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Abstract
This paper studies the stability problem for a class of

nonlinear systems with distributed delay. Using spe-
cial constructions of Lyapunov–Krasovskii functionals
and the differential inequalities method, sufficient con-
ditions are obtained ensuring that zero solutions of the
investigated systems are stable with respect to all vari-
ables and asymptotically stable with respect to a part
of variables. This result is an extension of well-known
Lyapunov–Malkin Theorem corresponding to the criti-
cal (in the Lyapunov sense) case where the matrix of the
associated linear approximation system admits several
zero eigenvalues. In addition, some scenarios are con-
sidered for which the derived stability conditions can be
relaxed. Two examples of applications of the developed
theory to the stability analysis and control synthesis for
mechanical systems are provided.

Key words
Nonlinear system, distributed delay, sector constraints,

partial asymptotic stability, Lyapunov–Krasovskii func-
tional, differential inequalities.

1 Introduction
The problem of partial stability was formulated by A.

M. Lyapunov, see [Lyapunov, 1992]. In such a setting,
the stability with respect to a function depending on the
state vector of a system is studied.

The methods of partial stability theory are widely
used in mechanics, economics, electrodynamics, biol-
ogy, etc. [Fradkov, Miroshnik and Nikiforov, 1999;
Halanay and Safta, 2020; Martynyuk, 2007; Rumyant-
sev and Oziraner, 1987; Vorotnikov, 1998]. During
past decades, the growing interest to these methods is
due to their applications in formation control problems
[Fridman, 2014; Michiels, Morarescu and Niculescu,
2009; Network Control Problems, 2015; Sharma and

Lather, 2024]. They are also used for control of cyber-
physical systems. In particular, in [Fradkov, Miroshnik
and Nikiforov, 1999], problems of partial stabilization
of the energy of Hamiltonian systems were considered.
The concept of partial stability takes on especial signifi-
cance when studying output stability [Chaillet, Karafyl-
lis, Pepe and Wang, 2023; Sontag and Wang, 2000].

A special case of the notion of partial stability is that
of stability with respect to a part of variables. The
foundations of the theory of stability with respect to
a part of variables were developed by V. V. Rumyant-
sev [Rumyantsev and Oziraner, 1987]. The counter-
parts of the Lyapunov first and second (direct) meth-
ods for such a problem were proposed. The results of
[Rumyantsev and Oziraner, 1987] have got deep de-
velopment in numerous papers and monographs (see,
e.g., [Chellaboina and Haddad, 2002; Costa and Astolfi,
2009; Fradkov, Miroshnik and Nikiforov, 1999; Mar-
tynyuk, 2007; Miroshnik, 2004; Michel, Molchanov and
Sun, 2003; Vorotnikov, 1998] and the bibliography cited
therein).

One of the first but interesting and important results on
partial stability is well known Lyapunov–Malkin The-
orem [Malkin, 1963] that provides us sufficient condi-
tions of the asymptotic stability with respect to a part
of variables for the zero solution of a nonlinear system
in the case where the matrix of the corresponding linear
approximation system admits several zero eigenvalues.
This theorem was further developed by A. S. Oziraner,
V.I. Vorotnikov and some others authors, see [Rumyant-
sev and Oziraner, 1987; Vorotnikov, 1998] and the ref-
erences therein. In recent paper [Halanay and Safta,
2020], a counterpart of Lyapunov–Malkin Theorem was
obtained for systems with constant delay.

In [Aleksandrov, 2000; Aleksandrov, Aleksan-
drova, Zhabko and Chen, 2017; Aleksandrov, 2022],
Lyapunov–Malkin Theorem was extended to some
classes of delay-free systems with strongly nonlinear
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systems of the first approximation. Furthermore, the
case of a strongly nonlinear system of the first ap-
proximation with time-varying delay was investigated in
[Aleksandrov, Aleksandrova, Zhabko and Chen, 2017].

