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Abstract
An adaptive master-slave output feedback synchro-

nization problem is investigated firstly for a network of
interconnected nonlinear dynamical systems with de-
layed couplings and then for a network of systems with
bounded disturbance. The proposed structure of decen-
tralized controller and adaptation algorithms in both
cases is based on the speed-gradient method and pas-
sivity. Conditions of synchronization for systems with
delayed couplings are established. The problem of con-
vergence with preliminarily specified accuracy is stud-
ied for the networks of dynamical systems with dis-
turbances. The effectiveness of the obtained results is
demonstrated on the network of Chua systems.
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1 Introduction
During the last years works on networks control oc-

cupy more and more essential place in the literature on
control theory and practice. Motivating fields of ap-
plications are cooperative control of moving objects:
robots, flying and underwater subjects, control of in-
dustrial and electro energy networks, etc. Although
problems of decentralized control for complex dynam-
ical networks of coupled objects were studied before
[Šiljak, 1991], new problem statements dictate ne-
cessity of taking into account uncertainties, switching
structure of the bond graph, partial decomposition of a
control, influence of bounded disturbances, nonlinear
dynamics of the local subsystem (agent) and uncertain-
ties in measurement of their states.
For the synchronization of networks with delayed cou-

plings some results have already been achieved in [Yao
et al., 2006; Wang et al., 2010; Nuno et al., 2010; Liu et
al., 2009; Mastellone et al., 2006; Chopra and Spong,

2006]. However, adaptive control laws were derived
only for a narrow class of networks, such as fully-
controlled and fully-measured networks (e.g. [Yao et
al., 2006; Liu et al., 2009]), or the algorithm is not de-
centralized [Yao et al., 2006]. Some of these works
deal with systems with non-switching topology or pro-
vide non-adaptive control.
In the current work we overcome these restrictions and

propose an adaptive decentralized algorithm for syn-
chronization of networks of dynamic systems with de-
layed couplings and bounded disturbances. This result
is based primarily on the passivity approach and passi-
fication lemma.
In contrast to the disturbance-free case, convergence

of trajectories of the leader and the agents with
bounded disturbances is not possible. To avoid insta-
bility of the overall system adaptation algorithms are
regularized by means of negative parametric feedback,
similarly to [Fradkov et al., 2010].
In this paper unlike the previous ones the problem

of convergence with preliminarily specified accuracy is
studied. The conditions ensuring achievements of the
control goal are given and proven. The results are illus-
trated by a network of chaotic Chua circuits.

2 Problem statement
Consider a dynamic system that consists of N inter-

connected subsystems described by:

ẋi = Axi + φ0(xi, t) +Bui +

N∑
j=1

αij(t)φij(xj − xi)+

+
N∑
j=1

βij(t)xj(t− τ) + fi(t),

yi = Cxi, i = 1, . . . , N,
(1)

where xi ∈ Rn is a state vector, ui ∈ R is a control in-
put, yi ∈ Rl is a measurable output. Here A, B, C are



constant matrices of appropriate dimentions, τ > 0 is
the time delay. Nonlinear part is presented by continu-
ously differentiable function φ0(x, t) : Rn × [0,∞) →
Rn, functions φij(·) are used to describe communica-
tion among the subsystems, αij(t), βij(t) : [0,∞) →
R≥0 are piecewise continuous functions that describe a
topology of the network, fi(t) is a bounded disturbance
of the i-th node:

||fi(t)|| 6 dfi ∀t ∈ [0,∞). (2)

Suppose that for all t ∈ [0,∞), i = 1, . . . , N

φii(0) = 0, αii(t) = −
∑N

j=1 αij(t), βii(t) =

−
∑N

j=1 βij(t).
Along with the system (1) we will consider an isolated

leader system:

ẋ = Ax+Bu+ φ0(x, t),

y = Cx,
(3)

where the control signal u is given.

3 Passification lemma
In order to formulate the passification lemma we need

to introduce several definitions.

Definition 1. A linear system ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) with the transfer matrix W (λ) =
C(λI − A)−1B, where u(t), y(t) ∈ Rl and λ ∈ C
is called minimum-phase if the polynomial φ(λ) =
det(λI−A) detW (λ) is Hurwitz. The system is called
hyper-minimum-phase if it is minimum-phase and the
matrix CB = limλ→∞λW (λ) is symmetric and posi-
tive definite.

