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Abstract: Necessary conditions to identify parameters and control of nonlinear variable stochastic 
systems being used to describe the operation of a flying vehicle and its subsystems are analyzed, the 
system parameters, control function, and states vector being bounded. The break moments as well as 
break points characteristics are related to a set of parameters being identified. 
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1. INTRODUCTION 

This paper considers the problem of identification of 
parameters and control of nonlinear variable stochastic 
systems by using an adjustable model of a diffusion Markov 
process class with system requirements limitations. 
Supporting these requirements narrows down the set of states 
of the system and allowed definitional domains for the 
parameters of the system and control in agreement with the 
prescribed set-up and being subject to new mathematical 
methods to research identification problems. 
 

2. THE PROBLEM STATEMENT 
 

Let consider the problem of identification of program control 
, parameters  and time-points T  of switching of 

the structure of a controlled nonlinear stochastic system 
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which describes the functioning a flying vehicle or its 
subsystems over the time-interval  in a successive 
manner over adjoining sections , . Control 
objectives and different system requirements are described by 
mixed limitations of equalities and inequalities of system 
parameters, control functions, and phase coordinates. 
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Here t −  a time; ,0t kt −  initial and final points of the interval 
considered ; 0[ , ]kt t 1( ,..., )kT t t=  are points of switching of 
the structure satisfying the condition ; 1 j kt t< ⋅⋅⋅ < < ⋅⋅⋅ < t

( )X t −  the n-dimensional random vector function of a 
system state being continuous of  over , , t 1[ , ]j jt t− ( ,..., )j k

( )k kX X t= ; ( )u t −  a deterministic r -dimensional vector 
function of control being section continuous over time-
segments ; 1[ , ]j jt t− a −  a deterministic m-dimensional vector 
of controlling parameters which defines constructive as well 
as energy parameters of the system. , ( )iqdW t

( )qd tη − stochastic Stratonovich differentials of the Wiener 
processes , ( )iqW t ( )q tη . Right-hand members of (1) being 
considered over continuity segments meet known 
requirements that a solution exists  and they have 
discontinuities of the first kind at time-points . The upper 
index j at the right-hand members of (1) characterizes the 
system structure over time-segment . The functionals 
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their derivatives of the function. – the derivative of the 
Wiener process – an additive white noise component of a 

( )lw t&

     

mailto:denisov2000@gmail.com


measuring instrument.  
The equations (1) describe a diffusion markovian process 
along adjoining segments ,  in a 
consecutive manner over ., its a posteriori probability 
density of states 

1[ ,j jt t− ] k( 1,..., )j =
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Konstantinov (1976) satisfying the equation  
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 and the conjugation conditions at break-points jt   
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z  means that the whole observed realization of the output 
signal of the measuring instrument is used over the time-
interval , ; 1[ , ]j jt t− ( ,..., )j k ( ), ,j

iA t v x − drift coefficients with 
discontinuities of the first kind at time-points , ( 1jt ,..., 1j k )= −  
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( , , )ipB t v x  is diffusion matrix coefficients with discontinuities 
of the first kind at time-points , ( 1  jt ,..., 1j k= −

, 1
( , , ) (

n
j j W j j W

ip ik pq ikpq ik pq ikq
k q

B t v z G G ηϕ ϕ ϕ σ
=

= +∑  

     . )j j W j j
ik pq kpq ik pq kqG Gη ησ ϕ σ σ+ +

, , ,W W
ik pq k qG G G Gη η  are intensities of Wiener processes according 

to   ( ) , ( ) ,ik pqW t W t ( ),k tη ( )q tη ; , , ,W W W
ikpq ikq kpq kqG G G Gη η η  are mutual 

intensities of Wiener processes. The expressions in square 
brackets (9) [  designate a difference of 
the expressions contained in them left and right off break-
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where R
pG , R

kG  are noise intensities of the measuring 
instrument; R

pkG  is mutual noise intensities of the measuring 
instrument. 
Out of existence and uniqueness of the solution (1), and also 
out of continuous dependence of this solution on the 
acceptable control  (Gihman and Skorohod, 1977) 
follows the existence and uniqueness of the solution (8) by 
the distribution and continuous dependence of the probability 
density 

( , , )v u a T=

( , )p t x z  on the acceptable control  and the 
initial distribution . Thus, the initial problem of 
identification (1) - (7) is reduced to an equivalent problem 
with spread parameters relative to a posteriori distribution 
density 
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with conjugation conditions (9) and limitations (3) – (5). 
Here 1nx +  is a realization of the component 1nX +  of the 
extended vector function of the system state ( )1, nX X X +=  
defined by the differential equation 
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3. NECESSARY IDENTIFICATION CONDITIONS 

 
Necessary identification of control  of problem 
(11) – (12) over uniformly close neighborhood of identifiable 
control is established by theorem 1. 
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The proof of the theorem is analogous to proof samples 
(Rodnishev, 2001a). 
 
The solution to the identification problem (11) – (12) requires 
the solution to the equation (12) and to the parabolic equation 
(18) being conjugated to (12). However, as it is known, the 
solutions to these equations for higher order systems can only 
be obtained for linear stochastic systems (Krasovsky, 1974; 
Kazakov, 1977) and only for exceptional cases of nonlinear 
systems of no higher than third order. So, to solve (11) – 
(12), it is suggested using a method by Rodnishev (2001b) 
based on employing statistics – a posteriori semi-invariants of 
the process (1) having a distribution density (8). 
 

