PHYSCON 2009, Catania, Italy, September, 1-September, 4 2009

GUIDANCE AND CONTROL OF A LAND-SURVEY
SPACECRAFT WITH A SMOOTH CONJUGATION
OF BOUNDARY CONDITIONS

Yevgeny Somov Sergey Butyrin Sergey Somov
Dep. Dynamics and Control Dep. Dynamics and Control Dep. Dynamics and Control
Samara Scientific Center Samara Scientific Center Samara Scientific Center
Russian Academy of Scienses  Russian Academy of Scienses Russian Academy of Scienses
Russia Russia Russia
e_somov@mail.ru butyrinsa@mail.ru s_.somov@mail.ru
Abstract 2 MATHEMATICAL MODELS

New statement of the optimization problem by the We introduce the inertial reference frame (IRE)
spacecraft (SC) rotation maneuver with the general (OgX.Y.Z.), the geodesic Greenwich reference frame
boundary conditions is considered. Methods for exact (GRF) E, (OgX“Y°Z®) which is rotated with respect
numeric and approximate analytic solution of the stated to the IRF by angular rate vectar;, = w. and the geo-
problem, and also some results on synthesis of the SCdesic horizon reference frame (HRE} (C XhYh7Zh)
guidance laws with a smooth conjugation of boundary with origin in a pointC' and ellipsoidal geodesic co-
conditions are presented. Methods and results on theordinates altitude ., latitude B. and longitudeL..

SC robust pulse-width and digital attitude control are There are standard defined the body reference frame
also represented. (BRF) B (Ozxyz) with origin in the SC mass cen-

ter O, the orbit reference frame (ORIE) (Ox°y°z°),

the optical telescope (sensor) reference frame (IRF)
Key words (Oz%y°2°) and the image field reference frame (FRF)
spacecraft, guidance, control F (0;z'y’z") with origin in centerO, of the tele-
scope focal plang’O;z‘. The BRF attitude with re-
spect to the IRF is defined by quaternimﬁ =A =

1 INTRODUCTION _ (Ao, A), A={A1, A2, A3}, and with respect to the ORF
The dynamic requirements to the attitude control sys- _ by vector-columnp = {¢;,i = 1,2,3=1 + 3} of

tems (ACSs) for remote sensing spacecraft (SC) are: Euler-Krylov angless;. Let us vectorso (1), r(¢) and

* guidance the telescope’s line-of-sight to a prede- v(t) are standard denotations of the SC body vector an-
termined part of the Earth surface with the scan in gular rate, the SC mass center’s position and progres-

designated direction; sive velocity with respect to the IRF. Further the sym-
e stabilization of animage motion at the onboard op- hols(-, -), x, { - }, [ -] for vectors andax], (-)* for ma-
tical telescope focal plane. trixes are conventional denotations. The GMC'’s angu-

Moreover, these requirements are expressed by rapidar momentum (AM) vectof{ have the fornH(3) =
angular manoeuvering and spatial compensative mo-h, > h,(3,), thereh, is constant own AM value for
tion with a variable vector of angular rate. Increased each GD #pp=1 - m with the GD’'s AM unith,(53,)
requirements to such information satellites have mo- and vector-columiB = {3, }. Within precession theory
tivated intensive development of the gyro moment of the control moment gyros, for a fixed position of the
clusters (GMCs) based on excessive number of gy- SC flexible solar array panels (SAPs) with some sim-
rodines (GDs) — single-gimbal control moment gy- plifying assumptions and fdre T, = [to, +00) a SC
ros. Mathematical aspects of the SC nonlinear gyro- angular motion model is appeared as follows
moment control were represented in a number of re-

searc_h works (Junklr_15 and_ Turner, 192?6; Hoelscher and A = Aow/2; A° i, 4} = {F*,F7}, 1)
Vadali, 1994) et al., including authors’ papers (Somov

et al, 1999; Somo\et al, 2005; Somowet al., 2007).

