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Asymptotical Symmetrization of Hamilton Systems
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Abstract— We discuss a new algorithms of calcula-
tions of Hamiltonian normal form. A normal form of a
Hamilton system has two main properties: a) Tailor ex-
pansion of the normal form has the simplest form; b) its
linear part commutates with a nonlinear one. Property
a is used for the normalization procedure. Property b)
is used to build asymptotic solutions. For this purpose,
instead of the normal form we define symmetrical form:
a form satisfying property b). Symmetrization algorithm
is reduced to sequential calculations of the quadrature
in the approximation of each order and is essentially
simpler than all the classical normalization procedures.
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tions

I. A normal form of a Hamilton system [2].

To simplify our reasoning, we shall limit ourselves
by two degrees of freedom, although all the conclusions
are extended to the case of finite degrees of freedom.

Let (q,p) qef (¢1,92,p1,p2): be dependent variables,
H = H(q,p): be Hamilton function of Hamilton system

where the dot means d/dt. Let q =p = 0: be a
fixed point of system (1) and function H = H(q,p):
in it be analytical. Then function H can be represented
as an expansion in powers of ¢,p which starts with
quadratic terms while power expansions of the right
parts of system (1) start with linear members. Let R
be a matrix of a linear part of system (1). Eigenvalues
A1,..., A4 of matrix R are split into pairs Aj o = —Aj,
j = 1,2:. By means of a canonic linear variable change:
(q,p)* = B(x,y)*, where * means transposition, Matrix
R can be reduced to Jordan complex-valued normal form,
in which eigenvalues Ag,..., Aq: are located diagonally.
Then: H(q,p) = f[(x, y). Let the canonic linear
complex variable change:

(x,¥) = (u,v) + N(u,v), (2)

def .
where N = (Ny,...,Ny), Nj(u,v) are power series
without constant and linear terms reduce Hamilton func-
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tion: H(x,y) to

h(u,v) = " hews, (3)
where w % (w1, ..., wq) def (u,v), s = (s1,-..,84),
s def wit .. wgt def ui*us?vi®vs®. Hamilton formal

function is called a complex normal form provided that:
1) the linear part matrix of the relevant Hamil-
ton system is of normal form with eigenvalues:
A1, A2, —A1, — A2, located diagonally
2) in expansion (3) there are only resonance terms
for which

(51— 83)A1 + (82 — 54)A2 = 0. (4)

[1] proves that for every system (1) there is a formal
change (2) which leads Hamilton function: H(q,p) to
a normal form (3), (4). In accordance with [4], if the
initial system (1) is real, there is a real normal form
which can be reduced to a complex normal form (3),
(4) by a standard linear change of coordinates.

Special cases of such a normal form are those of
Birkhoff [3] and of Cherry and Gustavson. Birkhoff [3]
analyzed a case with all eigenvalues incommensurable,
so equation (4) in which sq,...,s4 are integers, has
a trivial solution s; — s3 = s9 — s4 = 0. In this case
expansion (4) is a series of products: (uqv1)%! (ugvs)s?
and every such a product is a formal integral of the
relevant Hamilton system. Cherry considered a case
where eigenvalues A\; and Ao are different. Gustavson
came to the same result. Belitskii suggested an expanded
normal form in which Jordan boxes of matrix linear
part are used to further reduce the number of nonlinear
members. A more detailed review of other expanded
normal forms is given in [4],[2].

II. Methods of normal form computation

Computation algorithms of canonical normalizing
transformations (2) and normal forms (3), (4) are classi-
fied into three groups according to the form of canonical
transformation. There are now three forms of canonical
transformations: A. by means of a generating function;
B. by means of Lie series; C. parametric. Thus, we
will refer algorithms to one of the three groups above
depending on the canonical transformation used.



Description of algorithms.

A. The generating function to compute a normal form
was first introduced by Jacobi [3]-[8]. According to
this method, vector series: N(u,Vv) in nonlinear formal
transformation is computed using generating function
g(x,v) = z1v1 + ... + x2v3 + ... of mixed variables
x = (z1,22) Vv = (v1,v2), while

yjzag/aa:j:vj+...,j:1,2.