We will need the passification lemma in the following
form [Fradkov, 1976; ?].

Lemma 1 (Passification lemma). Let the matrices
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, g ∈ Rl×m be
given and the full-rank condition rank(B) = m holds.
Then for existence of a positive-definite n × n-matrix
P = PT > 0 and l ×m-matrix θ∗ such that

PA∗+A
T
∗ P < 0, PB = CT g,A∗ = A−BθT∗ C (4)

it is necessary and sufficient, that the system

ẋ(t) = Ax(t) +Bu(t),

y(t) = gTCx(t)
(5)

is hyper-minimum-phase.

4 Networks with delayed couplings
We will begin with a case of disturbance-free lin-

early connected subsystems, that is, fi(t) ≡ 0 for all
i = 1, . . . , N and φij(xj − xi) ≡ xj − xi for all
i, j = 1, . . . , N . As soon as αii(t) = −

∑N
j=1 αij(t)

the equation (1) can be rewriten in the form:

ẋi = Axi + φ0(xi, t) +Bui +
N∑
j=1

αij(t)xj+

N∑
j=1

βij(t)xj(t− τ),

yi(t) = Cxi(t), i = 1, . . . , N.
(6)

Here we treat a question of synchronization, i. e. the
aim of control is to make the trajectories of all the sub-
systems converge to the trajectory of the leader system:

lim
t→∞

(xi(t)− x̄(t)) = 0, i = 1, . . . , N. (7)

And the problem is to find control functions ui =
Ui(yi, t) i = 1, . . . , N to ensure achievement of the
control goal (7). This problem will be solved under the
following assumption:

Assumption 1. Suppose there exists g ∈ Rl such that
the transfer function gTC(sIn − A)−1B is hyper-
minimum-phase.

4.1 Control synthesis
Denote ei(t) = xi(t) − x(t). An error equation can

be written as follows:

ėi = Aei + φ0(ei, t)− φ0(x, t) +

N∑
j=1

αij(t)ej+

+
N∑
j=1

βij(t)ej(t− τ) +B(ui − u),

yi(t)− y(t) = Cei(t), i = 1, . . . , N.

(8)

Under Assumption 1 the conditions of Lemma 1 hold
and, therefore, PB = CT g. Then applying the speed
gradient algorithm [Fradkov, 1979] we obtain the fol-
lowing control law:

ui(t) =− θTi (t)(yi(t)− ȳ(t)) + ū(t),

θ̇i(t) =g
T (yi(t)− ȳ(t))Γi(yi(t)− ȳ(t)),

(9)

where Γi is l × l positive-definite matrix.



4.2 Lipschitz-type nonlinearities
Let us introduce the following additional values:

µ = sup
t∈[0,∞)

max
i∈{1,...,N}

N∑
j=1
j ̸=i

(αji(t)− αij(t));

ν = sup
t∈[0,∞)

max
i∈{1,...,N}

N∑
j=1

(|βij(t)|+ |βji(t)|).

The value µ has the meaning of maximum asym-
metricity of the matrix α(t). Thus if the matrix α(t)
is symmetric at any time t ≥ 0, then µ = 0.

As soon as Assumption 1 holds, it follows from
Lemma 1 that there exists ε > 0 such that

PA∗ +AT
∗ P < −εP, PB = CT g,A∗ = A−BθT∗ C

(10)
This ε has a crucial meaning in the next theorem.

Theorem 1. Suppose the Assumption 1 holds and
φ0(x, t) is Lipschitz with respect to x with a Lipschitz
constant η. Then, if

2η
λmax(P )

λmin(P )
+ µ+ ν < ε

the control algorithm (9) ensures the achievement of
the goal (7). Moreover, all tunable parameters θi(t)
will stay bounded on the time interval [0,∞) for all
i = 1, . . . , N .

Proof. It follows from Assumption 1 that for some
P > 0, θ∗ and ε > 0 the conditions (10) hold.