However, in various applied models, instead of con-
stant or time-varying delays, distributed ones are used,
see, for instance, [Fridman, 2014; Michiels, Morarescu
and Niculescu, 2009; Formal’sky, 1997; Imangazieva,
2024]. Therefore, the objective of this paper is an ex-
tension of results of [Aleksandrov, 2000; Aleksandrov,
Aleksandrova, Zhabko and Chen, 2017] to the case of
nonlinear systems with distributed delays. We will study
a complex system describing the interaction of two sub-
systems. It is assumed that the first subsystem belongs
to the class of Persidskii type system [Kazkurewicz and
Bhaya, 1999], and its zero solution is asymptotically sta-
ble, whereas the zero solution of the second subsystem
is stable. With the aid of the differential inequalities
method and the Lyapunov direct method, conditions will
be derived providing that the zero solution of the inter-
connected system is stable with respect to all variables
and asymptotically stable with respect to a part of vari-
ables. In addition, some scenarios will be considered for
which the obtained stability conditions can be relaxed.

2 Preliminaries
Let R denote the field of real numbers, Rk and Rk×l

be the vector spaces of k-tuples of real numbers and of
k × l matrices, respectively. The notation ∥ · ∥ is used
for the Euclidean norm of a vector. A matrix A ∈ Rk×l

is called nonnegative if all its entries are nonnegative. A
matrix A ∈ Rk×k is called Metzler if all its off-diagonal
entries are nonnegative.

Let diag{λ1, . . . , λk} be a diagonal matrix with the
elements λ1, . . . , λk along the main diagonal. A matrix
A ∈ Rk×k is said to be diagonally stable if there exists a
positive definite matrix Λ = diag{λ1, . . . , λk} such that
the matrix ΛA+A⊤Λ is negative definite [Kazkurewicz
and Bhaya, 1999].

For a given positive number h > 0, C([−h, 0],Rk) is
the space of continuous functions ϕ(θ) : [−h, 0] 7→ Rk

with the uniform norm ∥ϕ∥h = supθ∈[−h,0] ∥ϕ(θ)∥.
Consider a time-delay system

ż(t) = Ξ(t, zt). (1)

Here t ≥ 0, z(t) ∈ Rk, the functional Ξ(t, ϕ) is contin-
uous for t ≥ 0, ϕ(θ) ∈ Ω, where

Ω = {ϕ(θ) ∈ C([−h, 0],Rk) : ∥ϕ∥h < ρ},

h > 0, 0 < ρ ≤ +∞.
Denote by z(t, t0, ϕ) a solution of the system (1) with

the initial conditions t0 ≥ 0, ϕ ∈ Ω. Let zt(t0, ϕ) be the
restriction of the solution to the segment [t − h, t], i.e.,
zt(t0, ϕ) : θ → z(t+ θ, t0, ϕ), θ ∈ [−h, 0]. In the cases
where the initial conditions are not important, or are well

defined from the context, we will use z(t) and zt, instead
of z(t, t0, ϕ) and zt(t0, ϕ), respectively.

Decompose the vector z as follows:

z = (x⊤, y⊤)⊤, (2)

x ∈ Rn, y ∈ Rm, n + m = k. Then z(t, t0, ϕ) =
(x⊤(t, t0, ϕ), y

⊤(t, t0, ϕ))
⊤. We will assume that (1)

has the zero solution and solutions of this system are y-
extendable [Rumyantsev and Oziraner, 1987].

Definition 1. The zero solution of (1) is x-stable (stable
with respect to x) if, for any ε > 0 and t0 ≥ 0, there
exists δ1 > 0 such that ∥x(t, t0, ϕ)∥ < ε for t ≥ t0,
∥ϕ∥h < δ1.

Definition 2. The zero solution of (1) is asymptotically
x-stable (asymptotically stable with respect to x) if it is
x-stable and, for any t0 ≥ 0, there exists δ2 > 0 such
that if ∥ϕ∥h < δ2, then ∥x(t, t0, ϕ)∥ → 0 as t → +∞.

3 Formulation of the Problem
Assume that in result of the decomposition (2) the sys-

tem (1) takes the form

ẋ(t) = PF (x(t)) +Q
∫ t

t−h
F (x(s))ds

+ D(t, xt, y(t)),

ẏ(t) = L(t, y(t)) +G(t, xt, y(t)).