If the generating series g(x,v) is computed, it is nec-
essary to express x; with the help of u,v to obtain
transformation (2), thus to invert power series for u;.
This results in a highly complicated computation, how-
ever always applicable (with no matrix R limitations).
B. For normalizing with the help of Lie series, scal-
ing q=ceq, p=cp’ and x=ex', y=¢y/, t' =
€2t, w = ew’ is usually applied in which case H(x,y):
Hamiltonian, h(w): normal form, and Lie G(w) gen-
erator can be considered a series on a small parameter
E~ o0 -~ o0
H(x',y') = 3 e"Hp(x',y'), h(w') = 3 e*Gr(w')
The normaliz?ng0 coordinate tramsformation]c a(1]1d the nor-

mal form h(w’'): can be found in the form of Lie
series \
7 =w +e{w G} + 5{{w',G},G} + ...,

h(w') = H(wW')+e{H,G}+ 5 {{H,G},G}+..., where
curly brackets mean Puasson brackets.

Functions hj and Gg_; in their turn are computed
successively following k growth with the help of a
homologous equations

hi(w) = {Ho(W), Gi-1(W)} + Mi(w),  (6)

There are two algorithms to solve homologous equations
(6), and consequently two normalization algorithms.

B.1. Equation (6) is computed as a system of linear
equations for form hy Gj_1 coefficients. This method
was developed by Hori and Deprit. Similar to the
previous method, there are no R matrix limitations in
this method either.

B.2. Zhuravlev [8], [6] proposed to solve the homolo-
gous equation by means of integration. If matrix R is di-
agonalizable {Hg,Gj_1} = dGk_1/dt, Puasson bracket
equals to the derivative of G with respect to ¢t along
the solution of system q = 0Hy/0p, p = —0H,/0q.
Therefore, hy is an average of Mj function along the

solutions of the system, and function minus Gg_p is
t

a constant in f M, dt integral. Thus, for the first
0

two approximations, functions My(w) are as follows
M, = H,,
My = Hy + {H1,G1} + 3{{Ho, G1},G1.

C. Petrov [9], [10] proposed a parametrical form of
canonical transformation
(a,p) = (Q,P). The general result concerning the
parametrization of canonical change of variables can be
stated as follows [10]

Theorem. Suppose that transformation
(a,p) — (Q,P) of variables is represented in the
parametric form

1
=x+ -V,

1
_\IJya Q 2

Q=x-3

p 2 X 2 X-

where U(t,x,y) is a twice continuously differentiable
function in a neighborhood of the point (tg,X0,Y0)
Then the following assertions are valid.

1) The Jacobians of two transformations (x,y) —
(a,p) and (x,y) — (Q,P) identically coincide:

d(q,p)  0(Q,P) X
Axy) ~ dy) T EEY) (®)

2) For J(t,x,y) # 0, there exists a neighborhood of
the point (tg,Xo,Yyo) in which the transformation (2)
(a,p) — (Q,P) brings a Hamiltonian H(t,q,p) to
Hamiltonian
H(t,Q,P) such that

\Ilt(taxa y) + H(t7 q, p) = -H(ta QaP)a

where the arguments q,p and Q,P of the Hamiltonians
H and H can be expressed via parameters x and 'y
by formulas (7).

If a Hamiltonian system is autonomous, then the
function
®(q,p) = ¥ (3(a+Q(a,p)),3 (P+P(q,p))) is a
generating function, which Poincare introduced [13].
Thus, function ¥(¢,x,y) can be called parametrical
Poincare function.

Function ¥(x,y) and parametric canonical normaliz-
ing transformation of variables in the form of (7) is used
instead of G generator in the algorithm of constructing
a normal form [11], [12]. The first two approximations
for G and ¥ are the same, while the ones that follow
are different. To simplify the computation, it is possible
to use integration similar to the method described in
B.2.

Methods B.2 and C simplify the normal form com-
putation significantly. In addition to this, there is a
notion of Hamiltonian symmetrization introduced which
expands the notion of the normal form. This is done
using property of commutation of perturbed and non-
perturbed parts only.



III. Hamilton symmetric form [6]

Definition. Perturbed Hamiltonian Hy + F: is a
symmetric form if perturbation F( ,q, P, &) Is the first
integral of non-perturbed part at F | {Hy,F}=0.

There are three advantages of this definition over the
previous ones [3], [7]. They are as follows:

1. To solve the whole system of Hamilton equations
in its symmetrical form, a superposition of solutions of
a non-perturbed system and a solution of an autonomous
Hamiltonian, which equals F(0,q,p,¢), is used.

2. The invariant character of the definition allows sym-
metrization both without a preliminary simplification of a
non-perturbed part and specification of autonomous/non-
autonomous, resonance/non-resonance cases.

