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Abstract: The synchronization problem for a class of delayed complex dynamical 
networks via employing variable structure control has been explored and a solution 
proposed. The synchronization controller guarantees the state of the dynamical 
network is globally asymptotically synchronized to arbitrary state. The switching 
surface has been designed via the left eigenvector function of the system, and 
assures the synchronization sliding mode possesses stability. The hitting condition 
and the adaptive law for estimating the unknown network parameters have been 
used for designing the controller hence the network state hits the switching manifold 
in finite time. Two illustrative examples along with the respective simulation results 
are given, which employ the designed variable structure controllers.  Copyright © 
2007 IFAC 
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1. INTRODUCTION 1 

 
Network structures have been subject of research for 
considerable time in mathematical science. 
Furthermore, it has been observed for some time that 
complex dynamic networks exist in all fields of 
science and humanities as well as in nowadays 
networked individuals, societies and technical and 
non-technical systems. Thus the latter have been 
studied extensively over the past decades. As it is 
well-known, traditional networks are mathematically 
represented by a graph, e.g. a pair { }EPG ,=  in  
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which P  represents a set of N nodes (or vertices) 

NPPP ,,, 21 L  and E  is a set of links (or arcs or 

edges) NLLL ,,, 21 L  each of which connects two 

elements of P . The well known chains, grids, 
lattices and fully connected graphs have been 
formulated to represent the so-called completely 
regular networks.  
 
In the course of development of the mathematical 
theory of dynamical netwroks, the theory of random 
graphs (Figure 1-a) was first introduced by Paul 
Erdos and Alfred Rényi [1], who discovered the 
probabilistic methods were often useful to tackle 
problems in graph theory. In recognition to their 
work, now these are known as ER random graph 
models. The ER random graph models have served as 
idealized coupling architectures for gene networks 
and the spread of infectious diseases for a long time, 



 

     

and recently for studying the spread of computer 
viruses too.  
 

   
(a)                                                           (b) 
Fig. 1 A random graph network (a), and a small-world 

network (b) [7] 
 
In recent studies, Watts and Strogatz [2] introduced 
the so-called small-world networks (Figure 1-b), or 
so-called WS networks, in order to describe the 
transition from a regular network to a random 
network [3], [7]. Subsequently, in their studies [4-6], 
Barabasi and Albert have argued that the scale-free 
nature (Figure 2) of real-world networks is rooted in 
two general mechanisms: growth and preferential 
attachment respectively. It thus gives rise to 
dynamical nodes in networks and not solely static 
ones. 
 
In the real world at large, many real systems such as 
biological, technological and social systems can be 
described by various models of complex networks 
[8], [9]. One of the interesting and rather significant 
phenomena in complex dynamical networks [10] is 
the synchronization of all dynamical nodes as well as 
the appearance of chaotic modes. Hence dynamical 
networks may be rather complex and the respective 
phenomena taking place within them are rather rich 
and often appear and disappear unexpectedly. The 
present study is devoted to such networks.  
 

 
Fig. 2 A Scale-free network [7] 

 
In this paper, a class of general complex dynamical 

network models with coupling delays is explored 
with regard to controlled synchronization via variable 
structure control. Here, we investigate the 
synchronization properties of these models with 
matched conditions uncertainty and unmatched 

conditions uncertainty by using of variable structure 
control. Via Lyapunov functional method and 
formulation of an adequate proper adaptive law, we 
derive synchronization conditions for both cases. 
 
Section II presents a selected survey, a continuous-
time dynamical network model with coupling time-
delays and some preliminaries. In Section III, the 
switching surface is constructed by using the left 
eigenvector function method. The stabilities of the 
network synchronized states in both cases with 
known bound and with unknown boundary on 
nonlinear terms are investigated in Section IV and in 
Section V, respectively. Section VI presents the 
results and simulation experiments for two of 
benchmark examples. Concluding section and 
references follow thereafter. 
 

