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Abstract
The problem for control of mechanical oscillations of

ultrasonic range for nonlinear magnetostrictive actuator
is considered. Some features of the control algorithm
are demonstrated on an example of the control system
design for magnetostrictive vibrator. The solution of
the problem is obtained by creating the sliding motion
in such a manner that a stable limit cycle appears in the
state space of the mechanical subsystem. Furthermore,
the parameters of that cycle can be arbitrary modified
with respect to the desired behavior of the closed loop
system. Thus, the amplitude, frequency and shape of
the mechanical oscillations can be adjusted on the pre-
scribed manner.
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1 Introduction
As it is well known the magnetostrictive vibrator is

a source of the mechanical oscillations of ultrasonic
range. This property defines its wide application in
the numerous technical and technology areas. At
present there are a lot of ways and methods to control
the magnetostrictive transformers including various
circuits and control systems of power converters
[Syrkin, 1972], [Donskoi et al., 1982]. However, in
spite of the numerous investigations of magnetostric-
tive effect and its application only such a question
like a steady mode model can be regarded as finally
finished. Here, the theoretical basis of that model is
in the various harmonic linearization and harmonic
balance methods, because the magnetostrictor presents
generally speaking a nonlinear system [Syrkin et al.,
1970].On the other hand these techniques are valid
just in analysis and calculation for the steady mode of
the nonlinear system. The motivation to use a steady
mode model is magnified by an essential property of
the magnetostrictive transformer to be a high quality

resonant system. It follows that practically all the
most of control algorithms are based on the differ-
ent automatic frequency control (AFC) techniques
realizing some extremal principles (maximum of
power consumed, maximum of acoustic intensity if
it is available for measurement, minimum of phase
angle between current and voltage, minimum of
deviation from the resonant frequency of mechanical
subsystem and so on) [Donskoi et al., 1982]. At the
same time the absence of the adequate mathematical
model describing the plant in the state space does not
permit to realize all the magnetostrictor’s features. In
particular, the questions of adjusting the parameters of
mechanical oscillations (amplitude, frequency, shape)
on determined time law stay still open. By the way, the
above mentioned AFC algorithms are useless in prin-
ciple for solution of such a task to say nothing of the
transient modes at start up which can only be estimated
after manufacturing and experimental testing a control
system hardware. As to various power converters
which have one and more additional reactive units then
in a viewpoint of control algorithm these units just
increase the order of system. Meanwhile, it is always
desirable to reduce the order of the plant equations
especially in the case of nonlinear system. In this point
of view additional reactive units are accessible just as
a result of control strategy applying the state space
extension, of course, if it is not a question of the power
converter ability to work.

The proposed paper presents an effort to design
a control system for the high quality nonlinear
magnetostrictive actuator provided with amplitude
modulation of ultrasonic oscillations and invariant to
the variations of mechanical load. With this aim in
mind an exemplary control system design is conducted
and some features of the algorithm inaccessible to
existing systems are demonstrated. In the first step a
linearized magnenostrictor is examined. A solution
of the control problem is reached by the selection of
a nonlinear surface in the state space and creating the



sliding motions on that surface [Utkin, 1992]. So a
stable limit cycle appears in the subspace of mechan-
ical variables. The obtained algorithm is considered
as a basic solution. A full order state observer is used
for the estimation of unmeasured variables. So it is
a question of sliding mode control at the deviation
between model and plant [Bondarev et al., 1985].
The computer simulations illustrate the main theoretic
results and features of the control system.

2 Linearized Model and Basic Solution of Control
Problem

It is well known that the most effective generation of
the ultrasonic oscillations is observed when polarizing
the magnetic system of the magnetostrictive vibrator
with the constant current [Syrkin, 1972]. So consid-
ering the magnetostrictor in the vicinity of the equi-
librium point defined by a polarization and applying
some harmonic linearization technique you can get a
linearized model. If, furthermore, this model can be
supported with some experimental results, then it can
be examined as correct model. Let us choose a half-
bridge voltage inverter as a power converter for mag-
netostrictive transformer. In this case the differential
equations of the linearized magnetostrictive vibrator in
the terms of equivalent electric circuit have a form
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Here L, R are the electric parameters;i is electric
current; u, im are the mechanical speed and shift
respectively; Cm, Lm, Rm denote the equivalent
mechanical mass, softness and load;e is output voltage
of power inverter considered as a control input. The
control inpute is discontinuous and accepts the values
e ∈ {−E;E}.

Let us state the control problem as a problem of creat-
ing the stable limit cycle in the state space of mechan-
ical subsystem via an appropriate selection of control
input. Let all the parameters and variables be known
or accessible for measurement. According to the stan-
dard procedure of discontinuous control system design
[Utkin, 1992], let us examine the mechanical subsys-
tem described by the last two equations of (1). The
currenti is admitted as a ”fictitious” control. Rewriting
this system in the new variablesx1 =

√
Cmu; x2 =√

Lmim, we get

{

ẋ1 = −αx1 − ωx2 + bi;

ẋ2 = ωx1,
(2)

where

α =
1

RmCm

; ω =
1√

LmCm

; b =
1√
Cm

.