(3)

Here P and Q are constant matrices, F (x) =

(f1(x1), . . . , fn(xn))
⊤, scalar functions fi(xi) are con-

tinuous for |xi| < ρ and satisfy the sector-like con-
straints: xifi(xi) > 0 for xi ̸= 0, i = 1, . . . , n, vector
function L(t, y) is continuous for t ≥ 0, ∥y∥ < ρ, func-
tionals D(t, xt, y(t)) and G(t, xt, y(t)) are continuous
for t ≥ 0, ∥xt∥h < ρ, ∥y(t)∥ < ρ.

We can interpret (3) as a complex system describing
the interaction of the subsystems

ẋ(t) = PF (x(t)) +Q

∫ t

t−h

F (x(s))ds, (4)

ẏ(t) = L(t, y(t)) (5)

and connections between the subsystems are character-
ized by the functionals D(t, xt, y(t)), G(t, xt, y(t)).

The subsystem (4) is Persidskii type system with dis-
tributed delay. It is worth noticing that Persidskii sys-
tems are widely used for modeling automatic control
systems, population dynamics, neural networks, opinion
dynamics, etc. [Lur’e, 1957; Kazkurewicz and Bhaya,
1999; Mei, Efimov, Ushirobira and Fridman, 2023].

In the present paper, we will study the system (3) with
functions fi(xi) of a power type.
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Assumption 1. Let fi(xi) = xµi

i , where µi ≥ 1 are ra-
tional numbers with odd numerators and denominators,
i = 1, . . . , n.

Without loss of generality, suppose that µ1 ≤ . . . ≤
µn.

Assumption 2. Let L(t, 0) = 0 for t ≥ 0.

Thus, the subsystems (4), (5) admit zero solutions. Our
objective is to derive conditions under which the asymp-
totic stability of the zero solution of (4) and stability
of the zero solution of (5) imply that the zero solution
of (3) is stable with respect to all variables and asymp-
totically x-stable. It should be noted that for the case
where the system (3) is delay-free and F (x) = x such
conditions are defined by Lyapunov–Malkin Theorem
[Malkin, 1963] and its generalizations (see [Vorotnikov,
1998]). In [Halanay and Safta, 2020], Lyapunov–Malkin
Theorem was extended to systems with constant delay.
A counterpart of Lyapunov–Malkin Theorem for sys-
tems with continuous and bounded delay and power type
functions fi(xi) was obtained in [Aleksandrov, Aleksan-
drova, Zhabko and Chen, 2017]. In this contribution, the
case of distributed delay is studied.

4 Stability Analysis
We impose some additional constraints on the right-

hand side of (3).

Assumption 3. The matrix P +hQ is diagonally stable.

Assumption 4. Let µi > 1, i = 1, . . . , n.

Remark 1. Assumption 4 means that the subsystem (4)
is strongly nonlinear.

Remark 2. In [Aleksandrov, 2024], it was proved that
if Assumptions 1, 3 and 4 are satisfied, then the zero
solution of (4) is asymptotically stable.

Assumption 5. The estimate

∥D(t, xt, y(t))∥h ≤ β1(xt, y(t))
(
∥F (x(t))∥

+

∫ t

t−h

∥F (x(s))∥ds
)

holds for t ≥ 0, ∥xt∥h < ρ, ∥y(t)∥ < ρ, where
β1(xt, y(t)) → 0 as ∥xt∥h + ∥y(t)∥ → 0.

Assumption 6. The estimate

∥G(t, xt, y(t))∥h ≤ β2∥xt∥νh

holds for t ≥ 0, ∥xt∥h < ρ, ∥y(t)∥ < ρ, where β2 > 0,
ν > 0.

Assumption 7. The zero solution of (5) is stable, and for
this subsystem there exists a continuously differentiable
for t ≥ 0, ∥y∥ < ρ Lyapunov function V1(t, y) satisfying
the conditions of the Lyapunov Stability Theorem, see
[Lyapunov, 1992], and such that ∥∂V1(t, y)/∂y∥ ≤ K
for t ≥ 0, ∥y∥ < ρ, where K is a positive constant.

