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Abstract— One-shot methods and recently proposed multi-
shot methods for computing stabilizing solutions of continuous-
time periodic Riccati differential equations are examined and
evaluated on two test problems. The first problem arises from a
stabilization problem for an artificially constructed time-varying
linear system for which the exact solution is known. The second
problem originates from a nonlinear stabilization problem for
a devil stick juggling model along a periodic trajectory. The
numerical comparisons have been performed using both general
purpose and symplectic integration methods for solving the
associated Hamiltonian differential systems. In the multi-shot
method a stable subspace is determined using recently published
algorithms for computing a reordered periodic real Schur form.
The obtained results show the increased accuracy achievable
by combining multi-shot methods with structure preserving
(symplectic) integration techniques.

I. INTRODUCTION

In this contribution, we consider the computation of stabi-
lizing controllers for linear periodic time-varying systems

ẋ(t) = A(t)x(t) + B(t)u(t), (1)

where A(t) ∈ Rn×n and B(t) ∈ Rn×m are T -periodic
matrices, i.e., A(t) = A(t + T ) and B(t) = B(t + T ) for
all t.

The optimal periodic controller is given via solving the
linear quadratic regulator (LQR) problem, i.e., by minimizing
the quadratic cost function for (1):

min
u(t)

∫ ∞

0

[
x(t)T Q(t)x(t) + u(t)T Γ(t)u(t)

]
dt, (2)

where Q(t) ∈ Rn×n and Γ(t) ∈ Rm×m are T -periodic matri-
ces, and Q(t) = Q(t)T ≥ 0 (symmetric positive semidefinite)
and Γ(t) = Γ(t)T > 0 (symmetric positive definite) for all
t. Provided the pair (A(t), B(t)) is stabilizable and the pair
(A(t), Q(t)1/2) is detectable, where

(
Q(t)1/2

)T
Q(t)1/2 =

Q(t), the optimal periodic feedback u∗(t) that stabilizes (1)
and minimizes (2) is

u∗(t) = −K(t)x(t), where K(t) = Γ(t)−1B(t)T X(t). (3)

The periodic matrix X(t) in (3) is the unique symmetric
positive semidefinite T -periodic stabilizing solution of the
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continuous-time periodic Riccati differential equation (PRDE)
[1], [3], [18]:

−Ẋ(t) = A(t)T X(t) + X(t)A(t)

−X(t)B(t)Γ(t)−1B(t)T X(t) + Q(t).
(4)

In the following, we examine two methods to solve the
PRDE (4). First the one-shot periodic generator method (e.g.,
see [11]) and then a multi-shot method recently proposed in
[17].

II. ONE-SHOT METHOD

Let H(t) ∈ R2n×2n be a time-varying Hamiltonian matrix
defined as

H(t) =
[

A(t) −B(t)Γ(t)−1B(t)T

−Q(t) −A(t)T

]
,

i.e., H(t) satisfies JH(t)T JT = −H(t) for all t, where

J =
[

0 In

−In 0

]
. (5)

From the initial value problem
∂

∂t
Φ(t, t0) = H(t)Φ(t, t0), Φ(t0, t0) = I2n, (6)

the transition matrix Φ(t, t0) associated with H(t) is com-
puted. The system (6) is a linear Hamiltonian system where the
transition matrix Φ(t, t0) has eigenvalues symmetric with re-
spect to the unit circle and is symplectic, i.e., JT Φ(t, t0)T J =
Φ(t, t0)−1 = Φ(t0, t) for all t, where J is defined by (5)
[14]. For a T -periodic system, the transition matrix evaluated
over one period is known as the monodromy matrix Ψ(t0) =
Φ(t0 + T, t0).

The stabilizing solution for a PRDE (4) is obtained by the
following approach [1], [3], [11], [18]:

1) Compute the monodromy matrix Ψ(t0) = Φ(t0 + T, t0)
by solving the initial value problem (6) over one period.