 
2. DYNAMICAL NETWORK MODEL 

FORMULATION AND APPLICATION OF VSC 
 

The synchronization in networks of coupled chaotic 
systems has received a great deal of attention during 
the last decade or so, e.g. see [10]-[18] for instance. 
In their work [10], Wang and Chen have established 
a uniform dynamical network model for such studies; 
also they explored its synchronization and control. 
Although, the model of Wang and Chen reflects the 
complexity from the network structure, still it is a 
fairly simple uniform dynamical network. A new 
model and chaos synchronization of general complex 
dynamical networks was also explored by Hu and 
Chen in [11], and by Lu and co-authors in [12]. 
Further, Wang and Chen [13] explored the 
synchronization problem in small-world dynamical 
networks, and similarly Barhona and Pecore studied 
the synchronization in heir small world systems in 
[14]. In [15], Wang and Chen investigated the 
synchronization in scale-free networks with regard to 
robustness and fragility. Subsequently, X. Li and 
Chen discussed synchronization and de-
synchronization of complex dynamical networks 
from an engineering point of view in [16].  

More recently, in works [17]-[21], the complex 
dynamical networks with time-delays have received 
particular attention more attentions because its 
presence is frequently a source of instability. For, 
time-delays commonly, or even unavoidably, exist in 
various network-like systems due to some inherent 
mechanism and/or the finite propagation speed of 
information carrying signals. Z. Li and Chen 
proposed in [17] a linear state feedback controller 
design to realize the synchronization for the networks 
with coupling delays. Similarly, C. Li and Chen 
proposed a solution in the case with coupling delays 
in work [18]. Further, P. Li and co-authors explored 
in [19] one way of global synchronization in delayed 
networks, and Z. Li and co-authors in [20] solved the 
same with regard to desired orbit. It should be noted 
controlled synchronization in complex dynamical 
networks with either nonlinear delays or with 
coupling delays in [18]-[21] was studied via the 
methodology of Lyapunov stability analysis. In 



 

     

parallel, also the design of robust decentralized 
control for large-scale systems with time-varying or 
uncertain delays has been revisited via several 
approaches and feasible designs derived in [22]-[25]. 
These studies too have been carried out via Lyapunov 
stability analysis and synthesis. The approach via 
variable structure control (VSC) is to be noted for 
their efficiency in dealing with all sorts of time-delay 
and uncertainty phenomena in dynamical systems. 

 
We consider a complex dynamical network 
consisting of N  identical nodes ( n dimensional 
dynamical systems) with time varying delay coupling 

,))((),(
1

∑
=

+−++=
N

j
iiijjijiii uBttxAtxfAxx τ&  

Ni ,,2,1 L=                         (1) 

Where: nT
iniii Rxxxx ∈= ),,,( 21 L , represents 

the state vector of the i -th node; 
),( txf i : nn RRR →×  are smooth nonlinear 

vector function; )(tijτ  is bounded time varying 
delay and differentiable too satisfying 

∞<≤≤ ijij t ττ )(0 , where ijτ is positive scalar; 

and ∑
=

−
N

j
ijjij ttxA

1
))(( τ  represent the uncertain 

interconnections with time delay. Furthermore, 
nnRA ×∈ , mn

i RB ×∈  are constant system matrices 

of appropriate dimensions, and m
i Ru ∈  represents 

the control input. 
 
When the network achieves synchronization, namely, 
the state Nxxx === L21 , as t → ∞ , the 
coupling control terms should vanish: 

0))((
1

=+−∑
=

ii

N

j
ijjij uBttxA τ . This ensures that 

any solution )(txi  of a single isolate node is also a 
solution of the synchronized coupled network. 
 
Let )(ts  be a solution of the isolate node of the 
network, which is assumed to exist and is unique, 
satisfying: 

( )tsfAss ,+=&  .                        (2) 
In here )(ts  can be an equilibrium point, a nontrivial 
periodic orbit, or even a chaotic orbit. The objective 
of control here is to find some smooth controllers 

m
i Ru ∈  such that the solution of systems (1) 

asymptotically synchronize with the solution of (2), 
in the sense that 

0)()(lim =−
∞→

tstxix
, Ni ,,2,1 L=       (3) 

Let it be defined stxe ii −= )( . Then subtracting 
(2) from (1) yields the error dynamical system 

ii

N

j
ijjijiii uBttxAsxfAee +−++= ∑

=1

))((),(~ τ&   

(4) 
where  

),(),(),(~ tsftxfsxf ii −= . 

For deriving the proofs given in sequel, certain 
convenient assumptions are given next. 

Assumption 1: The matrix pair ( )iBA,  is 
controllable. 

Assumption 2:  Each input matrix iB  is of full rank. 

Assumption 3: The nonlinear function f  satisfying 

)()(),(),( txtxtxftxf jiiji −≤− µ      (5) 

where 0>iµ  are constants, Nji ,,2,1, L= . 