3. Asymptotic of a normal form and transformation
of variables which lead Hamiltonian to its normal form
can be found by consequent quadratures of the functions
known at every step (algorithms II.2 and III).

IV. Algorithm of symmetrization with the help of
generating Hamiltonian [6]

Let the Hamiltonian under consideration has the fol-
lowing form

H(q,p,&') :HO(qap)+F(q7pa5)a
F=e¢F +2F+...,

where Hy and F' are non-perturbed and perturbed parts
of the Hamiltonian, € is small parameter.

To construct generating Hamiltonian G = Gy +
€2Ga+,... (Lee generator) and symmetrical part F =
eFy + &2 F2+, .. we should
1. find solution q(¢,Q,P),
perturbed system;

p(t,Q,P) of a non-

2. find functions: my(t,Q,P) =
Mi(a(t,Q,P),p(t,Q,P)), k=1,2,..., where
My = Fi, M, = F, +{Fy,Gi} + 3{{Ho,G1},G:},
({f,g} are Poisson brackets).

t —
3. Using identity of [ mg(t, Q,P)dt = tF(Q,P) +
0

Gr(Q,P) + f(t) we find asymptotics coefficients of the
symmetrized part Fj(Q,P) and generator Gr(Q,P)
t

from the quadrature [ mpg(t, Q,P)dt. In particular, Hy

is a quadratic normal Oform, the symmetrization algorithm
equals II.3 normal form algorithm. However, even in
this classical case, the algorithm is significantly less
complicated than classical algorithms I. and II.1. This
can be demonstrated by the following examples.

Example 1. Zhuravlev V.F. [6]. Let Hamiltonian
1
be a rational function [6] H = i(p2 +4¢%) + 1—fq2'

According to the algorithm, we find

1. solution of the non-perturbed systems (¢ = 0):
q= Qcost+ Psint, p=—Qsint + Pcost

2. function m4(¢t,Q,P) = 1/(1 + Q?*cos®*t +
2QP costsint + P?sin’t)

t
3. From quadrature [ my(¢,Q,P)dt we find the
0

first coefficients of expansions of symmetric form

F, = 1/4/1+ Q%>+ P? and Lee generator G; =

—Fy[arctan(Fy P/Q) — arctan(P/Q)].

If we have used classical algorithms, we could have
obtained only a few Taylor expansion terms of symmetric
form 1(Q?+ P?) —l—e:/\/l—l-Q2—|—P2 ;(1—e)(Q*+
P?)+3e(Q*+P?)*— Ze(Q*+P?)* + ] and it require
many more calculations.

Example 2 [2]. Let two bodies of masses m; and
mgy (my > mg) travel in the same plane along circular
orbits around their center of mass. The motion of
the third body, whose mass is negligible and which
is attracted by the first two bodies, is described by
the plane circular restricted three-body problem. In
the rotating system of coordinates, this problem is an
autonomous Hamiltonian system and possesses a tri-
angular fixed point. In order to analyze the stability
of this point, the normal form of the Hamiltonian
function is calculated. The Hamiltonian function has
the Taylor expansion H = Hy + Fy + F5 + ..., In ac-
cording symmetrization algorithm we obtained normal
forms [2] for the two resonance cases w; = 2wy =
2/v5, (u= (45 —+/1833)/90) w; = 3wy = 3/4/10,

= (15 — +/213) /30):

H = (2r1 — r2)/V5 + roy/rilarsin(pr + 2¢2) +
B1 cos(p1 + 2¢2)],

H = (r; — 3r3)/V/10 —|— roy/T1T2[a2 sin(p1 + 3p2) +
B2 cos(ip1 + 3p2)] + 207} + cr1m172 + co2r3,

Qj; = +/2rj/wjsing;, P; = ,/2rjwjcosy;, j=1,2.

All coefficients were calculated exactly [2].

In the case of equal frequencies w; = ws =
1/v/2, p=(9—+/69)/18 normal form of third order

was calculated exactly. Coefficient 59/864 ~ 0.068287
differs from the earlier calculated value 0.603 [14] by
an order of magnitude. In this problem, symmetric
forms are identical to classical normal forms.