4. IDENTIFICATION OF STOCHASTIC SYSTEMS BY 
STATISTICS OF A PHASE STATE OF THE SYSTEM 

 
The identification problem (11) – (12) being relative to 
statistics is reduced to the problem  
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with limitations (3) – (5). Being relative to a posteriori semi-
invariants 
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the state vector components, lower ones – orders of the semi-
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Problem (19) – (21) belongs to the type of problems of the 
theory of optimum processes with limitations by equalities 
and inequalities. To solve this problem, numerical methods, 
particularly stated in Bodner et al. (1987), may be used.  

 
5. IDENTIFICATION OF CHARACTERISTICS OF A 

FLYING VEHICLE WHILE ITS TRANSFERING TO A 
PRESELECTED ALTITUDE 

 
Let consider the problem of identification of characteristics 
of a flying vehicle with accelerator while its transferring to a 
preselected altitude at constant disturbance  
characterizing the disturbance of jet acceleration with white 
noise of an angular traction force vector and parametric noise 

 caused by erosive fuel burn in the combustion 
chamber. The functioning the flying vehicle over adjoining 
segments ,  in a successive manner,  being an 
accelerator detachment moment, is described by the 
stochastic differential equations: 
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Here 1( )X t − mass of the flying vehicle related to the initial 
mass, 2 ( )X t − altitude over the ground (km), 3 ( )X t − speed  
(km/sec);  − mass consumption per time unit (1/sec) 
before and after the detachment of the accelerator 
accordingly; v=2 km/sec is a gas outflow rate from the 
nozzle, g=0.01km/sec

( )u t

2 – gravitational acceleration. − 

intensity of the additive white noise , − intensity of 

the parametric white noise  of the gas outflow rate. 
=1, =0.5 − set parameters of the system which 

characterize energy characteristics of the propulsion unit of 
the flying vehicle. 
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It is needed to determine the time-point  of the accelerator 
detachment, muss consumption , disturbance intensities 

, , ,  and estimates of the flying vehicle mass 

1t
( )u t

1nG
2nG

3nG
4nG

1( )X t  and altitude 2 ( )X t  at the final time-point 100T c=  by 
altitude observations  
  2 2 3 ( )Z X n t= +  
at white noise intensity of a measuring instrument  and 
measuring the speed of the flying vehicle  
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consumption  must be in the range: 0 ( . The 
effectiveness of identification of the characteristics 
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and speed is defined by the expression: 
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The diffusion coefficients and the scalar function  
depend on the intensity of noises. Being subject to a 
posteriori mathematical expectations , , variances 

, , and covariance moments 
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Identification problem (24) – (30) belongs to the known class 
of problems of the theory of optimum processes with 
limitations by equalities and inequalities (Bodner et al., 
1987). According to the specified gradient procedure, the 
identification of parameters and the assessment of 
components of the states vector was carried out relative to the 
characteristics obtained over mass consumption 

, see  Tab. 3.  (0) (0) ( )u u t=

Let 1 10t c=  - accelerator detachment time. The computing 
experiment was carried out relative to ”measurements” of 
coordinates  и , which were calculated with relative 
intensity 

2X 3X
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40.54 10nG −= ⋅ , parametric errors with intensity 

2

30.24 10nG −= ⋅  and the measuring errors with intensities 

3

40.55 10nG −= ⋅  and . To make the 
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convergence-check of the identification gradient procedure, 
the initial values of disturbance intensities were assumed 
equal to: , , 

1

40.56 10nG −= ⋅
2

30.26 10nG −= ⋅
3

40.57 10nG −= ⋅ , 
. 

4

60.58 10nG −= ⋅

Obtained results for a flying vehicle and shown in the Tables, 
confirm the efficiency of suggested approach to identification 
of stochastic systems. 
 

6. CONCLUSION 
 

Assessments of the states vector components and the time 
point of the accelerator detachment  are given in Tab. 1,  
variances of components of the states vector are presented in 
Tab. 2, and identification of mass consumption per a unit of 
time  over  iterations ( 1  is given in Tab. 3. 

1t

( )nu n , 2,3, 4n =

The analyzed approach to identify nonlinear stochastic 
systems enables to identify control functions , constructive 
parameters and energy parameters for rather broad range of 
expected operating conditions of flying vehicles and their 
subsystems; taking into consideration parametric and additive 
disturbances as well as limitations describing various 
requirements for a flying vehicle and its subsystems. 

)

Table 1.  
 

Iteration 
number 1( )m T  2 ( )m T  3 ( )m T  

1t  

1 0,414 57.004 0.246 10.48 

2 0,406 63.961 0.273 10.42 

3 0,398 66.074 0.300 10.07 

4 0,391 66.964 0.328 9.70 
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Table 3. 

Approximation of mass consumption Time (0)u   
t  (1)u (2)u (3)u (4)u    

0 0.040 0.0405 0.0410 0.0415 0.0420 

5 0.040 0.0405 0.0400 0.0395 0.0390 

10 0.040 0.0155 0.0160 0.0165 0.0170 

20 0.015 0.0155 0.0160 0.0165 0.0170 

30 0.015 0.0155 0.0160 0.0165 0.0170 

40 0.015 0.0155 0.0160 0.0155 0.0169 

50 0.015 0.0005 0.0010 0.0015 0.0019 

60 0.000 0.0005 0.0001 0.0006 0.0011 

70 0.000 0.0005 0.0000 0.0005 0.0000 

80 0.000 0.0005 0.0000 0.0005 0.0000 

90 0.000 0.0005 0.0000 0.0005 0.0000 

100 0.000 0.0005 0.0000 0.0005 0.0000 
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