Assumption 4: Suppose the interconnection matrix 
satisfy matching condition as follow: 

ijiij HBA =                                  (6) 

Assumption 5: The time delay terms in system (4) 
satisfy 

)())(( max txttx jijj ≤−τ                   (7) 

where  
)(max)(max txtx jj = . 

Therefore equation (4) can be rewritten as follows:  

∑
=

+−++=
N

j
iiijjijiiii uBttxHBsxfAee

1

))((),(~ τ&

 (8) 
 

3. APPLICATION OF VSC AND 
CONSTRUCTING THE SWITCHING SURFACE 

 
The composite sliding surface of system (8) is 
defined by letting the composite sliding vector 

)(eσ in the state space be zero. This is to say that 

( ) [ ])(),(),( 2211 N
T
N

TT eeee σσσσ L=  (9) 
where 

( ) 0== iiii eCeσ , Ni ,,1L=          (10) 
are called the local sliding surface and 

[ ] NT
N

T Reee ∈= ,,1 L , while iC  are nm ×   
constant matrices to be determined in due course. 
 
In order to construct the controller sought, the 
following two relevant lemmas are needed as well. 

Lemma 1 [24].  Suppose β  and Nbbb ,,, 21 L  be 
arbitrary vectors, then 

∑∑
==

+≤
N

i
i

T
i

T
N

i

T bbaaba
11

1)(2
β

β           (11)  

where 0>β  is a positive constant. 



 

     

Lemma 2[24]. Suppose matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211

DD
DD

D  

is inverse, and 022 ≠D , then 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ψ−
−

= −−

−−
−

1
2,1121

1
22

1
22122,11

1
2,111

DDD
AADD

D  (12) 

where Ψ=+ −−−− 1
2212

1
2,1121

1
22

1
22 DDDDDD  and 

21
1

221211
1
2,11 DDDDD −− −=   is the inverse.  

 
Further, let the isolate subsystem as follows 

iiii uBAee +=&                              (13) 

Be selected. Because ( )iBA,  is controllable, 

there exists matrix nm
i RK ×∈  that can make the 

matrix iii KBAA +=
~

 be stable. And iB  is full 

rank matrix, we can assume ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
i B

B ~
0

, 

mm
i RB ×∈~

. When the controller iiii veKu +=  
is substituted in to (13), the equation is transformed 
to 

2121111
~~

iiiii eAeAe +=&                           (14) 

iiiiiii vBeAeAe ~~~
2221212 ++=&                      (15) 

Assume the stability eigenvalues of iA~  are 

miniimi −µµλλ ,,,,, 11 LL , and then define:  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=Λ

−min

i

i

µ

µ
O

1

1
,

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=Λ

im

i

i

λ

λ
O

1

2  

(16) 
The corresponding eigenvectors constitute the 

eigenvector matrix as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

21

21

ii

ii

VV
GG

. The 

eigenvector matrix is the inverse through the pole 
placement, so that the following equation holds 
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⎠
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⎠
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⎛
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2

1
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0
0
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i

i
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AA
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VV
GG

(17) 
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⎠

⎞
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⎝
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⎟⎟
⎠

⎞
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2

1
1
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1
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(18) 
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            (19) 
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ξξ

 (20) 

Therefore  

11112111
~~

iiiiii AA Λ=+ ξηξ                     (21) 

From the above, we know that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

21

21

ii

ii

ηη
ξξ

 is the 

right eigenvector matrix of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211 ~~
~~

ii

ii

AA
AA

. If we 

select 
[ ]21 iii VVC =                            (22) 

when the system trajectory hit the sliding mode, 
i.e. 2211 iiiiiii eVeVeC +==σ , then  

11
1

22 iiii eVVe −−=                         (23) 

Substitution of (23) into (14) yields the sliding 
mode equation  

11
1

212111 )~~( iiiiii eVVAAe −−=&               (24) 

Because mm
i RV ×∈2  and )( 1

1
221 iiii VVGG −−  are 

inverse, and due to Lemma 2, it follows 

11
1

21 iiii VV ξη −−=                            (25) 

Also upon substitution of (25) into (21) yields 

1111
1

21211 )~~( iiiiiii VVAA Λ=− − ξξ             (26) 