The paper suggests new results on guidance, pulseF“ = M —wxG+M*+Mg(t, A, w)+Q°(w, q,q);
width and digital robust attitude control of the agile

land-survey spacecraft. F? = {—((07/m)Q]4; + (21)?q;) + Q}(w, 45, 4))};
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wherew = {w;}, q = {g;,j = 1+ n}; vector

Me presents the orientation engine unit (OEU) torques,

vector M4(-) is an external torque disturbance, and
Q°(), Qj(-) are nonlinear continuous functions.

The OEU is based on six thermal-catalytic jet engines

(JEs) with a pulse-width modulation (PWM) of the JE
thrust. For the PWM of normalized commangd by
the thrust inclusionP™ (¢, 7d) € {0,1}, r € Ny
[0,1,2,...) by each JE, namely

1 teftete+ 1)
0 t€ty+71dt41),

)

rab@ the modulation characteristic is described by the
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Taking into account a transport deldy’, dynamic
processes on the normalized thri#t(¢) for each JE
are presented by the differential equati@f P; +
Py Pt — T4, 74) with the initial condition
P?(ty) = 0, where a time constarif? accepts two
valuesT’{ or T according to the ratio:

ifP" =1thenT? = Tﬂ else T = T2,

For everyone j-th JB;, j = 1+6 there is compared
the vectorP;(t) = P™ P} (t) p, of the current jet
thrust with fixed unip; beginning ina poinO;i, where
P™ is the current maximal thrust value, identical for all
JEs. The poinO‘} arrangement is defined by a radius-
vector p;. The OEU control torques concerning axes
Oz, Oy andOz are created by JES’ pairs. Logic of the
commandr;, formation for inclusion everyone j-th JE
takes into account a sign of a command signalon
channel = z, y, z and is described by such algorithm:
Tir = |Vir|; Sir = sign v, © = x,y, z, and then, for
example fori = z :

if Spr > 0then (71, =Tyr&To, = 0)
else (11, = 0&Tor = 7).

Formed by the OEU the control torque vechd® is
calculated by formuld® = M = - pf x P;.

At matrix Ay, (3) = 0h(8)/03 the GMC torque vec-
tor M&(3, ) is presented as follows:

ME = —H = —h,Ay(B)uf; B=ut, (4)

us={ug}, uf(t) = a® Zh[Sat(Qutr(u),, d?), a;"), T,,]
with constants:®, d?, ;" and a control period’, =
trr1 — tk, k € Np; discrete functionmzk = uf(tr)
are outputs of digital nonlinear control law (CL), and
functionsSat(x, a) and Qutr(z,a) are general-usage
ones, while the holder model with the peri@d is
SUCh:y(f) = Zh[Ik,Tu] =x Vt € [tk,tk+1).

At given the SC body angular programmed motion
AP(t), wP(t), eP(t)=wP(t) with respect to the IREg
during time intervat € T = [t;,t¢] C Ty, ts = ti + T,
and for forming the vector of corresponding continuous
control torqueMe (3(t), 3(t)) @) the vector-columns
B = {6,} andB = {,} must be component-wise
module restricted:

1Bp(t)] < Uy <7, |Bp(H)] < Vg, EET,  (5)

where valuesi, andv, are constant.
Collinear pair 2gA
of two GDs was e
named asScissored By ot Bra
Pair Ensemble
(SPE) into well-
known original
work J.W. Cren-
shaw (1973). A ‘
Redundant multi- *+",> h,)
ply scheme, based %: ™
on six gyrodines in The scherm@-SPE
the form of three
collinear GD’s
pairs, was named & SPE Fig.[] presents a simplest
arrangement of this scheme into a canonical orthogo-
nal gyroscopic basi®z8ysz¢. By a slope of the GD
pairs suspension axes in this basis it is possible to
change essentially a form of the AM variation domain
S at any direction. Based on four gyrodines the
minimal redundant schem&SPE is easily obtained
from the 3-SPE scheme — without third pair (GD
#5 and GD #6). In park state of above schemes one
can have a vector of summary normed GMC’s AM

h(B) = > h,(8,) = 0.