Consider the following function

V (ei) =
N∑
i=1

[
eTi (t)Pei(t)+

+ (θi(t)− θ∗)
TΓ−1

i (θi(t)− θ∗)+

+

∫ t

t−τ

eTi (s)Hiei(s)ds
]
≥ 0,

(11)

where Hi =
∑N

j=1 |βji(t)|P ≥ 0. By taking a deriva-
tive of V along the trajectories of the system (8), (9),

we obtain:

V̇ =
N∑
i=1

eTi (t)
[
AT

∗ P + PA∗
]
ei(t)+

2
N∑
i=1

eTi (t)P [φ0(xi, t)− φ0(x̄, t)]+

2
N∑

i=1,j=1

αij(t)e
T
i (t)Pej(t)+

2
N∑

i=1,j=1

βij(t)e
T
i (t)Pej(t− τ)+

N∑
i=1

[
eTi (t)Hiei(t)− eTi (t− τ)Hiei(t− τ)

]
,

(12)
By bounding sums with coefficients αij(t) and βij(t)
by means of inequality 2xT y ≤ xTQx + yTQ−1y
and using the Lipschitz condition for φ0(x, t), we may
bound (12) as follows:

V̇ ≤
N∑
i=1

eTi (t)
[
AT

∗ P + PA∗
]
ei(t)+

2η
λmax(P )

λmin(P )

N∑
i=1

eTi (t)Pei(t)+

µ
N∑
i=1

eTi (t)Pei(t)+

N∑
i=1

eTi (t)

 N∑
j=1

|βij(t)|P +Hi

 ei(t)+
N∑
i=1

eTi (t− τ)

 N∑
j=1

|βji(t)|P −Hi

 ei(t− τ)

(13)
Now substituting Hi =

∑N
j=1 |βji(t)|P and using the

first inequality from (10) we obtain:

V̇ ≤
(
2η
λmax(P )

λmin(P )
+ µ+ ν − ε

)
×

N∑
i=1

eTi (t)Pei(t) ≤ 0,

(14)

at the same time if ∃i ∈ {1, . . . , N} : ei ̸= 0, then
V̇ < 0. Thus, it was shown that the function V (e) is a
Lyapunov function. That is e = 0 is asymptotically sta-
ble solution which means that xi(t) − x̄(t) → 0 while
t→ ∞ for i = 1, . . . , N .
It is obvious that if ∃i ∈ {1, . . . , N} : θi(t) → ∞

while t → ∞, then V → ∞, which is not possible be-
cause V is a bounded function. This proofs a uniform
boundedness of θi(t) and ends the proof of the Theo-
rem 1.�



4.3 Coordinated nonlinearity
Under coordinated nonlinearities we will mean non-

linearities of the form φ0(x, t) = Bh0(Cx, t), where
h0 : R× [0,∞) → R is some function.
Let us introduce the following definition:

Definition 2. For given vector G ∈ Rl a function
f : Rl → R is called G-monotonically decreasing,
if for any x, y ∈ Rl the following inequality holds:
(x− y)TG(f(x)− f(y)) ≤ 0.

In case of l = 1 and G > 0 this condition repeats
the classical definition of a monotonically decreasing
function.

Theorem 2. Suppose the Assumption 1 holds and
φ0(x, t) = Bh0(Cx, t), where h0(Cx, t) is a g-
monotonically decreasing function for any t ∈ [0,∞).
Then, if

µ+ ν < ε,

the control algorithm (9) insures the achievement of the
goal (7). Moreover, all tunable parameters θi(t) will
stay bounded on the time interval [0,∞) for all i =
1, . . . , N .

Proof. Consider function (11). By taking a derivative
along the trajectories of the system (8), (9) and using
estimations from the proof of the Theorem 1, we derive

V̇ ≤ (µ+ ν − ε)

N∑
i=1

eTi (t)Pei(t)+

2

N∑
i=1

eTi (t)P [φ0(xi, t)− φ0(x̄, t)] =

(σµ+ σν − ε)

N∑
i=1

eTi (t)Pei(t)+

2
N∑
i=1

(yi(t)− ȳ(t))T g [h0(yi((t), t)− h0(ȳ(t), t)] .

(15)
By conditions of the Theorem 2 function h0 is g-
monotonically decreasing, therefore

V̇ ≤ (σµ+ σν − ε)

N∑
i=1

eTi (t)Pei(t) ≤ 0. (16)

Similarly to the proof of the Theorem 1, we conclude
xi(t) − x̄(t) → 0 while t → ∞ and i = 1, . . . , N and
θi(t) are uniformly bounded. That ends the proof of the
Theorem 2.�

5 Networks with disturbances
Now consider a case when the system has regu-

lar topology, doesn’t have delays in couplings, but

has some bounded disturbances, i.e. αij(t) ≡ αij ,
βij(t) ≡ 0. In this case we intend to achieve attrac-
tion of trajectories of all subsystems to some neighbor-
hood of the trajectory of the leading subsystem. So, the
control goal in this case is:

lim
t→∞

|xi(t)− x(t)| 6 ∆i. (17)

5.1 Control synthesis
Denote ei = xi − x, ũi = ui − u, and then dynamics

of ei can be described as follows:

ėi = Aei +Bũi + φ0(xi)− φ0(x) + fi(t)+

+

N∑
j=1

αijφij(xj − xi),

ỹi = Cei, i = 1, . . . , d.