Let

bi = Kx1 − x3

2
; K > α. (3)

Then denotingK − α = a we can obtain the closed
loop system

{

ẋ1 = (a− x2

1
)x1 − ωx2;

ẋ2 = ωx1, a > 0.
(4)

As you can see these equations are similar to the Van
der Pole system and present a particular case of Lien-
ard equation [Kamke, 1959]. As it is well known this
system can generate the stable oscillations. Making a
replacement

x1 = X cos θ, x2 = X sin θ

and applying then an integral averaging, we receive a
system

{

Ẋ = 3

8

(

4

3
a−X2

)

X;

θ̇ = ω,
(5)

which has a general solution of the form

X =

√

4aCeat

3(1 + Ceat)
; θ = ωt+ θ0,

where C is an arbitrary constant andC ∈
(−∞,−1) ∪ (0,∞). It is easy to notice ifa > 0 then

limt→∞X =
√

4a
3

. In other words the oscillation am-
plitude is directed to the prescribed value determined
by the coefficientK. The oscillation frequency is equal
to the eigenfrequency of mechanical subsystem. Thus,
a stable limit cycle really appears in the mechanical
system of magnetostrictive vibrator. In the terms of
equivalent electric circuit it corresponds to a current
resonance in the contourLm − Cm.

Let us pay an attention that expression (3) forms some
nonlinear surface in the phase space of initial system
(1). Now you can set a problem of creating the sliding
mode on that surface [Utkin, 1992]. Selecting a switch-
ing function in the form

s = bi−Kx1 + x3

1
,



and differentiating it on the system trajectories we ob-
tain

ṡ = −bR
L
i− 1

L
x1+

b

L
e+(3x2

1
−K)(−αx1−ωx2+bi).

As you can see if

e = −Esigns

then

sṡ < 0

at enough large value ofE. So a sliding motion arises
in the surfaces = 0. In this case the closed loop
system has the desired features and the design goal is
reached in such a way. This control algorithm can be
considered as a basic solution of the problem.

Now let us examine the control problem for the
linearized magnetostrictive transformer when incom-
plete information of the system variables is available.
More exactly, it is assumed that system parameters
(L, R, Cm, Lm, Rm) are known and the electric cur-
rent i is measurable. The solution of the problem in
these conditions is well known. That is an application
of the full order or reduced order state observer. For ex-
ample in the given situation a full order state observer
has a form
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= û;
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(6)

where symbol ”̂ ” denotes an estimate of the variable.
It is obvious that convergence of the estimates can be
always managed by an appropriate selection of the
coefficientsk1, k2. In particular if k1 > 0, k2 > 0
then trivial solution of the corresponding homogeneous
differential system is asymptotically stable.

The computer simulations illustrate ability to work and
some features of the proposed algorithm. The follow-
ing parameters of equivalent electric circuit are used for
simulation:

L = 0.36mH, R = 2Ω, Lm = 10.8µH,

Cm = 4.823µF, Rm = 150Ω.

(a) i

A

(b) im

A

(c) im

A

t, s

Figure 1. Simulation results for the closed loop system when mod-

ulated by a low frequency ((a) is an electric currenti; (b) is an equiv-

alent of the mechanical shiftim; (c) is the same when doubled me-

chanical load).
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Figure 2. Simulation results for the control system with asymptotic

state observer.

The voltage of a DC supply is300V . So the con-
trol parameterE = 150V . The simulation results for
the closed loop system when modulated by a low fre-
quency according to the expression75+25 cos 628t are
depicted in the Fig.1. The conditions of the test include
a variation of the equivalent mechanical load in double
the above denoted parameterRm.
Figure 2 shows a simulation of the control system
with asymptotic state observer at the conditions of
the previous test. The state observer demonstrates a
good convergence to the true variables. But it is only
possible at an exact correlation between parameters
of observer and the plant. However, in practice this
situation does not take place as a rule. The mechanical
parameters determined by a geometry and the features
of material are practically constant and can be tuned.
At the same time the electrical parameters especially



the inductanceL can vary in several times of the
magnitude since the magnetostrictive vibrator presents
a nonlinear system as it was mentioned before. Nev-
ertheless a sliding mode observer is useful in these
conditions.

3 Sliding Mode Control of Nonlinear Magne-
tostrictive Vibrator

Let us consider a nonlinear model of the magnetostric-
tive transformer taking into account a nonlinearity of
electric inductanceL. In this case the polarized vi-
brator is described by the following system in terms of
equivalent electric circuit [Syrkin, 1972], [Syrkin et al.,
1970]
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whereψ = ψ(i) is a nonlinear and monotonic function.
Now we would like a closed loop system to be similar
to the linearized one examined in the previous section.
As before it is assumed that currenti is measured
and parametersCm, Lm, Rm describing mechanical
properties of the magnetostrictive vibrator are known.