Figure 1.

3 THE PROBLEM STATEMENT

After separating a SC from buster and disclosing the
SAPs at any time momeint= t, the angular rate vec-
tor accepts a value(ty) € S,, from the bounded con-
vex domainS,,. Let a constant command angular rate
vectorw® = {wf} is given. First problem consists
in synthesis of the OEU pulse-width control so that
components, should be reached with given accuracy
lw;(t) — wf| < 6, Vt > to + T for some acceptable
durationT™ of damping mode.

At initial the SC damping, guidance on the Sun and
on the Earth, signals of a block of angular rate sen-
sors (ARSs) and the GPS/GLONASS navigation sig-
nals with periodl;; = 1s are applied for forming the
OEU pulse-width control with period’; = 4s. The
model of the ARS block for measuring the SC body
rate vector represents by set of three same channels
for measurement;(t),: = x,y,z, moreover model
of each its channel takes into account own dynamical
properties, a noise and systematic errors, a time sam-
pling, quantization and limit levels. Because of the SC
small measuring base at the SC attitude determination



by the GPS/GLONASS navigation signals, the accu- functions, proceed from principle requirement: optical
racy is poor 0°.5. That accuracy is enough for ini- image of the Earth given part must to move by desired
tial the SC guidance on the Sun and on the Earth andway at focal plang’O,z* of the telescope.
for next the SC attitude stabilization into the ORF by Onboard algorithms are needed for the SC guidance at
the OEU during the gyrodine rotors’ spinup and initial a SRM taking into account the restrictiof$ (5) to vec-
preparing the SC attitude determination by strapdown tors 3(¢) and 3(t). Here for given time intervall',
inertial system (SIS) with astronomical correction. a problem consists in determination the explicit time
At the SC gyromoment attitude control, applied on- functionsA(t), w(t), (t) and&(t) for the boundary
board SIS is based on inertial gyro unit corrected by the conditions[(}),[(B) and also for given condition
fine fixed-head star trackers. Contemporary filtering
& alignment calibration algorithms give finally a fine
discrete estimating the SC angular coordinates by the
quaternionA; = A oAL, s € Ny, whereA; = A(ts)
andAj is a "noise-drift” digital quaternion, and amea- which presents requirements tesmooth conjugation
surement period, =t,1 — ¢, < T, is multiply with  of 3 SRM with guidance at next the SC's SCM.
respect to a control peric,. Ataland-survey SC lifetime up to 5 years its structure

For initial the SC guidance simultane,ously on the Sun jnertial and flexible characteristics are slowly changed
and on the Earth and also for the SC'’s telescope guid-j, \yide boundaries, the SAPs from time to time are ro-

ance on given part of the Earth surface by next scanningateq with respect to the SC body on angland the

in designated direction, the SC’s spatial rotation ma- communication antennas are pointing for information

neuver (SRM) is needed. Into the IRF the SC's SRMis ggpyice. Therefore inertial matriA® and partial fre-

described by kinematic relations quencies?? of the SC structure are not complete cer-

tain. Problems consist in synthesis of the SC gyromo-

A(t) = %Aow(t); wt)=e(t); é(t)=v, (6) ment guidance laws at its both the SCM and the SRM,

and also in designing the GMC's robust digital control

lawuj = {u, } onthe quaternion values;” when the

SC structure characteristics are uncertain and its damp-

ing is very weak, decremeﬁ¥x5 -1073%in @)

E(tF) = ér = ef + wr X &, (11)

whereé(t) = e*(t) + w(t) x &(t), during given time
interval T, e.g.Vt € T, = [t¥,t}], tf =¥ + T,. The
optimization problem consists in determination of time
functionsA(¢), w(t), e(t) for the boundary conditions