(18)

As before, we take linear control of the slave subsys-
tem in the following form:

ũi = −θTi (t)ỹi, θi(t) ∈ Rl, i = 1, . . . , d, (19)

where θi(t) are adjustable parameters. By applying
speed gradient algorithm to the goal function

Q(ei) =
1

2
eTi Hei, H = HT > 0. (20)

we derive an adaptation algorithm of the form:

θ̇i(t) = gT ỹi(t)Γiỹi(t).

But this algorithm doesn’t take into account the dis-
turbance, and is designed to achieve full convergence
to the leading system. Therefore, we suppose the fol-
lowing adaptation algorithm [Druzhinina and Fradkov,
1999]:

θ̇i(t) =

{
gT ỹi(t)Γiỹi(t), Qi(xi(t), t) > ∆i

0 , Qi(xi(t), t) 6 ∆i.
(21)

5.2 Lipschitz-type nonlinearities
Further narration requires several assumptions.

Assumption 2. Suppose that for some g ∈ Rl function
gTW (s−L) is hyper-minimum-phase, where W (s) =
C(sIn −A)−1B.

Under Assumption 2 from Lemma 1 it follows that
there exist H = H∗ > 0 and θ∗, such that HA∗ +
AT

∗H < −ρH ,HB = CT g, whereA∗ = (A+LIn)+
BθT∗ C.



Assumption 3. Suppose that φ0(·) and φij(·) are
globally Lipschitz functions with respect to x:

||φ0(x)− φ0(x
′)|| 6 L||x− x′||, L > 0,

||φij(x)− φij(x
′)|| 6 Lij ||x− x′||, Lij > 0.

Denote λ∗ = λmax(H)/λmin(H) condition number
of matrix H .

Theorem 3. Let assumptions 2 and 3 hold. Denote
δi = ρ

2
λmin(H)
λmax(H) −

∑N
j=1 |αijLij |. If for any i =

1, . . . , N the following condition is fulfilled:

δi > 0, (22)

then adaptive controler (19), (21) provides achieve-
ment of the control goal (17) for all ∆i, that satisfy:

∆i >
d2fiλmax(H)

2ρδi
, i = 1, . . . , N (23)

meanwhile the vector of adjustable parameters θ is
bounded for all solutions of the closed-loop system (1),
(3), (19), (21).

Proof. To prove this theorem we need an auxiliary
lemma. This lemma is a modification of the theorem
2.19 from [Druzhinina and Fradkov, 1999].

Lemma 2. Consider system that consists of N inter-
connected subsystems, where each one is described as:

ẋi = Fi(xi, θi, t) + hi(x, θ, t), i = 1, . . . ,K, (24)

θ̇i(t) =

{
−Γi∇θiωi(xi, θi, t), Qi(xi(t), t) > ∆i

0 , Qi(xi(t), t) 6 ∆i.
(25)

where xi ∈ Rni , θi ∈ Rmi ,

ωi(xi, θi, t) =
∂Qi

∂t
+∇Qi(xi, t)

TFi(xi, θi, t),

here Qi(·) - is some objective function, N =
∑
ni,

m =
∑
mi, x = col(x1, . . . , xl) ∈ RN . Assume that

for (24) the following groups of conditions hold:

1. Functions Fi(·) are continuous with respect to xi
and ti, are continuously differentiable with respect
to θi and locally bounded in time t > 0; functions
ωi(xi, θi, t) are convex by θi; there exist vectors
θ∗i ∈ Rmi and scalar continuous growing func-
tions ki(Q), ρi(Q) such that ki(0) = ρi(0) = 0,
ki(Q) → +∞ and ρi(Q) → ∞ when Q→ +∞.