V. Algorithm of symmetrization with the help of
parametric Poincare function [11,12]

1. Find solution of non-perturbed system
Q(t, Qa P)a p(ta Qa P)
2. Find functions: M; = Fj,
My = Fy + {F1, 91} + 2{{Ho, 1}, 91},
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Fig. 1. Heavy point on the spring for resonance

mk(ta Q, P) = Mk(t’ Q(t, Q7 P)’ P(t, Q, P))

3. Find asymptotic coefficients of the symmetric form
Fy(t,Q,P) and Poincare function ¥y (¢, Q,P) from the
quadrature

fti) mk(t7 Qa P)dt = (t - tO)Fk(th Q7 P)+

\Ilk(t07QaP) - \pk(taq(t),p(t))’ k=1,2,...

This algorithm also works in the non-autonomous
case.

Example 3. We consider three dimensional oscil-
lations of a heavy point on the spring for resonance
1:1:2 (fig 1.) [15]. The Hamiltonian function H has
the following Taylor expansion

H = Hy + F1,
Ho = 3(u? + 0% + w? + 2% + y* + 427),
Fy = 32(2* 4+ 9?),

where z,y,z are coordinates of the heavy point.
According second algorithm we find

1. solution of the non-perturbed systems z =
X cost+Usint, y =Y cost+Vsint, z= Zcos2t+
(W/2)sin2t

2. function my(t) = Fy(z(¢),y(t), 2(t) and

3. from quadrature fot m(t)dt we find first coefficients
of expansions of symmetric form (identical normal form)
Fy=3Z(X*+Y?) - 2Z(U?+ V) + 3W(XU+YV),
and Poincare function ¥; = 2Z(XU + YV) +
2W(U2+ V) + BW(X2+Y?).

The solution of the normal form equations in Birkhoff
variables z; = u+ix, 2o =v+iy, 23= w/\/§+iz\/§
is obtained, if we substitute in z; = Zje®, 2z, =
Zyett, 23 = Z3e?* solutions Zy,Z, Zs of the fol-
lowing system of differential equations

Zy = —BT\/EZZS, Zy = —P’Tﬁzzzf;,
Zy = ¥2(23 + Z3).

For the following initial data z(0) = &14, #(0)

0, 4(0) = 0, §(0) = 28, 2(0) = 8, 2(0) = 0

0 K1, &1 €1, g9 1 there is a simple asymp-
totic solution which describes a periodic process of
alternate transformation of vertical oscillations energy
into horizontal oscillations energy. The frequency of
oscillations along the Z axis (fig. la) equals approxi-
mately 2, while these oscillations amplitude: equals the
sum of soliton type functions, which are distant from
each other by T-period [16], [17] (fig. la)

Z
% _ |th?:1—5(t —T/2)+
36 4 32
th—((t-37T/2)|-1, T=—In——.
=3I/ -1 T=ghars

The frequency of horizontal oscillations is close to 1,
while its amplitude equals R(t) (fig. 1b)

%{? = sech?:l—é(t -T/2)+ sech?:l—é(t —3T/2).
Following the law of energy conservation RZ(t) +
47%(t) = 46%. The trajectory of the point move-
ment in the configuration space, when d = 0.1, 1 =
0.1, e = 0.03 is presented in fig.1. Fig. 1la and
Ib present numerically found dependencies z(t) and
r(t) = /2% 4+ y2. As is clearly seen from the figures,
they are modulated with a high degree of accuracy by
the analytically found solitons with T-period.

As is seen from fig. 1lc, the rotation angle of
oscillation plane 6 remains practically unchanged when
the vertical oscillation amplitude is low. However,
it changes drastically when the horizontal oscillations
amplitude is low. Therefore, the oscillations projected on
the horizontal plane are presented as intercepts located at
equal angles from each other. The first oscillation plane
is located at the angle of 6; = 24° to axis x, while the
consequent angles are terms of the arithmetic progression
02 =01 +33° =57°, 63 =02+ 33°=90°,....

Example 4. We consider nonautonomous system:
Lagrange top on vibration base [6]. Hamiltonian has
the form

H = Hy + F(t,z,y,u,v),

Hy = 3(2? + y> + u? + v?) — zv + yu,
F=-§(zv—yu)+

(2% +y?) (26 — e (1 + 2k cos 2t)) ,

where z,y are coordinates, u,v are impulses, Hy and F'
are non-perturbed and perturbed parts correspondently.

According second algorithm
1. we solve linear non-perturbed system
t=y+u, yYy=-c+u,
U=-x+v, V=-Y—u,
CB(to) = X, y(to) = Y, u(t()) = U, ’U(to) = V. The
solution has the form z = (X +V)+
1(X —V)cos2r + 1(Y + U)sin2r,



y=3Y -U)+ 3(Y +U)cos2r+
H(-X+V) sin27',
u=y—Y+U v=—-a+X+V, t=1+1.