Theorem 1. Let

ν > µn − 1 (6)

and Assumptions 1–7 be fulfilled. Then the zero solution
of (3) is stable with respect to all variables and asymp-
totically x-stable.

Proof. In [Aleksandrov, 2024], it was shown that, under
Assumptions 1, 3 and 4, a Lyapunov–Krasovskii func-
tional for subsystem (4) can be constructed as follows:

V2(xt) =

n∑
i=1

λi
xµi+1
i (t)

µi + 1

+F⊤(x(t))ΛQ

∫ t

t−h

(s− t+ h)F (x(s))ds

+

∫ t

t−h

(γ + β(s− t+ h))∥F (x(s))∥2ds. (7)

Here γ and β are positive tuning parameters, λi > 0 are
entries of a matrix Λ = diag{λ1, . . . , λn} for which the
matrix Λ(P + hQ) + (P + hQ)⊤Λ is negative definite.

Differentiating the functional (7) with respect to the
system (3), we obtain (see [Aleksandrov, 2024]) that, un-
der an appropriate choice of positive numbers of γ, β, ρ1,
the inequality

V̇2 ≤ −α1∥F (x(t)∥2 − β

∫ t

t−h

∥F (x(s))∥2ds

+α2β1(xt, y(t))∥F (x(t)∥
(∫ t

t−h

∥F (x(s))∥ds

+∥F (x(t))∥
)
+ (α3 + β1(xt, y(t)))

(
∥F (x(t))∥

+

∫ t

t−h

∥F (x(s))∥ds
)∫ t

t−h

∥F (x(s))∥ds
∥∥∥∥∂F (x(t))

∂x

∥∥∥∥
holds for

∥xt∥h + ∥y(t)∥ < ρ1, (8)

where α1, α2, α3 are positive constants.
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If ρ1 is sufficiently small, then, under the condition (8),
the estimates

α4

n∑
i=1

xµi+1
i (t) +

1

2
γ

∫ t

t−h

∥F (x(s))∥2ds ≤ V2(xt)

≤ α5

n∑
i=1

xµi+1
i (t) + 2(γ + βh)

∫ t

t−h

∥F (x(s))∥2ds,

(9)

V̇2 ≤ −1

2
α1∥F (x(t)∥2 − 1

2
β

∫ t

t−h

∥F (x(s))∥2ds

are valid, where α4 > 0, α5 > 0. Hence, if the condition
(8) holds for t ∈ [t0, t̄], then

V̇2(xt) ≤ −α6V
1+µn−1

µn+1

2 (xt), (10)

where α6 = const > 0.
Integrating the differential inequality (10) and taking

into account the lower estimate in (9), we obtain

∥x(t)∥µn+1 ≤ α7

n∑
i=1

xµi+1
i (t) ≤ α8V2(xt0)

(
1

+α9V
µn−1
µn+1

2 (xt0)(t− t0)

)− µn+1
µn−1

(11)

for t ∈ [t0, t̄], where α7, α8, α9 are positive constants.
Next, differentiating the function V1(t, y) with respect

to the system (3), we have

V̇1(t, y(t)) ≤ β2K∥xt∥νh.

Hence,

V1(t, y(t)) ≤ V1(t0, y(t0)) + β2K

∫ t

t0

∥xs∥νhds

≤ V1(t0, y(t0)) + ω1 + ω2V
ν

µn+1

2 (xt0)

∫ t

t0+h

(
1

+α9V
µn−1
µn+1

2 (xt0)(s− t0 − h)

)− ν
µn−1

ds

≤ V1(t0, y(t0)) + ω1

+ω2V
ν−µn+1
µn+1

2 (xt0)

∫ +∞

0

(1 + α9τ)
− ν

µn−1 dτ (12)

for t ∈ [t0, t̄]. Here

ω1 = β2Khmax
{
∥xt0∥νh; (α8V2(xt0))

ν
µn+1

}
,

ω2 = β2Kα
ν

µn+1

8 .