2) Compute the ordered real Schur form of Ψ(t0) [7]:
[
U11 U12

U21 U22

]T

Ψ(t0)
[
U11 U12

U21 U22

]
=

[
S11 S12

0 S22

]
,

where S11 ∈ Rn×n is upper quasi-triangular with n
eigenvalues inside the unit circle, and S22 ∈ Rn×n

is upper quasi-triangular with n eigenvalues outside
the unit circle1. Then the stable subspace of Ψ(t0) is
spanned by the columns of the 2n× n matrix[

U11

U21

]
.

1In finite precision, computed eigenvalues may appear on or close to the
boundary of the unit circle.



3) Solve the matrix differential equation

Ẏ (t) = H(t)Y (t), Y (t0) =
[
U11

U21

]
, (7)

by integrating from t = t0 to t = t0 + T .
4) Partition the solution of (7) into n× n blocks as

Y (t) =
[
Y1(t)
Y2(t)

]
.

Then the solution of the PRDE is computed as

X(t) = Y2(t)Y1(t)−1, t = t0, . . . , t0 + T.

In step 1, it is important to use a symplectic integrator [10],
[11], [14], which is confirmed by our numerical experiments
(see Section IV). One disadvantage with the one-shot periodic
generator method is that in both step 1 and step 3 an ODE with
unstable dynamics must be solved, and therefore this method
is unreliable for systems with large periods [17].

III. MULTI-SHOT METHOD

As an alternative to the one-shot method we consider the
multi-shot method proposed in [17]. The main idea is to turn
the continuous-time problem into an equivalent discrete-time
problem. Instead of integrating (6) over one whole period, the
monodromy matrix Ψ(t0) is computed using the following
product form of the transition matrix (for simplicity, in the
following we let t0 = 0):

Ψ(0) = Φ(T, 0) = Φ(T, T −∆) · · ·Φ(2∆, ∆)Φ(∆, 0),

where ∆ = T/N for a suitable integer N . In the following, we
let Φk denote the transition matrices, i.e., Φk = Φ(k∆, (k −
1)∆) for k = 1, . . . , N .

To compute the stable subspace of Ψ(0) the periodic real
Schur form (PRSF) is used [4], [12]: For an arbitrary real
matrix sequence A1, A2, . . . , AN there exists an orthogonal
matrix sequence Zk ∈ Rn×n such that

ZT
k+1AkZk = Sk, for k = 1, . . . , N − 1, and

ZT
1 ANZN = SN ,

where one of the Sk matrices, say Sr, is upper quasi-triangular
and the remaining N − 1 are upper triangular. The quasi-
triangular Sr has 1×1 and 2×2 blocks on the main diagonal
and can appear anywhere in the sequence (however, Sr is
usually chosen to be S1 or SN ). The product of conforming
1 × 1 and 2 × 2 diagonal blocks of the matrix sequence Sk

gives the real and complex conjugated pairs of eigenvalues,
respectively, of the matrix product AN · · ·A2A1.

The main steps of the multi-shot method [17] applied to
computing the stabilizing solution of the PRDE are:

1) Compute the transition matrices ΦN , . . . , Φ2, Φ1 by
solving the initial value problem (6) for each interval
[k∆, (k − 1)∆], for k = 1, 2, . . . , N .

2) Using the algorithm in [4] compute the periodic real
Schur form associated with the matrix product Ψ(0) =
ΦN · · ·Φ2Φ1:

ZT
k+1ΦkZk = Sk, for k = 1, . . . , N − 1, and

ZT
1 ΦNZN = SN ,

(8)

where S1 is upper quasi-triangular, S2, . . . , SN are upper
triangular, and Z1, . . . , ZN are orthogonal transforma-
tion matrices.