__ 4P H __ 4P i
onleft (t = ) and right ¢ = t;) trajectory ends 4 Optimization of a Spatial Rotation Maneuver

A(t]) = Aj; w(t]) = wi; e(t])=ei; (7) Of course, optimizing one-axis motion is elementary
, problem which have analytic solution by Pontryagin’s
A(ty) = As w(tf) = wrs e(tf) =&t (8) maximum principle. In result, the SC optimal on index
(9 motion with respect to any axis is presented by
with optimization of the integral quadratic index the analytic functiorpy (t) in a class of the five degree
polynomials (splines) (Somov, 2008
Developed analytical approach is based on neces-
sary and sufficient condition for solvability of Darboux
problem. At general case the solution is presented as
Optimizing this functional is topologically equivalently ~ result of composition by three: (= 1+ 3) simultane-
to optimizing the most practice important functional ~ ously derived elementary rotations of embedded bases
E; about unitse; of Euler axes, which positions are
IR ) defined from the boundary conditior{g (7) ahdl (8) for
L=v=g ftf [v(7)[ dT = min, (10) initial spatial problem. For all 3 elementary rotations
with respect to units, the boundary conditions are
which have the clear physical sense: the mean value2nalytically assigned. Into the IRE; the quaternion

=3 ftt; (v(7),v(7)) dr = min. (9)

v of the "control” modulev(t) = |v(t)] — a mod-  A(t) is defined by the production
ule by derivative of the BRF acceleration vector dur-
ing process of the SC rotation maneuver with respect A(t) = Aj o A1 (t) o As(t) o As(t), (12)

to inertial reference frame,.

Principle problem gets up on the SC angular guidance
at a spatial course motion (SCM) when a space opto-where A (t) = (C(¢r(t)/2), S(pr(t)/2)er), C(a) =
electronic observation is executed at given time inter- cos o, S(a) =sinc, and functionsyy(t) present the
val, namelyt € T,, = [t/",¢}]. This problem consists elementary rotation angles in analytical form.
in determination of quaternioA(¢) by the SC BRFB Let the quaterniol™ = (A%, A*)=A; o As # 1 have
attitude with respect to the IRE;, angular rate vector  the Euler axis uniez = A*/S(¢*/2) by 3-rd elemen-
w(t), vectors of angular acceleratieiit) and its deriv-  tary rotation where angle* = 2 arccos(\). For ele-
ativeé(t) =e*(t) + w(t) x (t) in the form of explicit mentary rotations there are applied next the boundary



quaternion values: a class of the SC angular motions, were elaborated. De-
veloped analytical approach to the problem is based on

A () = A (1) = As(tP) = As(iP) = 1- approximate optimal motioj (12) with boundary con-
1(#) 1(t) 2(t7) 2(t) ’ (13) ditions [7), [8) and[(1]1). Here functionsy(t) are
As(t?) = 1; As(t}) = (C(]/2), esS(¢]/2)), selected in a class of splines by five and six degree,

moreover a module of a angular rgtg(t) in a position
transfer £ =3) may be limited. The technique is based
on the integral’s properties for the AM of the mechan-
ical system "SC+GMC” and allows to evaluate vectors
B(t), B(t), B(t) in analytical form for a preassigned
SC motionA(t), w(t), e(t), &(t) vVt € T,,.

wheregog = ¢* and1 is a single quaternion. Unit
e; of 1-st elementary rotation’s on Euler’s axis is se-
lected by simple algorithm (Somov, 2068 then unit
e =e3 x ey is defined. All vectorsvy(t) = i (t)es,
ex(t) = Pr(t)er andey(t) = Pr(tlex have analytic = ;) orthogonal canonical basir£yg -2, see Fig[TL,
presentations (Somov, 2008 Suggested approach , . o euerer