Thus, if the condition (6) holds, t0 ≥ 0 and values
of ∥xt0∥τ and ∥y(t0)∥ are sufficiently small, then, for
the corresponding solution (x⊤(t), y⊤(t))⊤ of (3) the in-
equalities (8), (11), (12) are satisfied for all t ≥ t0. This
completes the proof. □

Next, consider the case where the system (3) is of the
form

ẋ(t) = PF (x(t)) +Q
∫ t

t−h
F (x(s))ds

+ D(t, xt, y(t)),

ẏ(t) = L(t, y(t)) +AF (x(t)) +B
∫ t

t−h
F (x(s))ds.

(13)
Here A, B are constant matrices and the remaining no-

tation is the same as for (3).
Similarly to the proof of Theorem 1 it can be verified

that the following theorem is valid

Theorem 2. Let

2µ1 > µn − 1 (14)

and Assumptions 1–5, 7 be fulfilled. Then the zero so-
lution of (13) is stable with respect to all variables and
asymptotically x-stable.

Let us show that, under an additional constraint on ma-
trices P and Q, the condition (14) in Theorem 2 can be
eliminated.

Assumption 8. For any positive rational number r
with odd numerator and denominator, there exists a pos-
itive definite matrix Λ = diag{λ1, . . . , λn} such that
the function F̃⊤

r (x)Λ(P +hQ)F (x) is negative definite,
where F̃r(x) = (fr

1 (x1), . . . , f
r
n(xn))

⊤.

Remark 3. It is known [Aleksandrov, 2021] that As-
sumption 8 is satisfied if the matrix P + hQ is Metzler
and Hurwitz.

Theorem 3. Let Assumptions 1, 2, 4, 5, 8 be fulfilled.
Then the zero solution of (13) is stable with respect to all
variables and asymptotically x-stable.

Proof. For an arbitrary chosen positive rational num-
ber r with odd numerator and denominator, construct a
Lyapunov–Krasovskii functional for (13) by the formula

V3(xt) =

n∑
i=1

λi
xrµi+1
i (t)

rµi + 1
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+F̃⊤
r (x(t))ΛQ

∫ t

t−h

(s− t+ h)F (x(s))ds

+

∫ t

t−h

(γ + β(s− t+ h))∥F (x(s))∥r+1ds.

Here γ and β are positive tuning parameters, λi are en-
tries of a matrix Λ = diag{λ1, . . . , λn} with the proper-
ties specified in Assumption 8.

In this case, for an appropriate choice of γ, β, ρ1, we
obtain that if the condition (8) holds, then

V̇3(xt) ≤ −α̃V
1+ µn−1

rµn+1

3 (xt),

where α̃ = const > 0.
Using similar arguments as in the proof of Theorem 1,

it is easy to verify that, under the condition

µ1(r + 1) > µn − 1, (15)

the zero solution of (13) is stable with respect to all vari-
ables and asymptotically x-stable. Thus, for any set of
powers µ1, . . . , µn, one can take sufficiently large value
of r to ensure the fulfillment of (15). The proof is com-
pleted. □

5 Persidskii Type Subsystems with Nontrivial Lin-
ear Approximations

The results of the previous section are obtained for
the case where the subsystem (4) is strongly nonlinear
(see Assumption 4). However, in numerous applications,
models with nontrivial linear approximations are used
[Fridman, 2014; Kazkurewicz and Bhaya, 1999; Lur’e,
1957; Vorotnikov, 1998]. Therefore, in this section, we
will study two scenarios for which the Persidskii type
subsystem contains both linear and strongly nonlinear
terms.

5.1 Lur’e type subsystem
First, assume that with the aid of the decomposition

x(t) = (η⊤(t), ζ⊤(t))⊤ the subsystem (4) is rewritten
as follows:

η̇(t) = P1Ψ(η(t)) +Q1

∫ t

t−h
Ψ(η(s))ds+ P2ζ(t),

ζ̇(t) = P3Ψ(η(t)) +Q2

∫ t

t−h
Ψ(η(s))ds+ P4ζ(t).