From the above we can know the eigenvalues of the 
sliding mode equation of system (13) represent the 
desired mn −  stable eigenvalues. It is obvious that 
the sliding mode equation (14) is stable. From the 
above analysis, iC  is the left eigenvector of iA~  
with desired m stable eigenvalues, then 

iiii CAC 2
~

Λ=                           (27) 
 
For the error complex system (4), because the 
coupling term is satisfying the matching condition, 
the sliding mode equation of system (4) is still 
satisfying equation (24), which has the desired 
eigenvalues. If the nonlinear and the coupling terms 
do not satisfy the matching condition, the system (4) 
can be written as follows 

),(~~~
12121111 sxfeAeAe iiiiiii ++=&            (28) 

ii

N

j
ijjiji

iiiiiii

vBttxHB

sxfeAeAe
~))((~~

),(~~~

1

22221212

+−+

++=

∑
=

τ

&

       (29) 

When 0=iσ , then 11
1

22 iiii eVVe −−= , so the 
above sliding mode equation of system (28) is 

),(~
111 sxfeAe iiiii +=&                       (30) 

where 1
1

21211
~~

iiiii VVAAA −−= . It is obvious, 

matrix iA  is stable. 



 

     

The synchronization condition for the complex 
network with unmatched uncertainty is given 
according the next theorem, the first novel result. 

Theorem 1. If the nonlinear term ),(~ sxf i  is 
unmatched, then the decentralized sliding mode of 
the interconnected system (30) is asymptotically 
stable, if and only if the inequality 

)(1 iiiik βλβµ +−<                    (31) 

holds true, where 01 >k  is constant, and 

{ } 0,max 1 <= imii λλλ L . 

Proof: Let V  be a candidate Lyapunov function for 
the dynamic system (30),  

∑
=

=
N

i
i

T
i eeV

1
11

&                          (32) 

Taking the derivative of V along the trajectory of 
system (30) yields 

[ ]∑
=

+=
N

i
iii

T
i sxfeAeV

1
111 ),(~2&             (33) 

Due to Assumption 3, there exist positive constant 

1k  that makes 111 ),(~
iiii eksxf µ≤ . Thus 

2
11

2
1

2
1

1
ii

i
iiii ekeeV µ

β
βλ ++≤&  

2
11

1
ii

i
ii ek ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= µ

β
βλ                      (34) 

due to Lemma 1. And then because 0<iλ , 

if ii
i

i k λµ
β

β −<+ 1
1

 it follows 0<V&  at once.  

 
4. DESIGNING SYNCHRONIZATION 

CONDITION: CASE WITH KNOWN BOUNDS 
ON NONLINEAR TERMS 

 
Although we have a set of stable sliding surfaces, 
unless the initial states and all system dynamics are 
always ensured to stay on the surface for all time, a 
set of decentralized sliding controllers is required, 
such that the global robust stability of the surface is 
assured. Traditionally, the hitting condition for small-
scale system is 

0)()( <tt T σσ &                        (35) 

where 0)( =tσ is the sliding surface of some small-
scale systems. Since the existence of interconnections 
and the lack of global information, equation (35) is 
not easily satisfied for the interconnected system. 
Hence, we require a global hitting condition of the 
sliding surface  

0
)(

)()(
1

<∑
=

N

i ii

iii
T
i

e
ee

σ
σσ &

                (36) 

If ∑
=

=
N

i
iV

1
σ , the condition is readily derived 

from the stability theory of Lyapunov . 

Theorem 2: The motion of the system (4) 
asymptotically converges to the composite sliding 
surface 0)( =eσ , if and only if the following 
condition  

i
i

i
iiiiii eRBCeKu

σ
σ1)( −−= ,       (37) 

where  

∑
=

++=
N

j
jijiiiii txHBCCR

1
max )( εµ   

and  0>ε is constant, is satisfied. 