2. Using substitution t,z,y,u,v — 7,X,Y, U,V we

find function m (to, 7, X,Y,U,V) =

F(t,z,y,u,v).

3. From quadrature ft

obtain normal form
Ft,X,Y,U,V)=6(YU - XV)+
(6-5)(X2+Y2+U?+V?) +
+1ek(—X2-Y2+ V24 U?)cos2t+
ek (YV +UX)sin2t

to,t —to,X YU V)dt/ we

and Poincare function

U (t,X,Y,U,V)=(6—¢/2)(UX +YV)—
(1/4)ek (YV +UX) cos 2t+
+(1/8)ek (3 (U* +V?) +5 (X*+Y?)) sin 2t.

We find the stability conditions of periodic solution.
We have proved that it is minimum point of the
function F(0,X,Y,U,V). Matrix of the square form
F(0,X,Y,U,V) has following eigenvalues:

)\1—)\2_6—55‘1‘
)\3 4—(5——8—— (52

(62 + €2k2),
e2k?).

The quadratic form F has minimum and vertical equi-
librium position is stable if all eigenvalues are posi-
tive. It follows that stability condition has the form
(26 —€)® > 62 + £2k2.

Example 5. We apply this method to the investigation
of the spherical pendulum with 3-dimensional vibration
of the suspension point [18]. Hamiltonian in dimen-
sionless variables has the form H(0,¢,u,v) = Hy+ ®,

(15 3y
u —cos@ |,
2 2sin? 0

W = a3 cos 0 + sin 0(ay cos ¢ + ag sin @),

Ho =Wy, @

wz;
ai(t'):ﬁ}, t =wt, e= lwiz

where 6 and ¢ are spherical coordinates of the heavy
point, v and v are impulses, z;, ¢ = 1,2,3 are Cartesian
coordinates of the suspension point, [ is length of
pendulum, w is oscillation frequency of the suspension
point, Wy is the second derivation of W with respect
to dimensionless time ¢'.

The potential Hy = Wy of inertial forces is a non-
perturbed Hamiltonian and sum of kinetic energy and
potential energy of gravity force ® is perturbation. It
is unusual way in normal form theory.

According second algorithm we find
1. solution of non-perturbed system

0="00, ©=po, u=ug— Wy, v =19 — Wy

. 1 (’U — Wt’ )2
2. function m; = =(u — Wyg)? + —-22 — cosf
1= 5 o) 2sin’ 0 0
and
3. from quadrature we obtain normal form
(o, 6 ) = 5(1 B S U ))
) ) y U0, Vo) = a - 25 ’
05 %0, Yo, Uo, Vo B Ug 2sm200 05 %0
1 <W32, >
U(90,¢0)2—<W,9> .;f—coseg,
2sin” 6

< f>= %Of f(t)dt

We find the stability conditions of periodic solution by
Lagrange theorem. It is minimum point of the function
U.

VII. Conclusions
The examples analyzed clearly demonstrate significant
advantages of symmetrization method over the other
existing methods used to find asymptotic solutions.

Example 1 demonstrates that applying the new method
the whole Taylor series of the first asymptotic approxi-
mation can be found by unique integration only, whereas
standard methods allow finding only its first terms.

Example 2 shows the efficiency of the normal form
computation in resonance cases. The exact normal form
coefficients are found, and this disproved one of the
previously obtained results.

Example 3 is a new analytical solution of the classical
task of non-linear oscillations of the swinging spring in
frequency resonance. The solution proposed does not
only give a qualitative explanation of this complicated
phenomenon of energy transformation from one degree of
liberty to another, but also provides an exact quantitative
description of these processes.

Example 4 of Lagrange top demonstrates the way
to get the Hamiltonian symmetrical form by a unique
integration without transformation of the lineal part of
the system to its diagonal kind. With the help of thus
obtained symmetric form, it is easy to get a periodic
solution and its stability condition.

Example 5 gives an asymptotic solution to a problem
of the spherical pendulum oscillations with periodic 3-d
vibrations of the point of suspension, which solution is
also achieved by a unique integration. In this example,
the potential energy of inertial forces is taken as a
non-perturbed part, whereas in the classical method,
this energy is considered a perturbation. To sum it
all up, it is worth mentioning that the symmetric form
(as well as the normal form) is a highly convenient
tool which does not only help to find additional system
integrals and periodic solutions but also to analyze their
stability.
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