3) Reorder the periodic real Schur form using the algorithm
in [8], [9] such that

QT
k+1SkQk =

[
S̃

(k)
11 S̃

(k)
12

0 S̃
(k)
22

]
, for k = 1, . . . , N − 1,

and

QT
1 SNQN =

[
S̃

(N)
11 S̃

(N)
12

0 S̃
(N)
22

]
,

(9)

where the matrix product S̃
(N)
11 · · · S̃(2)

11 S̃
(1)
11 has n eigen-

values inside the unit circle, and S̃
(N)
22 · · · S̃(2)

22 S̃
(1)
22 has

n eigenvalues outside the unit circle. Here, Qk for k =
1, . . . , N is the sequence of orthogonal transformation
matrices that perform the eigenvalue reordering in the
PRSF (8).

4) For each k, partition the product of the transformation
matrices from (8) and (9) into n× n blocks as

ZkQk =

[
Y

(k)
11 Y

(k)
12

Y
(k)
21 Y

(k)
22

]
.

Then the solution of the PRDE at t = (k − 1)∆, k =
1, . . . , N , is

X((k − 1)∆) = Y
(k)
21 (Y (k)

11 )−1.

The multi-shot method has some important characteristics
that we summarize below: (i) The ODE to compute Ψ(0),
which has unstable dynamics, is solved over short subparts
of the period. Notably, these N ODEs can be solved inde-
pendently, so this step is with favour solved in parallel; (ii)
Only one ODE (in a multi-shot fashion) must be solved in
sequence, in contrast to the one-shot method where two ODEs
dependent on each other must be solved: the first to compute
Ψ(0) and the second to solve for Y (t) in (7); (iii) The system’s
periodicity is exploited, i.e., methods explicitly designed for
periodic systems are used. Altogether this makes it likely that
the multi-shot method is a more reliable method which we
investigate in the next section.

IV. COMPUTATIONAL EXPERIMENTS

We evaluate and compare the one-shot method and the
multi-shot method on two test problems. The first is an
artificial time-varying system for which we can compute the
exact solution, and the second problem is a devil stick model
considered in [16], [5], [6]. The comparison is performed using
both ordinary ODE methods and symplectic methods [10],



[14], [15] for solving the Hamiltonian systems (6) and (7).
The implementation of the two methods has been done in
MATLAB, utilizing built-in functions and gateways to existing
Fortran subroutines (notably, periodic eigenvalue reordering
by Granat and Kågström [8] and symplectic solvers by Hairer
et al [10]).

In some of the figures (e.g., see Figure 1), solutions X(t) of
the PRDE are plotted componentwise for each discrete time
t = (k − 1)∆ where k = 1, . . . , N , i.e., each curve in a plot
corresponds to how one element in X(t) evolves over time.
Since the n×n matrix X(t) is symmetric and periodic, there
are n(n + 1)/2 unique periodic solution-curves in the plot
(assuming X(t) is a correct solution).

A. Artificial time-varying system

Consider a linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0, (10)

with 2 states and 2 inputs, i.e., A ∈ R2×2 and B ∈ R2×2. It
has the quadratic cost function

J =
∫ ∞

0

[
xT Qx + uT Γu

]
dt,

and the optimal feedback control

u∗(t) = −Kx(t), where K = Γ−1BT X. (11)

For linear time-invariant systems, X in the optimal feedback
control (11) is obtained by solving the algebraic Riccati
equation (ARE)

AT X + XA−XBΓ−1BT X + Q = 0. (12)

To solve (12) an existing stable solver is used [2], [13].
Transform the time-invariant system (10) into a periodic

time-varying system by change of coordinates
[
z1

z2

]
= P (t)

[
x1

x2

]
⇔ z(t) = P (t)x(t),

where

P (t) =
[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]
,

for a suitable integer ω. After differentiating both sides we get

ż(t) =
dP (t)

dt
x(t) + P (t)ẋ(t)

=
dP (t)

dt
P (t)−1z(t) + P (t)

(
AP (t)−1z(t) + Bu(t)

)
.