. . the GD’s AM units have next projections:
have large advantages with respect to rotations by stan-

dard Euler-Krylov angels (Somov, 2007). x1 = C1; 19 = Oy y1 = 515 Y2 = 53
For nonlinear problenj[6) £}9) Hamilton function is w3 = S3; w4 = Sy; 23 = (35 24 = Cy;
ys = Cs; yo = Co; 25 = S5; 26 = S,
H=-1(v,v) + L(vect(A o W, w) + (p,e) + (v,v)  WhereS, = sinf, andC;, = cosf3,. Then vector-
columnh(B) = {x,y,z} = {Xzp, Xy,, Lz, } and ma-

trix A =0h have the f
with associated quaternioli(t) = C,, o A(t), where fix An(B) = Oh/0p have the form

C, = (cy0, ¢y) is the normed quaternion (Branetz and

Shmyglevsky, 1973) with a vector patt, = {cy}- —y1—Yy2 23 2z 0 0
At the notationp = vect(A o ¥) = A oc, o A the Ap(B)=| 21 22 0 0 —25—2
associated differential system have the form 0 0 —=3—24 Ys Us

p(t)=A(t)oc, o A(t); 1= 7%p(t); v=—pn. (14) For 3-SPEscheme singular state is appeared when the
matrix GrammeG(8) = A (8)A}(3) loses its full
rang, e.g. wherc = det G(3) = 0. At introducing
the denotations

Ti2 = T1 + X2; T3g = T3+ T4; Y12 = Y1 + Y23

Yse = Ys T Y6; 234 = 23 + 245 256 = 25 + Z6;

7 t T
V(t):CE - Cw(t - tf) + %j;f’ (ft]p p(s)ds) dT7 jlg = Ilg/\/4 — y%2 ) f34 = $34/\/4 — Z§4;
T2 = Y12/\V/4 — 255 Use = Yse/\/4 — 226;
where vectorg:,, ¢, = {c,r} andc. = {c.;} must Zas = 234/ /4 — 2. 22, Fsg = 256/ e 2

be numerically defined taking into account the bound- - .
ary conditions[([7) and {8). Standard Newton iteration components of the GMC explicit vector tuning law

method was applied for numerical obtaining the "con-
trol” v(t) which is a strict optimal on indeX(9) for the £,(8) = {f1(B8), fr2(8), fo3(B)} =0 (15)
nonlinear optimization problem. Moreover analytical
solution of the "start” problem (initial point) was ap-
plied in the form of approximate optimal motion {12)

The optimality conditiordH/dv = —v + v = 0 give
the structure of optimal "control”

are applied fop = const, 0 < p < 1, in the form

and [IB) with the constant vectars, c,, andc.. Val- for(B) = Z12 = za + p (T12 T34 — 1);
ues of these constant vectors are numerically corrected fo2(B) = Us6 — J12 + p (Fs6 J12 — 1);
by an iteration procedure using a combine numerical fo3(B) = Z3a — Zs6 + p (234 256 — 1).

integration of direct[(6) and associat¢d](14) differen- - Analytical proof have been elaborated that vector tun-
tial systems which are linearizated at neighbourhood of ing law {I§) ensures absent of singular states by this
numerical solution on previous iteration. At such ini- gMmcC scheme for all values of the GMC AM vector

tial point the Newton's iteration process have a rapid (1) € S\ 98, e.g. inside all its variation domain. For
convergence: usually there is needed only 2 — 3 itera- the representation

tions for obtaining a numerical solution with fine accu-

racy. Difference between approximate optimal spatial 12 = X+ Be)/2 @ = (= Aa) /2

motion (analytic solution of "start” problem) and strict yso = (v +8y)/2 g2 =y = Ay)/2

optimal spatial motion is very light — up to 5 % by 230 = (2+A2)/2; 256 = (2 — A;)/2

functionalI, (I0) for the SC practical rotational ma- and the denotatioA = {A,, A,, A.} one can obtain