ωi(xi, θ
∗
i , t) 6 −ρi(Qi(xi, t)) (26)

and

Qi(xi, t) > ki(||xi − x∗i (t)||),

where x∗i = argminxi(Qi(xi, t)) and
Qi(x

∗
i (t), t) ≡ 0

2. Functions hi(x, θ, t) are continuous and the fol-
lowing inequalities hold

|∇xiQi(xi, t)
Thi(x, θ, t)| 6

l∑
j=1

µijρj(Qj(xj , t)) + di
(27)

whereM−I is Hurwitz matrix,M = {µij}, µij >
0, I is identity matrix, di > 0, and ∆i in (25)
satisfy the inequalities:

ρi(∆i) > ri, (28)

where r = (I −M)−1d, r = col(r1, . . . , rl), d =
col(d1, . . . , dl).

Then all trajectories of the system (24), (25) are
bounded and the control goal

lim
t→∞

Qi(xi(t), t) 6 ∆i, i = 1, . . . , l

is met.

Consider the first group of conditions of Lemma 2. Lo-
cal boundedness for t > 0 is met, because for any
i = 1, . . . , N right-hand side of the system (18) and
Q(ei) are continuous functions, not depending from t,
and f(t) is bounded. Convexity condition is satisfied
because right-hand side of Q̇i is linear by Qi. Let’s
take function Q → ρ · Q as ρi(·), i = 1, . . . , N ,
from Lemma 2. It can be shown that existence of
θ∗ ∈ Rl and ρ, such that ωi(ei, θ∗) 6 −ρQ(ei), is pro-
vided by hyper-minimum-phase restriction for function
gTW (s). Indeed, according to the Lemma 1 if gTW (s)
is hyper-minimum-phase then exist H = HT > 0 and
θ∗ such that.

HA∗ +AT
∗H < 0, HB = CT g,

where A∗ = (A+ LIn) +BθT∗ C.

Fi = Aei +Bũi + φ0(xi)− φ0(x)



Taking derivative of Qi due to error equation for the
ith node (18), it can be shown that:

Q̇i = ωi(ei, θ∗) 6 eTi H(A+BθTi C)ei+

+ ||eTi || · ||H|| · L · ||ei|| 6 eTi H(A+BθTi C)ei+

+ L
λmax(H)

λmin(H)
eTi Hei =

1

2
eTi [HA∗ +AT

∗H]ei,

(29)

where A∗ = (A+ LIn) +BθT∗ C.
Negativeness of HA∗ + AT

∗H implies existence of
ρ > 0, such that HA∗ + AT

∗H 6 −ρH , and there-
fore the condition:

ωi(ei, θ∗) 6 −ρQ(ei), i = 1, . . . , d

is met.
Consider the conditions on connections between the

systems (second group of conditions in Lemma 2). In
our particular case they can be written down as:

|eTi H[
N∑
j=1

αijφij(ei − ej) + fi(t)]| 6

6 ρ

2

N∑
j=1

µije
T
j Hej + di, i = 1, . . . , N (30)

where M − I is Hurwitz matrix, M = {µij}, µij > 0,
I is identity matrix.
Let us estimate the left-hand side of (30):

∣∣∣∣∣∣eTi H[
N∑
j=1

αijφij(ei − ej) + fi(t)]

∣∣∣∣∣∣ 6
6

N∑
j=1

|αijLij | · λmax(H) · (||ei||2 + ||ei|| · ||ej ||)+

+ |eTi Hfi(t)| 6

6
N∑
j=1

|αijLij | · λmax(H) · (||ei||2 + ||ei|| · ||ej ||)+

+
1

2
σi||ei||2λmax(H)+

d2fi
2σi

λmax(H), i = 1, . . . , N,

where σi > 0, i = 1, . . . , d, are some numbers.
It can be shown that the lower bound of the right-hand

side of (30) is:

ρ

2

N∑
j=1

µije
T
j Hej + di >

> ρ

2

N∑
j=1

µijλmin(H)||ej ||2 + di, i = 1, . . . , d.

Thereby, it is sufficient to demand fulfilment of the
following inequalities:



d2
fi

2σi
λmax(H) 6 di∑N

j=1 |αijLij | · (||ei||2 + ||ei|| · ||ej ||)+

+1
2σi||ei||

2 6 ρ
2
λmin(H)
λmax(H)

∑N
j=1 µij ||ej ||2,

(31)

where i = 1, . . . , N .
Consider the following notations: z =

col(||z1||, ||z2||, . . . , ||z3||), ν
(1)
i , ν

(2)
i , ηi are de-

scribed as follows:

ν
(1)
i =



0 . . . 0 . . . 0
...