This results in the T -periodic time-varying system

ż(t) = Ã(t)z(t) + B̃(t)u(t),

where

Ã(t) =
dP (t)

dt
P (t)−1 + P (t)AP (t)−1, and

B̃(t) = P (t)B,

with period T = 2π/ω. The cost function for the resulting
system is

J =
∫ ∞

0

[
z(t)T Q̃(t)z(t) + u(t)T Γ̃(t)u(t)

]
dt,

where the weighting functions are Q̃(t) = P (t)−T QP (t)−1

and Γ̃(t) = Γ. The optimal feedback is

u∗(t) = −K(t)z(t)

= −Γ−1B̃(t)T X̃(t)z(t),

where X̃(t) is the computed solution of the PRDE (4). The
solution X(t) = P (t)−T XP (t)−1, where X is the solution of
(12), corresponds to the exact solution at time t (our reference
solution).

In the following, the relative error of the PRDE solution
from the reference solution is computed as

N∑

k=1

(
‖X̃k −Xk‖F

‖Xk‖F

)
/N,

where Xk = X((k − 1)T/N), T is the periodicity, and N is
the number of steps in the multi-shot PRDE solver.

For our computational experiments we consider a linear
time-invariant system with

A =
[
1 0.5
3 5

]
, B =

[
3
1

]
,

and the weighting functions

Q =
[
1 0
0 1

]
, and Γ = 1.

The period for the corresponding periodic time-varying system
is chosen to T = π (i.e., ω = 2).

In the first test, we used the general purpose variable step-
size solver ODE45 in MATLAB to solve the Hamiltonian
systems (6) and (7). In Figure 1, we can see that the one-shot
method does not result in an accurate periodic solution, even
if the tolerance parameters of ODE45 are decreased to RelTol
= 1E−12 and AbsTol = 1E−16. The multi-shot method on
the other hand performs very well. The cause of the poor
performance from the one-shot method is mainly the use of a
non-symplectic ODE solver over a long time period. As we
can expect for the multi-shot method, the relative error of the
solution decays as N , the number of time periods, increases,
see Figure 2. Note, when using ODE45 with the strict tolerance
parameters, RelTol = 1E−12 and AbsTol = 1E−16, the
computation time is drastically increased.

In the second test, to solve (6) and (7) we have used the
implicit Gauss Runge-Kutta methods of orders 4, 8, and 12 (2,
4, and 6 stages, respectively) with fixed time steps [10]. These
methods are designed for being structure preserving both with
respect to symplecticy and symmetry.

For the one-shot method we get the best solution when using
an implicit Gauss Runge-Kutta solver of order 12 and with
200 time steps. The solution is similar to the best solution
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Fig. 1. Solutions X(t) of the PRDE for the artificial time-varying system
presented over two periods. ODE45 is used for all computed solutions.
(Top-left) Exact reference solution X(t). (Top-right) One-shot solution with
default tolerance parameters for ODE45 (RelTol = 1E−3 and AbsTol =
1E−6). (Bottom-left) One-shot solution with RelTol = 1E−12 and AbsTol
= 1E−16. (Bottom-right) Multi-shot solution for N = 60 and default
tolerance parameters for ODE45.
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Fig. 2. The first graph shows the relative errors and the second graph the
computation times of the multi-shot PRDE solutions for different values of
N . ODE solvers used: (∗) ODE45 (default tolerance parameters), (O) ODE45
(RelTol = 1E−9 and AbsTol = 1E−16), (M) ODE45 (RelTol = 1E−12 and
AbsTol = 1E−16), (¤) Gauss Runge-Kutta of order 12, (¦) Gauss Runge-
Kutta of order 8, and (◦) Gauss Runge-Kutta of order 4.
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Fig. 3. The first graph shows the relative errors and the second graph the
computation times of the multi-shot PRDE solutions for N = 40 computed
with Gauss Runge-Kutta using different number of time steps. Solver: (¤)
order 12, (¦) order 8, and (◦) order 4.

computed with ODE45, i.e., the one-shot method still fails
to compute an accurate periodic solution for the PRDE, see
Figure 4. This problem could probably be solved with a better
choice of the time step method and/or symplectic ODE solver,
e.g., see [10], [15]. Since the multi-shot method solves the
Hamiltonian system over shorter time periods, it does not
suffer from this problem, neither when using a symplectic
solver nor when using ODE45, see Figure 1.

