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Abstract 
The real-time reconstruction of the plasma 

magnetic equilibrium in a Tokamak is a key 
point to access high performance regimes. 
Indeed, the shape of the plasma current density 
profile is a direct output of the reconstruction 
and has a leading effect for reaching a steady-
state high performance regime of operation. We 
have seen in particular that non monotonic 
current density profiles can trigger enhanced 
particles and heat confinement. On top of this 
the current density profile has a resistive 
diffusion time and any variation of the current 
drive systems takes some time to be efficient.  
The challenge is thus to develop methods and 
algorithms that reconstruct the magnetic 
equilibrium in the perspective to use these 
outputs for feedback control purposes. 
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1. Introduction 

The real-time reconstruction of the 
plasma magnetic equilibrium in a Tokamak is a 
key point to access high performance regimes. 
Indeed, the shape of the plasma current density 
profile is a direct output of the reconstruction 
and has a leading effect for reaching a steady-
state high performance regime of operation. The 
challenge is thus to develop methods and 
algorithms that reconstruct the magnetic 

equilibrium in the perspective to use these 
outputs for feedback control purposes. 
But in present days tokamaks only the shape of 
the plasma boundary is routinely identifiable in 
real-time in less than few milliseconds using a 
set of magnetic and diamagnetic coils spread 
around the vessel. This information is mainly 
used for controlling the plasma shapes in real-
time during a plasma discharge using coils 
current in a feedback control loop. The idea is to 
achieve a required shape and to maintain it in a 
stationary manner in order to avoid for example 
sudden termination of the plasma when the 
plasma touches the first wall. In JET the so-
called XLOC code is used routinely for plasma 
shape control [1]. Based on this JET flux 
boundary code confinement parameters are 
deducted like the diamagnetic energy, the 
internal inductance and plasma separatrix 
geometry in less than 1ms. But with this 
algorithm it is not possible to compute the 
internal magnetic flux configuration which is 
needed if we want to analyze the phenomenon 
occurring in the interior of the plasma. In this 
case the only way to get access to the current 
density profile is to use off-line codes that can 
compute accurately the profile but with no 
possibility to act in real time on it. This is rather 
a strong limitation because we know from the 
analysis performed that the shape of the current 
density profile is one of the key element to 
enhance the plasma performance. We have seen 
in particular that non monotonic current density 
profiles can trigger enhanced particles and heat 



confinement [2]. On top of this the current 
density profile has a resistive diffusion time and 
any variation of the current drive systems takes 
some time to be efficient. So it is clear that by 
controlling in real time such a profile, taking 
into account the effect of disturbances that tends 
to adversely affect the time behaviour of the 
controlled variables, we insure stability but also 
performance [3, 4].  

 
2. Mathematical formulation of the plasma 

Equilibrium  
The problem of plasma equilibrium in a 

Tokamak is a free boundary problem in which 
the plasma boundary is defined as the last closed 
magnetic flux surface. Inside the plasma, the 
equilibrium equation in an axisymmetric 
configuration is called the Grad-Shafranov 
equation [5, 6]. This equation is derived from 
the combination of the magnetostatic Maxwell’s 
equations which are satisfied in the whole of 
space in presence of a magnetic field and the 
equilibrium of the plasma itself which occurs 
when the kinetic pressure is equal to the Lorentz 
force of the magnetic pressure. The expression 
of the Grad-Shafranov equation in a cylindrical 
coordinates system (r, z, φ) where r=0 is the 
major axis of the torus reads: 
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Where µ0 is the magnetic permeability of the 
vacuum, ψ(r,z) the poloidal flux and f the 
diamagnetic function. The right hand side of 
equation (1) is a non-linear source which 
represents the toroidal component of the plasma 
current density. It involves the functions p(ψ) 
and f(ψ) which are not directly measured inside 
the plasma. Assuming that Dirichlet boundary 
conditions, h, are given on Γ which is the 
poloidal cross section of the vacuum vessel, the 
final equations governing the behavior of ψ (r,z) 
inside the vacuum vessel become:    
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The entire problem is thus resumed to 
identify in real time the plasma current i.e. the 
non linear functions A and B (function of the 
normalized flux in the previous equation)    