Making note that

dψ

dt
= L

di

dt
, where L = L(i)

and denoting 1

Rm

= g we can rewrite system (7) in the
form of (1) as







































L
di

dt
= −Ri− u+ e;

Cm

du

dt
= i− gu− im;

Lm

dim

dt
= u.

(8)

We also suppose thatinfi L = L0, whereL0 > 0 is
well defined value.

Let us propose an observer
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and control algorithm

e = −Esigns, s = ı̂−Mz − f(û),

f(û) =
(

g + a
(

1 − û2

Uz

2

))

û,
(10)

where symbolŝ and¯ denote an estimate and an error
of the variable respectively.

Let L̂ < L0 theninfi L̄ > 0 whereL̄ = L − L̂. Sub-
tracting the first equation of (9) from the first one of (8)
we obtain

L̂
dı̄

dt
= −Rı̄− ū− v − L̄

di

dt
. (11)

Thus, we can set a hierarchy sliding mode control prob-
lem [Utkin, 1992]. Here the sliding surfaces are

s1 = ı̄ = 0 s2 = ı̂−Mz − f = 0 (12)

and controls arev ande. According to the hierarchy
control procedure [Utkin, 1992] let the sliding mode
appear on the surfaces1 = 0 first and then on the
surfaces2 = 0. Considering (11) and calculating an
equivalent control from the equationṡ1 = 0 we get

veq = −ū− L̄
di

dt
. (13)

Making notice that in sliding mode

ı̂ = i ⇒ dı̂

dt
=
di

dt

and taking (13) into account we can define an equiva-
lent controleeq from the equatioṅs2 = 0 as

eeq = Ri+u− ML

µ+ML̄
(ū+z)+

Lµ

µ+ML̄

df

dt
. (14)



Substitution ofeeq into the (13) in consideration of (8)
gives

veq = −ū+
ML̄

µ+ML̄
(ū+ z) − µL̄

µ+ML̄

df

dt
. (15)

Then

µ
dz

dt
= − µ

µ+ML̄
(ū+ z) − µL̄

µ+ML̄

df

dt
. (16)

Thus denotingµ+ML̄ = τ we get

τ
dz

dt
= −(ū+ z) − L̄

df

dt
. (17)

In sliding mode the error system takes a form
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Considering the homogeneous system
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we can find that trivial solution is asymtotically stable
whenM > 0. It follows that perturbed system (18) is
also stable. At the same time according to the equation
s2 = 0, ı̂−Mz = f(û) is obtained. Then
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and finally a closed loop system can be written as
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Simulation results illustrate some features of the non-
linear magnetostrictive vibrator supplied with the pro-
posed algorithm. Figure 3 shows the low frequency
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Figure 3. Simulation of the closed loop system for nonlinear mag-

netostrictive vibrator when modulated by a low frequency ((a) is an

electric currenti; (b) is an equivalent of the mechanical shiftim; (c)

is the same when doubled mechanical load).
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Figure 4. Simulation of the control system with sliding mode ob-

server.

modulation at the test conditions of the linearized
model. The ferrite nonlinearity is approximated by an
expression

i =
1

Lf

(ψ + nψ3),

whereLf = 3.4mH, n = 0.02. The next Figure 4 de-
picts equivalent electric values of the mechanical speed
u and its estimatêu.

4 Conclusion
In this paper a sliding mode approach is applied to

control of mechanical oscillations of a magnetostric-
tive vibrator. The solution of the control problem is



reached by selection of a nonlinear sliding surface so
that a stable limit cycle appears in the state space of me-
chanical variables. Application of an asymptotic state
observer for estimation of unmeasured variables does
not ruin sliding motion and makes an effective sliding
mode control possible. But it is unacceptable in nonlin-
ear situation. As it was shown by theoretic analysis and
computer simulation, a good remedy is sliding mode
observer which permits not only to save the main prop-
erties of basic algorithm but to increase the robustness
as well. Thereby, a deterministic controller for magne-
tostrictive vibrator is presented which allows to adjust
the mechanical oscillations in arbitrary manner.

Acknowledgements
This work was supported in part by the Russian Min-

istry of Science and Education under the project No.
01.2.006 06018

References
Syrkin, L. N. (1972). Piezomagnetic ceramics. En-

ergiya, Leningrad.
Syrkin, L. N. and Popov, S. N. (1970). Nonlinearity of

electromechanical and mechanical propeties of ferro-
electrics.Journ. Phys. Soc. Japan, Vol.28.

Donskoi, A. V., Keller, O. K. and Kratysh, G. S. (1982).
Ultrasonic electrotechnological plants. Energoizdat,
Leningrad.

Utkin, V. I. (1992). Sliding modes in control and opti-
mization. Springer-Verlag, Berlin.

Bondarev, A. G., Bondarev, S. A., Kostylyova, N. V.
and Utkin, V. I. (1985). Sliding modes in systems
with asymptotic state observers.Automation and Re-
mote Control, No.9.

Kamke, E. (1959).Differentialgleichungen losungsme-
toden und losungen. Leipzig.