The relative errors for the multi-shot method with the
symplectic Gauss Runge-Kutta solvers using 4 time steps
are displayed in Figure 2. The improved accuracy which is
acquired with a symplectic solver comes with an overhead of
increased computation time, see lower graph. So the choice
of method is a trade-off between the computational cost
(efficiency) and the accuracy of the computed solution. For
best accuracy in the solution, Gauss Runge-Kutta of order 8
or 12 should be used. Already for N = 10, the solver of
order 12 has reached the tolerance used in the solver. If a fast
solver with moderate accuracy is wanted, either ODE45 with
default tolerance parameters or Gauss Runge-Kutta of order
8 is appropriate. The Gauss Runge-Kutta method of order 4
performs worse than all the other solvers for any N . As can
be seen in Figure 3, the results can slightly be improved by
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Fig. 4. Computed solution X(t) of the one-shot PRDE solver using the
Gauss Runge-Kutta solver of order 12 with fixed time step h = π/200. Note
the broken periodicity.

using more time steps but to the cost of an increasing amount
of work. Note, the number of time steps for Gauss Runge-
Kutta of order 8 and 12 should be kept relative low, in this
case below 5, since the tolerance of the solver is reached rather
quickly but the computation time continues to increase with
the number of time steps.

B. Devil stick model

The devil stick is a juggling device which consists of a
center stick and a hand stick. The center stick has a periodic
propeller-like motion which is induced by a contact force from
the hand stick, see Figure 5.

The dynamics and the resulting stabilizing controller for
the devil stick are just briefly described below. For further
details, we refer to [5], [6], [16]. The design of the stabilizing
feedback controller is developed in [5], [6], and from there we
also choose model parameters of the devil stick.

The dynamics of the center stick, in polar coordinates, are
[16], [5]:

r̈ = rθ̇2 − g sin (θ) +
cos (θ − φ)

m
Ft +

sin (θ − φ)
m

Fn,

θ̈ = −2ṙθ̇

r
− g cos (θ)

r
− sin (θ − φ)

rm
Ft +

cos (θ − φ)
rm

Fn,

φ̈ =
d(φ)
J

Fn =
−ρφ + d0

J
Fn,

where (r, θ) are the polar coordinates of the mass center of
the center stick, φ is the angle of the center stick, d(φ) is the
instantaneous position at which the center stick and hand stick
are in contact, d0 = d(0) is the initial contact position, ρ is
the radius of the hand stick, m is the mass of the center stick,
J is its moment of inertia, and Ft and Fn are tangential and
normal components of the force induced by the hand stick to
the center stick. The used model parameters of the devil stick
are m = 0.2 [kg], J = 0.01 [kg m2], ρ = 0.03 [m], g = 9.81
[kg/s2], r = 0.05 [m], and d0 = ρπ.

hand stick

center st
ick

r

θ

φ
Fn

Ft

d

Fig. 5. Model of the devil stick [5], [16].

One of the main steps in the design of a stabilizing feedback
for the devil stick, consists of solving the LQR problem for
the periodic linear system

d

dt




I∗
y1∗
y2∗
ẏ1∗
ẏ2∗




=




a11(t) a12(t) a13(t) 0 a15(t)
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
A(t)




I∗
y1∗
y2∗
ẏ1∗
ẏ2∗




+




b11(t) 0
0 0
0 0
1 0
0 1




︸ ︷︷ ︸
B(t)