(16)
Here η(t) ∈ Rn1 , ζ(t) ∈ Rn2 , n1 + n2 = n,

P1, P2, P3, P4, Q1, Q2 are constant matrices, Ψ(η) =
(ηµ1

1 , . . . , η
µn1
n1 )⊤, µj are rational numbers with odd nu-

merators and denominators, j = 1, . . . , n1, 1 < µ1 ≤
. . . ≤ µn1 . Thus, linear terms in (16) are delay free,
whereas strongly nonlinear terms may be delay depen-
dent. It is worth noticing that (16) can be considered
as Lur’e indirect control system with distributed delay
in the feedback law [Fridman, 2014; Kazkurewicz and
Bhaya, 1999; Lur’e, 1957].

Assumption 9. The matrix P4 is Hurwitz.

Assumption 10. The matrix

P̃ = P1 + hQ1 − P2P
−1
4 (P3 + hQ2)

is diagonally stable.

Assumption 11. The estimate

∥D(t, xt, y(t))∥h ≤ β1(xt, y(t))
(
∥Ψ(η(t))∥

+

∫ t

t−h

∥Ψ(η(s))∥ds+ ∥ζ(t)∥
)

holds for t ≥ 0, ∥xt∥h < ρ, ∥y(t)∥ < ρ, where
β1(xt, y(t)) → 0 as ∥xt∥h + ∥y(t)∥ → 0.

Theorem 4. Let

ν > µn1 − 1

and Assumptions 2, 6, 7, 9–11 be fulfilled. Then the zero
solution of (3) is stable with respect to all variables and
asymptotically x-stable.

Proof. In [Aleksandrov, 2024], it was proposed to con-
struct a Lyapunov–Krasovskii functional for (16) in the
form

V4(ηt, ζ(t)) =

n1∑
j=1

λj

η
µj+1
j (t)

µj + 1
+ εζ⊤(t)∆ζ(t)

+Ψ⊤(η(t))ΛQ1

∫ t

t−h

(s− t+ h)Ψ(η(s))ds

−Ψ⊤(η(t))ΛP2P
−1
4 Q2

∫ t

t−h

(s− t+ h)Ψ(η(s))ds

+

∫ t

t−h

(γ + β(s− t+ h))∥Ψ(η(s))∥2 ds

−Ψ⊤(η(t))ΛP2P
−1
4 ζ(t).

Here β, γ, ε are positive tuning parameters, ∆ is a sym-
metric positive definite matrix for which the matrix
∆P4 + P⊤

4 ∆ is negative definite, λi > 0 are entries
of a matrix Λ = diag{λ1, . . . , λn} for which the matrix
ΛP̃ + P̃⊤Λ is negative definite.

It can be easily verified that there exist such values of
γ, β, ε, ρ1 that, if the condition (8) holds, then the deriva-
tive of V4(ηt, ζ(t)) with respect to the system (3) satisfies
the estimate

V̇4(xt) ≤ −α̂V
1+

µn1
−1

µn1+1

4 (xt),

where α̂ = const > 0. The subsequent proof is similar
to that of Theorem 1. □
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5.2 Positive Persidskii type subsystem
Next, consider the case where the subsystem (4) is pos-

itive. Let Assumption 1 be satisfied.

Assumption 12. The matrix P is Metzler and the matrix
B is nonnegative.

Remark 4. Assumption 12 is the necessary and suffi-
cient condition for positivity of (4), see [Aleksandrov,
2018].

Assumption 13. The matrix P + hQ is Hurwitz.

Remark 5. It is known [Aleksandrov, 2018], that, un-
der Assumptions 12 and 13, the zero solution of (4) is
asymptotically stable.

Assumption 14. Let 1 ≤ µ1 . . . ≤ µn and µn > 1.

Remark 6. Unlike to the previous subsection, here both
linear and strongly nonlinear terms in (4) may be delay
dependent.

Theorem 5. Let the inequality (6) and Assumptions 1,
2, 5–7, 12–14 be fulfilled. Then the zero solution of (3)
is stable with respect to all variables and asymptotically
x-stable.