. . .
...

...
0 . . .

∑N
j=1 |αijLij |+ 1

2σi . . . 0
...

...
. . .

...
0 . . . 0 . . . 0

 , (32)

here the non-null element is on the main diagonal in the
i-th row. Assuming that αii = 0 for all i = 1, . . . , N ,
we denote ν(2)i as:

ν
(2)
i =


0 . . . 0 . . . 0
...

. . .
...

...
|αi1Li1| . . . 0 . . . |αiNLiN |

...
...

. . .
...

0 . . . 0 . . . 0

 .

Where non-null elements are in the i-th row, and the
null element is on the main diagonal. As ηi let us take:

ηi =
ρ

2

λmin(H)

λmax(H)


µi1 0 . . . 0
0 µi2 . . . 0
...

...
. . .

...
0 0 . . . µiN

 .

Using this notations we can state that for fulfilment
of (30) it is sufficient that for any i = 1, . . . , N the
following inequality is true:

zT (ν
(1)
i + ν

(2)
i ) 6 zT ηiz, (33)

i.e. matrix ηi−ν(1)i −ν(2)i for any i = 1, . . . , N should
be positively defined.
Let us take the following diagonal matrix as M =
{µij}:

0 < µii < 1, µij = 0, i ̸= j, i = 1, . . . , N, j = 1, . . . , N.



Then M − I will be Hurwitz matrix.
Non-negative determinacy of ηi − ν

(1)
i − ν

(2)
i implies

that:

µii
ρ

2

λmin(H)

λmax(H)
−

N∑
j=1

|αijLij |−
1

2
σi > 0, i = 1, . . . , N,

or

µii >
(
ρ

2

λmin(H)

λmax(H)

)−1
 N∑

j=1

|αijLij |+
1

2
σi

 , i = 1, . . . , N.

(34)
returning to the fact that µii < 1, we get to the condi-
tion (22).
Now, consider (28), together with (34). Assume δi =
ρ
2
λmin(H)
λmax(H) −

∑N
j=1 |αijLij |. Then (31), (34) can be

rewritten as: {
d2
fi

λmax(H)

2δi
6 di < ρ∆i,

δi > 0,
(35)

which matches the conditions of the Theorem.
Thereby, we can apply Lemma 2, which proves the
Theorem.�
Condition (23) of the Theorem 3 says that the higher

the disturbance level is, the bigger is the attraction area,
which is essential.

Remark 1. Let ρ∗ denote degree of stability of nomi-
nator of function gTW (s−L). Using results of [Frad-
kov, 2003] it can be shown that if function gTW (s−L)
is hyper-minimum-phase, then as θ∗ and ρ we can take
θ∗ = κg and any ρ : 0 < ρ < ρ∗, where κ > 0 is
sufficiently big number. Thereby, inequality (22) can be
replaced with

d∑
j=1

|αijLij | < γ, (36)

where γ = ρ∗
2λ∗

.

5.3 Coordinated nonlinearity
Let’s study a case when φ0(xi) = Bψ0(yi), ψ0 :
Rl → R. Then the subsystem can be rewritten as

ẋi = Axi +B(ui + ψ0(yi)) + fi(t)+

+
d∑

j=1

αijφij(xi − xj),

yi = Cxi,

(37)

and the leading system can be rewritten in the following
manner:

ẋ = Ax+B(u+ ψ0(y)), y = Cx, (38)

where u ∈ R - is the given control which is assumed to
be known.

Assumption 4. Suppose thatφij are globally Lipschitz
functions, with constants Lij > 0, and ψ0(·) is such,
that existence and uniqueness of solutions of all the
subsystems.

We choose (19), (21) again as the control input.
Consider real matrices H = HT > 0, g, θ∗ of sizes
n×n, l× 1, l× 1 respectively, and number ρ > 0 such
that:

HA∗+A
T
∗H < −ρH, HB = CT g, A∗ = A+BθT∗ C.