neuvers (Somov, 2007). the nonlinear vector equatiof (¢) = ®(h(t), A(t)).
Fast onboard algorithms for the SC gyromoment guid- At a known vectorh(t) this equation have single so-

ance at a SRM with restrictions to(t), (¢) andé(t), lution A(t), which is readily computed by method of

corresponding restrictions 10(3(t)), B(t) and3(t) in a simple iteration. Further the unils,(5,(t)) and



vector-columng3(t), 3(t), B(t) are calculated by ex-  derivative. At last stage, required functioAs$t), w(t),
plicit analytical relationsvt < T,. For the 2-SPE e(t) ande(t) = e*(t) + w(t) x e(t) is calculated by
scheme such evaluation is carried out by the explicit explicitformulas.

analytical formulas only.

6 Continuous Control Laws
5 Guidance at a course motion For continuous forming the control torqid (t) the
Analytic matching solution have been obtained for SC the simplified model is such:
problem of the SC angular guidance at the SE&Me
T,,. The solution is based on a vector composition of A=Aow/2; J&+[wx]G° =M. (18)
all elemental motions in the GRE, using next refer-
ence frames: the HRE!, the SRFS and the FREF. Let functions AP (t), wP(t) andeP(t) = WP(t) rep-

Vectorsr(t) andv(t) are presented in the GRE : resent the SC angular programmed motion. The error
r°=T¢r; ve=T§ (v — [waisX]r,), quaternion iSE = (eg,e) = AP(t)oA, Euler para-
where matrixT¢ = [p.(t)] 3 and anglep.(t) = pi + mete_rsj vector i€ = {eg, e}, and the attitude error’'s
we (t — t;). Vectorsws andv® are defined as g?g;x 'SICe = C[(g)] = {lsd— ?SX)]Q@ v;/éher?er =
s _f 871._ms 5 . e X5 e s = I3ep + |ex| with det(Q.) =eo # 0. If error
wo={wei} _Tb(:) iAow@lg’fA); Ve‘_ AGOYOSOAG’ in the rate vector is defined da) =@ =w — C.w? (1),
where A = Ap;A; = AgoAjoAy and A, = and required control torque vectM is formed as

AZow? /2, and constant matriT; represents the tele-

scope fixation on the SC body. For any observed point \j— ., x G°+J(C,w" (t)—[wx]|Cew? (t)+m), (19)
C the oblique range is analytically calculated as
D = [r¢ — r°|. If matrix Cj = C = ||&;| defines the
SRF S attitude with respect to the HRE!, then for
any pointM (7, 2*) at the telescope focal plag€O, z*

the component¥/ (5, 2') = ¢* andV/(j, 2%) = !

of normed vector by an image motion velocity are ap-
peared as follows:

then the simplest nonlinear model of the SC’s attitude
error is as follows:

bo=—(e,0)/2; e=Q.@/2; @=m. (20)

For model[(2D) aon-local nonlinearcoordinate trans-
- p y formation is defined and applied at analytical synthesis
51 310 CIZ_Y% -7 W§3 + i’ W§2 by the exact feedback linearization technique. This re-
{ :|:|:§z 0 1] Ver = Wez =% We |- (16) sults in the nonlinear continuous control law
qVes T Wea T U we

i
Ih(ga (D) = _(AO € Sgn(e()) + Al (:J)v (21)

Here normed focal coordinatgé = y*/f. and ¢ =

2/ f., where f. is the telescope equivalent focal dis- whereAo=((2aj — ©?/2)/e0)Is; A1=ajI3 — Rey,

tance; function =1 — (é219° +¢312%)/¢11, and vector  sgn(eg) = (1, if eg > 0)V (=1, if eg < 0), matrix

of normed SC’s mass center velocity have the compo- R.., = (e, @)Qt[ex]/(2¢s), and parameters;,a} are

nentsvs, = v5,/D,i = 1+ 3. By (16) for given image  analytically calculated on spectrulf; = —a. + jw.