Proof. Applying the approach developed in [Aleksan-
drov, 2018], construct a Lyapunov–Krasovskii func-
tional as follows:

V5(xt) =

n∑
i=1

λi
xµi+1
i (t)

µi + 1

+

∫ 0

−h

∫ t

t+θ

F⊤(x(u))ΓF (x(u))dudθ

+γ

∫ 0

−h

∫ t

t+θ

(u− θ − t)∥F (x(u))∥2dudθ,

where γ, λ1, . . . , λn are positive coefficients, Γ is a di-
agonal positive definite matrix.

Using results of [Aleksandrov, 2018], it is easy to
verify that there exist matrix Γ and positive numbers
ρ1, γ, λ1, . . . , λn such that, under the condition (8),
functional V5(xt) and its derivative with respect to the
system (3) satisfy the estimates

n∑
i=1

λi
xµi+1
i (t)

µi + 1
≤ V5(xt) ≤

n∑
i=1

λi
xµi+1
i (t)

µi + 1

+c1

∫ 0

−h

∫ t

t+θ

∥F (x(u))∥2dudθ,

V̇5 ≤ −c2∥F (x(t))∥2 − γ

∫ 0

−h

∫ t

t+θ

∥F (x(u))∥2dudθ,

where c1 and c2 are positive coefficients. Hence, we ar-
rive at the differential inequality

V̇5(xt) ≤ −ᾱV
1+µn−1

µn+1

5 (xt),

where ᾱ = const > 0. The remaining part of the proof
is similar to that of Theorem 1. □

6 Examples
Consider some examples of the application of the de-

veloped theory.

6.1 The damping the angular motions of a rigid
body

Let a rigid body rotate around its mass center O with
the angular velocity ω(t) = (ω1(t), ω2(t), ω3(t))

⊤.
The attitude motion of the body under a control torque

M is modeled by the dynamical Euler equations (see
[Rumyantsev and Oziraner, 1987])

J ω̇(t) + ω(t)× (Jω(t)) = M. (17)

Here J = diag{J1, J2, J3} is the inertia tensor of the
body (we assume that axes of the coordinate system co-
incide with the principal central axes of inertia of the
body).

Let M = (M1,M2,M3)
⊤. Here

Mi = piω
µi

i (t) + qi

∫ t

t−h

ωµi

i (s)ds, i = 1, 2,

M3 = 0, pi and qi are constant coefficients, µ1 and µ2

are rational numbers with odd numerators and denomi-
nators, 1 < µ1 ≤ µ2, h = const > 0.

Then the system (17) takes the form

J1ω̇1(t) = (J2 − J3)ω2(t)ω3(t)

+ p1ω
µ1

1 (t) + q1
∫ t

t−h
ωµ1

1 (s)ds,

J2ω̇2(t) = (J3 − J1)ω1(t)ω3(t)

+ p2ω
µ2

2 (t) + q2
∫ t

t−h
ωµ2

2 (s)ds,

J3ω̇3(t) = (J1 − J2)ω1(t)ω2(t).

(18)

Consider the case where J1 > J3, J2 > J3. Choose a
Lyapunov–Krasovskii functional for (18) as follows:

V6(ω1t, ω2t) = J1(J1 − J3)ω
2
1(t) + J2(J2 − J3)ω

2
2(t)

+

∫ t

t−h

(γ + β(s− t+ h))
(
ωµ1+1
1 (s) + ωµ2+1

2 (s)
)
ds
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+2q1(J1 − J3)ω1(t)

∫ t

t−h

(s− t+ h)ωµ1

1 (s)ds

+2q2(J2 − J3)ω2(t)

∫ t

t−h

(s− t+ h)ωµ2

2 (s)ds, (19)

where γ and β are positive parameters.
It is worth mentioning that Assumption 5 is not satis-

fied for the system (18). However, using the functional
(19) and arguments similar to those in the proof of The-
orem 1, it can be verified that if pi + hqi < 0, i = 1, 2,
and µ2 < 3, then the zero solution of (18) is stable with
respect to all variables and asymptotically stable with re-
spect to ω1, ω2.