3. The Equinox Code  
In order to meet the real-time 

requirements, a new version of the code called 
Equinox has been design and implemented in 
C++ using a finite element method and a non 
linear fixed point algorithm associated to a least 
square optimization procedure. The code relies 
on tokamak specific software like XLOC 
providing flux values on the first wall of the 
vacuum vessel. By means of least-square 
minimization of the difference between 
measurements and the simulated ones the code 
identifies the source term of the non linear Grad-
Shafranov equation. The experimental 
measurements that enable the identification are 
the magnetics on the vacuum vessel, the 
interferometric and polarimetric measurements 
on several chords and the motional Stark effect 
measurements. For the magnetic measurements 
the flux loops give the poloidal flux on 
particular nodes Mi such that ψ(Mi)=hi on Γ. 
Thanks to an interpolation (performed by XLOC 
at JET) between the points Mi these 
measurements provide the Dirichlet boundary 
condition h. The problem is thus resumed to find 
a solution that minimizes the cost function 
defined as: 
     εJJKJKJnBAJ e +++= 22110),,(     (6) 
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Where gi, iα and iβ  are respectively the 

measurements of the magnetic poloidal field, the 
Faraday rotation and the line integrated density 
along the chords Ci. The weighting parameters 
K1 to K2 enable to give more or less importance 
to the corresponding experimental 
measurements [8]. As the inverse problem of the 
determination of A and B is an ill posed one a 
Tikhonov regularization term [9] Jε constrains 
the functions A, B and ne (ne being the plasma 
density) to be smooth enough and its expression 
is given by the following expression:  
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where ε1, ε2 and ε3 are the regularizing 
parameters. Equation (3) is solved using a finite 
element method [10]. The finite element solver 
uses P1 triangles, the calculation being limited 
to the vacuum chamber. A careful 
implementation leads to execution time less than 
60ms per iteration on a 2GHz PC, 
complemented with excellent robustness. The 
unknown functions A, B, ne are approximated by 
decomposition in a reduced basis. The basis can 
be made of different types of functions 
(polynomials, B-splines, wavelets etc) [11]. In 
our case we choose B-splines. Let u be the 
vector which contains the coordinates of A, B 
and ne in the chosen basis. The Picard type 
(fixed point) algorithm is then used to solve 
iteratively the inverse and direct problem. The 
discretisation of the equation (3) can be written 
as: 

                     huDK += )(ψψ                       (11) 

Where D is the plasma current matrix, K is the 
stiffness matrix and h is due to the Dirichlet 
boundary conditions. The discrete inverse 
optimization problem is to find u minimizing the 
cost function which can be written as 
            uukCuJ T Λ+−=

2
)()( ψψ             (12) 

while ψ satisfies (11). The quantity C(ψ)ψ 
represents the outputs of the model, k the 
experimental measurements, C(ψ) is the 
observation operator. The matrix Λ represents 
the regularization terms. In order to solve this 
problem we use an iterative algorithm based on 
fixed point iterations. At the nth iteration ψn and 
un are given. The non linear mapping between ψ 
(u) and u is given by the relation: 
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and the cost function  to be minimized is given 
by 
           uukCuJ T
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This last equation is used to determine un+1. 
Then fixed point iterations for equation (11) 
enables to find ψn+1. 
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Since the algorithm is initialized from the 
equilibrium at the previous time step two or 
three iterations are usually enough to ensure 
convergence. This leads to a very efficient 
algorithm. 

Fig. 1 Comparison EFIT vs Equinox for the upper 
triangularity 

 
Fig. 2. Standard deviation between EFIT and 

Equinox for the plasma volume (m3) 
 

4. Equinox validation 
The validation of the Equinox code has been 

performed starting from a database of about 130 
pulses, well representative of the JET discharges 
with different shape and triangularity of the 
plasma boundary and with global parameter 
varying in the whole JET interval. For some 
pulses clear MHD signatures have been 
identified and help in particular at the validation 
of the current density profile. The strategy of the 
validation has been applied to the two versions 
of the codes. The first one called Equinox-M is 
the version using only the inputs from the 
magnetic measurement via XLOC. This version 
gives accurate plasma geometry and global 
parameters and does not intend to give very 
precise information about the current density 
profile. The second version Equinox-J includes 
internal measurements like polarimetry or MSE 



and is able to identify hollow plasma current 
density profiles. The validation of the Equinox-
M version has been done mainly using the 
results of the well assessed EFIT equilibrium 
code [12] constrained by magnetic 
measurements only which is used in a routinely 
manner at JET for intershot analysis.  

 
Fig. 3  Comparison between EFIT and Equinox for 
the Z position of the X point 

 
Fig. 4.  Comparison between EFIT and Equinox for 

the ROG (Right Outer Gap) in meter 
 

The shape of the plasma is fairly well  
reproduced as it can be seen in Fig. 1 and 2 for 
the upper triangularity and plasma volume. For 
the spatial location of the plasma several checks 
have been made like the comparison of the 
coordinates Rx and Zx of the X point, the 
different gaps at some poloidal locations 
(defined as the distance between the plasma 
boundary and the vessel) see Fig. 3 and 4. The 
error remains very low for the X point position 
but important differences can be seen for the 
right outer gap. In order to validate this result 
we decided to compare the ROG obtained by 
equinox with the XLOC one. Indeed as our code 
is a free boundary code which means that no 
assumption is made on the plasma shape we are 
able to compare the shape parameters of our 

reconstruction with the one obtained by XLOC 
itself. Results of that comparison can be seen in 
Fig 5. Agreement is found with XLOC which 
tends to demonstrate that EFIT is less precise for 
the ROG reconstruction. At that stage it was 
necessary to investigate global quantities 
characteristic of the current density profile. 