velocity W7 = const and conditionsVyi(0,0) :Wj/ = in each channel. Simultaneously the Lyapunov func-
,W;; Vi(0,0) = 0; af/;(o, 0)/8%' =0 calculation of ~ tionv(€,w) is analytically constructed for close-loop
vectorws: is carried out by the relations continuous systeni (20) ar{d {21).
s a5 Gl o o o Wi (17 7 Filtration of Discrete Measurements
Wer = Ve 7 i Wep = VeaiWea = — Wy Ve 17 At given digital control periodl’, discrete frequency

characteristics are computed via absolute pseudo-
frequency\ = (2/Ty,)tg(wT,/2). For period’s mul-
tiple n, and a filtering periodl, = T,/n, applied
filter have the discrete transfer functioN;(z,) =

By numerical solution of the quaternion differential
equationA; = Aows /2 with regard to|(17) one can
obtain values\>, = X (¢,) for the discrete time mo- ¢ : b
mentst, € T,, with periodT,, s= 0+ng, n, = 1,,/T, (1+Dby)/(1+byzy ), whereby = — exp(~T,/T¢) and
when initial valueA® (i) is given. Further solution Za = exp(sTy). Measured error quaternion and Euler
is based on the elegant extrapolation of valags =  Parameters’ vector ark; = (eos,€;s) = AP(t;)oA
X5./(1 + X3..) by the vector of Rodrigues’ modified  and€s = {eos, €.}, and the error filtering is executed
parameters and values;, by the angular rate vector. PY the relations

The extrapolation is carried out by these two sets of 5 5 5 _

n, coordinated 3-degree vector splines with analytical ~ X«11 = A%, + Be,; ef = CX.+De,, (22)
obtaining a high-precise approximation of the SBF

guidance motion with respect to the GEE both on  where matricesA, B, C and D have diagonal form
vector of angular acceleration and on vector of its local with @;=—bt; b; =bt; & =—(1+bf) andd; =1+bt.



8 Pulse-width and Digital Control Laws

At initial modes the OEU pulse-width control is ap-
plied with periodT,, = T = 4 s and filtering period
T, = T, = 1s. Atinitial damping a forming the dis-
crete command signals;,. for the OEU pulse-width
control on channels is very simple;, = k¥ (w§—wf ).
Here wf are filtered measurements of angular rate
components ani¥ are constant gain factors.

At initial the SC guidance simultaneously on the Sun
and on the Earth the SC attitude filtered error veefor
is also applied for forming the OEU pulse-width con-
trol v,.. In first, here the stabilizing vector component
m, is calculated by the relatiom, = Kef + K“&!
with constant diagonal matrix@s? andK*. Than pre-
liminary vectorv,. = {v;,} is evaluated for forming a
required control torqud,.(¢) for ¢ € [t.,t, + T3).

At last, the command vector, = {v;,.} is calculated
by next simple algorithm:q, = max [¥;,|,7 = 1 =

3; if qr > 0 then vy = TSV, /q,-. SOme results on
nonlinear dynamics of pulse-width attitude control by a
flexible spacecraft were presented in (Somov, 2008

At the SC rotational maneuvering and the SC course

motion, gyromoment digital control is applied with pe-
riod T,, = 0.25 s and filtering periodl;, =T, /4, taking

into account a time delay at incomplete measurement

of state and onboard signal processing:
my, = v =— (KX, + Kjug); ug1=vi;  (23)
X1 = Aoa X + Bl up + BYy vy
+Gd(e£ — (Cod X +Dgyur + DYy vi))-

Here k& € Ny, X {ék,@k}, matrices have con-

=)
[

T 3
— dw,|
0 d0,

% dw,

do,, degls

40 50 60 70 80
time, s

0 10 2 0
Figure 2. The rate errors for consequence of the SRM and the SCM
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