6.2 Interaction of two mechanical systems
Let the system be given

η̈(t) + Bη̇(t) + PΨ(η(t))

+ Q
∫ t

t−h
Ψ(η(s))ds = D(ηt, ξ(t), ξ̇(t)),

ξ̈(t) + Cξ(t) = G(ηt, ξ(t), ξ̇(t)).

(20)

Here η(t) ∈ Rl, ξ(t) ∈ Rm are vectors of gen-
eralized coordinates, B,P,Q are constant matrices, C
is a constant symmetric and positive definite matrix,
h = const > 0, Ψ(w) = (ηµ1

1 , . . . , ηµl

l )⊤, µj are
rational numbers with odd numerators and denomina-
tors, j = 1, . . . , l, 1 < µ1 ≤ . . . ≤ µl, functionals
D(t, ηt, ξ(t), ξ̇(t)) and G(t, ηt, ξ(t), ξ̇(t)) are continu-
ous for t ≥ 0, ∥ηt∥h < ρ, ∥ξ(t)∥ < ρ, ∥ξ̇(t)∥ < ρ,
0 < ρ ≤ +∞.

The system (20) models the interaction of the linear
potential mechanical subsystem

ξ̈(t) + Cξ(t) = 0 (21)

and the mechanical subsystem with linear velocity
forces and strongly nonlinear positional ones

η̈(t) +Bη̇(t) + PΨ(η(t)) +Q

∫ t

t−h

Ψ(η(s))ds = 0,

(22)
the functionals D(t, ηt, ξ(t), ξ̇(t)), G(t, ηt, ξ(t), ξ̇(t))

describe couplings between the subsystems whereas the
term Q

∫ t

t−h
Ψ(η(s))ds can be interpreted as integral

part of a PID-controller [Formal’sky, 1997].
It is well known [Lyapunov, 1992], that the equilibrium

position ξ = ξ̇ = 0 of (21) is stable, and this subsystem
admits the Lyapunov function V7(ξ, ξ̇) = ∥ξ̇∥2 + ξ⊤Cξ.

Rewrite (22) in the form

η̇(t) = ζ(t),

ζ̇(t) = −Bζ(t)− PΨ(η(t))−Q
∫ t

t−h
Ψ(η(s))ds.

(23)
It is worth noticing that (23) is a special case of (16).

Assume that the following conditions are valid:
(i) the matrix −B is Hurwitz;
(ii) the matrix −B−1(P + hQ) is diagonally stable;
(iii) the estimate

∥D(t, ηt, ξ(t), ξ̇(t))∥h ≤ β1(ηt, ξ(t), ξ̇(t))
(
∥Ψ(η(t))∥

+

∫ t

t−h

∥Ψ(η(s))∥ds+ ∥η̇(t)∥
)

holds for t ≥ 0, ∥ηt∥h < ρ, ∥ξ(t)∥ < ρ, ∥ξ̇(t)∥ <
ρ, where β1(ηt, ξ(t), ξ̇(t)) → 0 as ∥ηt∥h + ∥ξ(t)∥ +
∥ξ̇(t)∥ → 0;

(iv) the estimate

∥G(t, xt, y(t))∥h ≤ β2∥ηt∥νh

holds for t ≥ 0, ∥ηt∥h < ρ, ∥ξ(t)∥ < ρ, ∥ξ̇(t)∥ < ρ,
where β2 > 0, ν > 0.

Applying Theorem 4, we obtain that if ν > µl−1, then
the equilibrium position η = η̇ = 0, ξ = ξ̇ = 0 of (20)
is stable with respect to all variables and asymptotically
stable with respect to η, η̇.

7 Conclusion
In the present paper, new sufficient conditions of the

asymptotic stability with respect to a part of variables are
derived for a class of nonlinear systems with distributed
delay. Our analysis was based on the using the differ-
ential inequalities method, the Lyapunov direct method
and special constructions of Lyapunov–Krasovskii func-
tionals. It should be noted that, with the aid of the pro-
posed functionals, not only stability conditions but also
estimates for solutions of the investigated systems were
obtained. An interesting direction for further research is
an extension of the developed approach to systems with
unbounded delay.
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