(39)

Theorem 4. Suppose that Assumptions 1 and 4 hold.
Then there exist H = HT > 0, θ∗ of orders n × n,
l×1 respectively and ρ > 0, such that (39) holds. Also
assume that function ψ0(·) is g-monotonically decreas-
ing. Denote δi = ρ

2
λmin(H)
λmax(H) −

∑N
j=1 |αijLij |. If for

all i = 1, . . . , N the following condition holds:

d∑
j=1

|αijLij | < γ, (40)

where γ = ρ∗/(2λ∗), λ∗ - condition number of matrix
H , ρ∗ - degree if stability of nominator of gTW (s).
Then for all i = 1, . . . , N adaptive control (19), (21)
provides fulfilment of the control goal:

lim
t→∞

|xi(t)− x(t)| 6 ∆i, (41)

for all ∆i, that satisfy the following inequality:

∆i >
d2fiλmax(H)

2ρδi
,

meanwhile the vector of adjustable parameters θi re-
mains bounded on [0,∞) for all solutions of the closed
loop system (19), (21), (37), (38).

Proof. The proof of this theorem is similar to the proof
of Theorem 3. To prove it one should apply lemma 2
with L = 0.
Let us prove that ω(ei, θ∗) 6 −ρQ(ei) for i =
1, . . . , N .
Using previously made assumptions it can be shown

that:

ωi(ei, θ∗) = eTi H[Aei+B(ũi+ψ0(yi)−ψ0(y))] =

= eTi H(A+BθTi C)ei+(yi−y)T g(ψ0(yi)−ψ0(y)) 6
6 eTi H(A+BθTi C)ei, (42)

The latter inequality is fulfilled because ψ(·) is g-
monotonically decreasing.



Figure 1. Evolution of ei(t)

Figure 2. Evolution of θi(t)

Then,

ωi(ei, θ∗) 6 eTi H[A+BθT∗ C]ei =

=
1

2
eTi [HA∗ +AT

∗H]ei, i = 1, . . . , N.

Here A∗ = A + BθT∗ C. Since HA∗ + AT
∗H is neg-

atively determined, exists such ρ > 0, that HA∗ +
AT

∗H 6 −ρH , and that provides fulfilment of the fol-
lowing inequality

ωi(ei, θ∗) 6 −ρQ(ei), i = 1, . . . , N.

Repeating further the proof of the Theorem 3 and tak-
ing into account Remark 1, we will prove this theorem.
�.

6 Examples
In this section we give an example to demonstrate the

effectiveness of the proposed algorithm. We will con-
sider a network consisting of Chua circuits [Chai and
Chua, 1995]. The state equation of Chua’s circuit is

given by 
ẋ1 = αc(x2 − x1 − h0(x1))

ẋ2 = x1 − x2 + x3

ẋ3 = −βcx2,
(43)

where h0(x1) = bcx1+
1
2 (ac−bc)(|x1+1|− |x1−1|)

and αc > 0, βc > 0, ac < bc < 0 are system parame-
ters. It is easy to check that for any g > 0 the function
h0 is g-monotonically decreasing. For simplicity let us
take g = 1. Suppose that we can control and observe
the first component of the state vector of each subsys-
tem (that will ensure hyper-minimum-phaseness), i.e.

A =

−αc αc 0
1 −1 1
0 −βc 0

 , B =

1
0
0

 , C =
(
1 0 0

)
.

(44)

6.1 Network with delays
Suppose the system has five subsystems and a switch-

ing topology with the following matrices

α(t) =


−1 0 1 0 0
0,5 −1 0,5 0 0
0,5 0,5 −1 0 0
0 0 0,5 −1 0,5
0 0 0 1 −1

× σ sign(sin t),

β(t) =


−1 0,3 0,2 0 0,5
0 −0,3 0 0,2 0,1
0,4 0 −0,7 0,1 0,2
0,6 0 0 −0,6 0
0 0,3 0 0,4 −0,7

× σ sign(cos t),

(45)
where σ = 0.1. Note that results are delay-
independent, therefore we can take any constant τ . We
ran simulations for different values of time delay. Here
we present plots for τ = 10. Results for other values of
τ do not differ a lot. Let us take the following values of
system parameters αc = 10, βc = 14.87, ac = −1.27
and bc = −0.68.
It was numerically found that we can take ε = 0,9167.

For this value of ε all conditions of Theorem 1 are sat-
isfied.
In Fig. 1 the errors evolution is presented. It is easy

to see that all ei tend to zero while t → 0. In Fig. 2
one can see that all θi are bounded, moreover θi tend to
some constant values while t→ 0.

