-a [I1e, for(5), (6)
(B98O ) ), for(s)
— 0B (V. F0 v,
be= 0 lp [ Kl Ji P, ().
m= pan @M [ () 2K (2P (),
diam(-) — Euclidean diameter of a set in metrics ! i
Theorem 1. Let be p € (1,2] and the con-
ditions are satisfied:
(A-C); (7); random values {oy, W, Ax}7—1 do not de-
pend on w, u A,, and random vector w, does not
depend on A,;



Vn, 0 <y, <1, > Yo = 00, b — 0 with n — oo,
where

_ ¢n + Vnafl _ < NnJrl) 1
Pp = ——"""—"—" Zn = l1—-— ) —.
Tn Hn Tn+1

Then: 1) sequence of estimates {f,}, given by algo-
rithm (8) (or (5), or (6)), converges to a point 6 in
following sense: E{V(6,,)} — 0 when n — oo;

2) if im, oo 2n > z > 1, then E{V(d,)} =
¢ (H?;ol(l - %:));

3)if 2z, > 2z > 1 Vn, then E{V(0,)} < (E{V(6o)} +
2o ) T (1= );

4) if, moreover, Y- ¢n + VuE{[|Kn(An)0n 5| Frn-1} <
o0 a. 8.,

then én — 6 while n — oo a. s. and

P{Vn > noV(6,) <e} >

| BV u)} + 50, 60+ v
- .

Proof of the theorem 1 can be found in the last
section.

Note 1. For function F(z,w) = wf(z) conditions
(A)—(C) of the theorem 1 are satisfied, if function f(z)
satisfies the conditions (A) u (B).

Note 2. In [3, 4] are formulated close results about
accuracy of estimation and speed of convergence of
algorithms (8) and (5).

Note 3. The problem of estimation of parameters
in linear regression model with observations (3) when
0,, = 0 corresponds to minimization of a functional of
average risk

fl) = 3~ )" (@~ 6).

Note 4. In the theorem 1 noise v,, in observations
can be called almost arbitrary, because it may be not
random (determined), but unknown and bounded, or
be a realisation of some stochastic process with arbi-
trary structure of dependencies. In particular, for prov-
ing the the statements of the theorem 1 there is no
need to assume anything about dependencies between
v, and Fp_1.

Note 5. Although algorithms (5) and (6) seem to
be similar,in case of arbitrary noise in observations the
use of the second in real time systems is better. For
algorithm (5) satisfaction of the condition about inde-
pendency of the noise vg, from trial perturbation A,
is quite strict, because at the moment 2n — 1 vector
A, has been already used in the system. Using the al-
gorithm (6) noise vg, and vector of trial perturbation
A, enter the system simultaneously, what allows to
hope on their independency.

Note 6. For another generalisation of conditions
of convergence for the algorithms (5), (6) and (8) se-
quences {a,} and {8,} can be random, measurable
relatively o-algebra F,, . Practical need in such dener-
alisation appear, for instance, when, in parallel with
computation of estimates by SPSA algorithm addi-
tional conditions of the task give information about
the quality of estimation. If estimates are “bad”, then
it is possible to make the speed of convergence of se-
quence {ay,} to zero lower, maybe make the values of
the sequence bigger for a while.

5 Proof of the Theorem 1

We denote for the algorithm (8): §n = yn, for (5): gn =
(Y2n — yY2n—1)/2, for (6): Jn = y2n — Y2n—1.
For estimates of the algorithm (8) applying the

projector properties we get V(0,) = V(Pe, (fn-1 —
G2 K (An)yn)) < V(0n-1— 52Kn(An)Yn). For other algo-

rithms’ estimates we get equality. Using properties of cho-
sen function V(z), from middle-value theorem with some
t € (0,1) we sequentially derive:

V() < V() - %(vvwmd)xn(mm) =

n

— TV (o1 — t 20 (D)),

V(0n-1) 3 3

6

n—1

—_pW_

=1
SFEAA)Om] s (O3 5,
where sign{”)(t) = 0 or +1 depending on the sign of expres-
sion 9521 -0 — t52Kn (A2) Dy, Denote s?g;l:)_l =0or
+1 depending on the sign of éffll — 09, Next, using the
inequality

—sign(c — d)|c — d|’~'b < —sign(c)|¢|’" b+ 227"|d|” " |b|

for all b,c,d € R, we get:

V(0n) SV(On-1) = p 3= S 100, — 00
™ oi=1
s, (3) Vg + 2722
| B
Z tﬁ—n’Cn(An)(z)gn IlCn(An)“)an <
i=1 "
Qn & .
< Vi(bn) — 5= S YV (0n1) VK (An) Vgt

Consequently, we get:

V(0,) <V(On-1) = Z2(VV(0n_1),Kn(A0)Tn)+
+27 P |Kn (AR Tl (9)



From the model of observations (1), concidering
middle-value theorem for the function F(-,
with some ¢',t" € (0,1) next formula:

wr), we derive

Un = Fn(0,0) + Fo (¢',1") 4 on,
where for algorithms (8), (5) and (6) we denote:

F(On 1+t Buln,wn), (8)
B %(F(a}l—l + tlﬁnAn: w2n)_
Fo(t',t") =4 — F(fno1 —t"BulAn,wan_1)), (5)
F(énfl + t/ﬁnAn, w2n)_
— F(0n—1,w3n-1), (6)
and _
OF,(t',t")  OF.(t,t")
ot’ ot
Let’s use expectation operation relatively o-algebra
Fr-1.
From independence K, (A,) from @, and symmetry of
distribution P, (-) (condition (7)) we get

E{K(An)F5 (0,

Consequently, for conditional expectation of second term
in formula (9) we sequentially get

Pt ) =

0)|Fn-1} = 0.