[
v1∗
v2∗

]
,

where

a11(t) = rmd(φ∗(t))φ̇∗(t)/J,

a12(t) = md(φ∗(t))φ̇∗(t)3/J,

a13(t) = rmd(φ∗(t))φ̇∗(t)φ̈∗(t)/J,

a15(t) = 2rmd(φ∗(t))φ̇∗(t)2/J, and

b11(t) = −md(φ∗(t))φ̇∗(t)/J,

with d(φ∗(t)) = ρφ∗(t) + d0. The variables φ∗(t) and φ̇∗(t)
are the solution of the differential equation

− J

md(φ(t))
φ̈(t) + rφ̇(t)2 + g cos (φ(t)) = 0,

with initial conditions φ(0) = 0.5 and φ̇(0) = 0.
It follows that a11(t), a12(t), a13(t), a15(t), and b11(t)

are T -periodic, i.e., the matrices A(t) and B(t) become T -
periodic matrices. The period of the system is T = 2.854.
The stabilizing controller is now given via solving the LQR
problem. As for the artificial time-varying system, we focus on
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Fig. 6. The computed PRDE solution X(t) for the devil stick plotted over
two periods. The solution is computed with the one-shot PRDE solver using
MATLAB’s ODE45.

solving the PRDE (4). We have used the constant weighting
matrices

Q = diag{0.004, 0.004, 6, 0.04, 6} and Γ = I2.

First we tested the one-shot solver with MATLAB’s ODE45.
The PRDE solver does not preserve the periodic behavior
of the system, see Figure 6. If we instead use the multi-
shot method with N = 20, still with MATLAB’s ODE45, the
solution X(t) becomes periodic. We also get similar periodic
results for the one-shot and multi-shot methods using the sym-
plectic Gauss Runge-Kutta method of order 12. So in this case,
the one-shot method with a symplectic solver does produce
robust periodic results, in contrast to the artificial time-varying
system. In Figure 7, the computed periodic solution X(t)
is plotted for the multi-shot solver using the Gauss Runge-
Kutta of order 12. The computation times for the four cases
are: One-shot with ODE45, 1min 25sec; One-shot with Gauss
Runge-Kutta, 14min 30sec; Multi-shot with ODE45, 12min
8sec; Multi-shot with Gauss Runge-Kutta, 24min 39sec.

Future work includes further testings for deciding which of
the four methods is best for the devil stick model and which
model parameters to use.
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land, 2003. ISBN 3-7643-0085-X.

[2] W. Arnold and A. Laub. Generalized eigenproblem algorithms and
software for algebraic Riccati equations. In Proc. IEEE, volume 72,
pages 1746–1754, 1984.

[3] S. Bittanti. The periodic Riccati equation. In S. Bittanti, A. J. Laub, and
J. C. Willems, editors, The Riccati Equation, chapter 6, pages 127–162.
Springer-Verlag, Berlin, 1991.

[4] A. Bojanczyk, G. H. Golub, and P. Van Dooren. The periodic Schur
decomposition; algorithm and applications. In F. T. Luk, editor, Proc.
SPIE Conference, volume 1770, pages 31–42, 1992.

0 1 2 3 4 5
−10

0

10

20

30

40

50

Time (t)

X
(t

)

Fig. 7. The computed PRDE solution X(t) for the devil stick plotted over
two periods. The solution is computed with the multi-shot PRDE solver using
the Gauss Runge-Kutta solver of order 12 with 4 fixed time steps and N = 20.

[5] L. Freidovich, R. Johansson, S. Johansson, A. Robertsson, and S. Shiri-
aev. Generating stable propeller motions for devil stick. Submitted to
Automatica.

[6] L. Freidovich, R. Johansson, A. Robertsson, and S. Shiriaev. Gener-
ating stable propeller motions for devil stick. In Proc. of 3rd IFAC
LHMNLC’06, Nagoya, Japan, July 2006.

[7] G. H. Golub and C. F. Van Loan. Matrix computations. John Hopkins
University Press, Baltimore, MD, 3rd edition, 1996.
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