6.2 Network with disturbances
Now consider a network consisting of six nodes with

disturbances, that is the dynamic of each node is de-
scribed as follows

ẋi = Axi +B(ui + h0(yi)) + fi +
5∑

j=1

αijφij(xj − xi),

yi = Cxi, i = 1, . . . , 6,
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Figure 3. Evolution of max
i

||ei(t)||

with the same matrices A, B, C and the same function
h0.
We take ac = −8/7, bc = −5/7, αc = 15.6, βc =
25.58, dfi = 2, i = 1, . . . , 6.
As the control input we take stepping action with am-

plitude 1/2, and period T = 5, disturbance fi we
simulate with uniformly-distributed random variable at
[−dfi , dfi ].
Let us denote

α =


α11 α12 . . . α16

α21 α22 . . . α26

...
...

. . .
...

α61 α62 . . . α66



α̂ =


0 0.0051 0.1395 0 0.1676 0

0.0662 0 0.0921 0.0065 0 0.0926
0.2013 0 0 0.2271 0.1430 0
0.0907 0 0.0675 0 0 0
0.0663 0 0 0.02773 0 0.1472
0.0662 0 0 0.0065 0 0


50-second simulation with α = α̂ shows that the goal

is achieved: ||ei|| < ∆i, for some ∆i, but does not tend
to zero. Evaluation of max

i
||ei|| is shown in the Fig. 3

7 Conclusion
In this paper unlike the previous ones we have

achieved solution of the problem of convergence with
pre-specified accuracy and obtained synchronization
conditions for delayed coupling networks with switch-
ing topology consisting of nonlinear systems with in-
complete measurement, incomplete control, incom-
plete information about system parameters. The de-
sign of the control algorithm providing synchronization
property is based on the speed-gradient method, while
derivation of synchronizability conditions is based on
the passification lemma.
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Šiljak D.D. Decentralized control of complex systems.

Number v. 184 in Mathematics in science and engi-
neering. Academic Press, 1991.

Yao J., Hill D.J., Guan Z.H., and Wang H.O. Synchro-
nization of complex dynamical networks with switch-
ing topology via adaptive control. Proc. 45th IEEE
Conf. Decision and Control, pp. 2819–2824, 2006.

Wang Y.-W., Xiao J.-W., and Wang H.O.. Global syn-
chronization of complex dynamical networks with
network failures. Int. J. Robust and Nonlinear Con-
trol, 20(15):1667–1677, 2010.

Nuño E., Ortega R., Basanez L., and Hill D. Synchro-
nization of Networks of Nonidentical Euler-Lagrange
Systems with Uncertain Parameters and Communi-
cation Delays. IEEE Trans. on Autom. Cont., 56(4):
935—941, 2011.

Liu T., Hill D.J., and Zhao J. Synchronization of dy-
namical networks by network control. Proc. 48th
IEEE Conf. Decision and Control, CDC/CCC, pp.
1684–1689, 2009.

Mastellone S., Lee D., and Spong M.W. Master-
Slave Synchronization with Switching Communica-
tion Through Passive Model-Based Control Design.
Proc. of the Amer. Cont. Conf., USA, pp. 3203–3208,
2006.

Chopra N. and Spong M. Output Synchronization of
Nonlinear Systems with Time Delay in Communica-
tion. Proc. 45th IEEE Conf. Decision and Control,
pp. 4986–4992, 2006.

Fradkov A.L., Razuvaeva I.V., and Grigoriev G.K. Pas-
sification based adaptive control under coordinate-
parametric white noise disturbances. Prepr. 8th IFAC
Symp. NOLCOS 2010, Bologna, pp. 659 — 664,
2010.

Fradkov A.L. Quadratic Lyapunov functions in adap-
tive stabilization problem of a linear dynamic plant.
Siberian Math. J., 17(2):341–348, 1976.

Fradkov A.L. Passification of nonsquare linear systems
and feedback Yakubovich-Kalman-Popov Lemma.
Europ. J. Contr., (6):573–582, 2003.

Fradkov A.L. Speed-gradient scheme and its applica-
tion in adaptive control problems. Autom. Rem. Cont.,
40(9):1333–1342, 1979.

Druzhinina M.V. and Fradkov A.L. Adaptive decen-
tralized control of interconnected systems. Proc. of
14th IFAC World Congress, L:175 — 180, 1999.

Chai W.W. and Chua L.O. Synchronization in an array
of linearly coupled dynamical systems. IEEE Trans.
Circuits and Systems-I, 42(8):430 — 447, 1995.