_%E{(W(én,l),zcn(An)gn)mfl } <

ﬁ = (VV (On1), E{KCn (An) Fo (', )| Faca )+ (10)

Bn |(VV (On-1), E{Cn (An)Tn| Far })].

Using Holder inequality [19] (p. 129) Jensen [19]
(p. 210), Yung [20] (p. 280): a'/"b"/* < la + b, r > 1,
a,b>0, 1421 =1, and condition (E), for the last term we
get an upper bound

E|(VV (On-1), ESCa(An)0a| Facn DI < (11)

Bn
Qi A p—1 _
P,V On1) 7" X [[E{Kn (An)Tn| Fo1}llp <

< anfnCau ((p= DV (0n1) +1).

Using the independence of w,, and A, local Lebesgue
condition (C) for VoF(0n-1,-) and condition (7), also get
Vf(On-1) = E{V.F(0n_1,0)|Fn_1} =
B E{Kn (An) F7,(0,0)[Fuo1}.

Denote the difference Fl, = FJ(t',t") — F.(0,0) and
estimate it’s abcolute value. Considering condition (B) and
the fact that ¢’ € (0,1), for the algorithm (8) derive |FL| =
|(VIF(9W.71 + t,/BnAnA, wn) - sz(enfla w’n)aﬂﬂ-An” S
< BallAnll £ Ve F(0n-1 + ' 5nAn, wn) =

=VaF (On-1,wn)llo < MB3 || Anlo Anll e -

For algorithms (5) and (6) the same formula can be
derived analogously.

From the last formula, bounding the scalar product
in the first term of (10), from conditions (A)—(D) and
inequalities of Holder, Jensen, Yung we get

(VV(On1), B{Kn (An) FL (") Faa}) =
B (VV (1), Vf(On_1)) + (VV(n_1),

E{Kn(An)Ep|Fa1}) > BaptV (0n1)—

~ p—1 -,
—pV(On—1) » E{[Kn(An)llp|Fn] |Fr-1}) =

> BuptV (1) — MB2p (p—_lwénfl) + %)

E{ICa (Aol AnllpllAn] 2} >

> BV (1) = BAME (o= DV () +1)  (12)
Then, from (11) and (12) for conditional expectation
of the second term in formula (9), to continue (10), get,
< —anpptV (0n-1) + anfBp (MK + Cav)-
((p DV (Bnr) + 1) . (13)
Let’s bound the conditional expectation of the third

term in right side of inequality (9). Using Jensen inequality
(4£2)? < 1(a” 4 b”) for convex function z”, we get

U E{IKn (An)Gn 151 Fn—1} < vnB{|IKCn (An)-

Fo(L, D51 Fn—1} + vnE{[KCn(An) 0| Fna}.  (14)

For algorithms (5) and (6) we get |Fn(1,1)]” <
2 (0.0 + [F(E.0F) < 2R 00 +
20y (¢ ")+ Fo — Fp|” < 277 [Fo(0,0) | +2%7 (| Fyp|* +
|EL(t ") — Fy|?) using

[ E((VFO,wsn) + VF(0,wnn1)). B ), for (5),

(VF(97w2")7/8"A71)7 fOI' (6)7

From this, using Holder inequality [19] (p. 129) and con-
ditions (B), (D), continue (14) --- < apdn(V(On-1) +
Eu{[[VaF(0,w)ll5}) + 2 *KM v + 277 Kva +
Un€n <

< anénMpV(énfl)—|—2p71f(1/n+xn+l/nfn. (15)

In case of the algorithm (8) for some point ., which
belongs to a segment between 6,—1 + S, A, and 6, from
the middle-value theorem and Jensen inequality we get:

|Fn(1,1)|° = |[F(0, wn) 4+ (Vo F (Zm, wn), Op—1+
Brln — )P < 2°7HF(0, wn)|"+
2572 (|| Vo F (2, wn) = Vo (0, wn)|[5+
HIVaF(8,wn) 1) (1001 — 6]l o +
H1BnAnll2p)” < 2771 F (0, wn)|"+

+22r72 (2”‘1M”(V(én_1) + 8ol AR 5) +

VL, wn)I\Z)ﬂZK(An)~

From last inequality for the algorithm (8) we get the
same inequality (15).

Using the discussed notation and the bounds got above
(13) and (15), inequalities(9) we can change on

V(0n) < (1= 7)V(Bn-1) + b + vabn.

Using the unconditional expectation from left and right
sides of the last inequality, we get inequalities

E{(V(0n)} < (1 = 7n)E{V (n-1)} + én + vno?,

from which the statements of the theorem 1 can be easy de-
rived from corresponding [12] statements of the theorem 1.

Proof of the theorem 1 finished.
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