 
Fig. 5 Comparison between XLOC and  Equinox  for 

the ROG 
 

Fig. 6 Comparison between EFIT and Equinox for 
the internal inductance li  

 
Global quantities like the internal inductance li 
are compared in Fig. 6. Some differences can be 
noted for the internal inductance the medium 
error value being around 0.1. In order to 
quantify the sensitivity of the Equinox output to 
the error on the measurements we perturbed by 
1% the input data from XLOC and get a 
standard deviation of about 0.1 for the li as seen 
in Fig.7. So the difference observed on li 
between EFIT and Equinox is of the order of the 
error bars on the results. In terms of q profile 
this difference is small on the particular case of 
shot #74937 in Fig. 8. We can note in particular 
that the main difference comes from the qax 
which is one of the consequences of the lack of 
information coming from the internal part of the 
plasma. 



 
Fig. 7 Standard deviation of li with random variation 

of the original inputs 
 

 
Fig. 8 Comparison between EFIT and Equinox of the 

safety factor profile 
 

Finally in order to fully assess the 
Equinox-M reconstruction we have used 
PROTEUS [7] that solves the direct problem of 
the Grad Shafranov equation. The idea is to 
compute the flux mapping starting from a given 
and known current density profile. In that 
particular case a monotonic current density 
profile was chosen, the equilibrium has been 
reconstructed by PROTEUS who computed also 
the boundary conditions requested by Equinox. 
The outputs of Equinox are then compared with 
the ones coming from PROTEUS. A very good 
agreement is found as it can be seen in the 
following table in particular for the plasma 
volume, li and q profile confirming that the 
statistic relies on a very strong and accurate 
computation. In the case of the Equinox-J 
version the same results were obtained for the 
validation of the plasma shape and position, 
which were not modified by the inclusion of 
internal measurements. More interesting was to 
validate the obtained current density profile.  
The first strategy was to use clear MHD 
signatures of some shots of the database for 

checking the location of the corresponding 
mode. 
 

  PROTEUS EQUINOX 

Ip 2e6 2e6 

rmag 3.0620 3.0691 

zmag 0.2972 0.2983 

psia -0.2896 -0.3468 

rx 2.5310 2.5279 

zx -1.4180 -1.4248 

psib -1.0588 -1.0605 

betap 1.9050 1.7846 

Li 0.7470 0.7095 

Q0 1.1550 1.8256 

Q95 5.4710 5.3508 

Trianu 0.4290 0.4075 

Trianl 0.3720 0.3861 

Vol 74.7080 74.3860 

Surf 4.2520 4.2329 

Perimeter 8.2750 7.9232 

rgeom 2.8725 2.8726 

 
Table 1 Comparison between the outputs of Proteus 

and Equinox codes 
 

 
An example can be seen in Fig. 9 where the 
location of the q=1.5 mode is given in blue by 
Equinox and in green identified from Fourier 
analysis of the magnetic measurements and 
electron temperature (Electron Cyclotron 
Emission). The agreement is almost perfect. The 
second strategy, see Fig.8 for example, was for 
the other shots of the database to compare the 
Equinox (red line) reconstruction with some 
reconstruction using EFIT constraint by MSE 
(green line). In dotted lines are represented for 
the same shot at the same time the profiles 
obtained with magnetic only. Here again the 
agreement is very good. 



Fig. 9 Time traces of the location of the q=1.5 
surface as found by Equinox (red low field side and 
blue high field side) and in green location of that 
mode deducted from Fourier analysis of Magnetic 
amd ECE data 

Fig. 10 Profiles comparison between EFIT constraint 
by magnetic measurements (dotted green), by MSE 
(green line) and Equinox constraint by magnetic 
measurements (dotted red), by MSE (red line) for 
shot 77601 at t=44.4s. 
 
5. Conclusion 
A new real-time solver of the Grad-Shafranov 
equation called Equinox has been developed and 
validated at JET. It integrates internal 
measurements like polarimetry and MSE to 
reconstruct the plasma equilibrium in less than 
50ms. This code is written in C++ and is now 
about to be implemented into the JET Real-time 
system. This opens brand new set of very 
interesting experiments about discharge 
performance optimisation.  
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