Proof: From (4) and (10), the sliding dynamics can be 
written as  

iii eC && =σ  

∑
=

+−++=
N

j
iiijijiiiiii uBCtxHBCsxfCAeC

1
)(),(~ τ

 

∑
=

−++

+−Λ=
N

j
jijiiii

iiiiiiiii

txHBCsxfC

uBCeKBC

1

2

)(),(~ τ

σ
    (38) 

Upon substitution of (37) into (38), the (38) can be 
written  down as 

),(~
2 sxfCeR iii

i

i
iii +−Λ=

σ
σσσ&  

  ∑
=

−+
N

j
jijii txHBC

1
)( τ .                 (39) 

Then construct Lyapunov function as 

∑
=

=
N

i
iidV

1

σ                              (40) 

and obtain the time derivative of (40) as 

∑
=

=
N

i i

i
T
i

idV
1 σ

σσ &&                             (41) 

Substitution of  (37) and  (39) into (41) yields 

[ ]∑
=

Σ=
N

i i

T
i

i VdV
1 σ

σ&                          (42-a) 

[ ] =ΣV  

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
−−++Λ ∑

=

N

j
i

i

i
iijjijiiiiii eRtxHBCsxfC

1
2 )(),(~

σ
σ

τσ

(42-b) 
Because of 1max{ , , } 0i i imλ λ λ= <L  and 
Assumption 2, it follows that 
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(43) 
Thus, on the grounds of the designed controller 
according to Theorem 2, the motion of the system 
(4) asymptotically converges to the composite 
sliding surface. 
 
 
5. DESIGNING SYNCHRONIZATION CONDITION: CASE 

WITH UNKNOWN BOUNDS ON NONLINEAR TERMS 
 

In practical terms, there exist iii esxf µ≤),(~
, 

where iµ  represents unknown parameters. In this 
section, we will design robust adaptive controller 
with unknown parameters. In order to derive the 
proof, conveniently, first another two assumptions 
are presented.  
Assumption 6: Let ( ) ( )ii BrankBfrank =,~

. 

Assumption 7: Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
i B

B
2

0
, where mm

i RB ×∈2  

is an nonsingular matrix. 

When the transformation iiii veKu +=   is 
selected, then the sliding mode equation becomes 

11
1

212111 )~~( iiiiii eVVAAe −−=& .               (44) 

It is easy to prove the asymptotic stability of the 
sliding mode trajectory by the constructing switching 
function. Therefore the main task here is to design a 
robust controller that guarantees the system trajectory 
shall reach the sliding surface from arbitrary initial 
state. 

Theorem 3 Let Assumption 4 and Assumption 5 
hold true. Then with  

iii eC=µ&̂ , iii µµµ −= ˆ~ ,        (45-a) 

the following robust adaptive controller  

−= iii eKu  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
−

∑
=

− N

j
iijijii

iii

ii xHBC

eC
BC

1
max

1

sgn

ˆ
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µ
, (45-a) 

where ˆiµ  is the estimate of the unknown parameter, 

and iµ , 0>iε  are constants, uniformly, 
asymptotically stabilize the system (4) in the large. 

Proof: Consider the Lyapunov function as follows 
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The time derivative of (46) is as follows: 
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(47) 
Because of 0<iλ , 0>iε , apparently (47) is 
negative. Thus, the system (4) can be stabilized by 
means of the controller (45-a, b) , which is designed 
according to Theorem 3. 
 
 

6. ILLUSTRATIVE EXAMPLES AND SIMULATION 
RESULTS 

 
6.1. The complex network system with known bound  
       on nonlinear term  
 
The chaotic Chua circuit is assumed in the nodes of 
the complex dynamical network. A singular Chua 
circuit is described by the piecewise-linear system  

))(( xfyxpx −+−=& , zyxy +−=& , 
qyz −=&  

where 

)11)((
2
1)( 010 −−+−+= xxmmxmxf  

with constants 00 <m  and 01 <m , 10=p , 

87.14=q , 68.0,27.1 10 −=−= mm . Let it be 

zxyxxx === 321 ,, . Then this Chua circuit can 
also be represented as follows: 



 

     

))(( 1211 xfxxpx −+−=& , 3212 xxxx +−=& , 

23 qxx =& . 

The corresponding complex network with coupling 
time-delay is represented by 
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Fig. 3 Trajectories of chaotic Chua circuit in its 3D phase 

space. 
 
 
In order to simulate it conveniently, it has been 
assumed 02.0<ijτ . On the grounds of Theorem 1, 
the synchronization error trajectory of chaotic Chua 
circuit can be computer simulated to give the results 
on synchronization errors as depicted in 3 different 
figures; only Figure 4 is given due to paper size 
limits. These results show the synchronization has 
been enforced rather efficiently by synchronisation 
employing the proposed variable structure control 
design. 
 

 
Fig. 4 Synchronization errors 1ie  of chaotic Chua circuit. 

6.2. The complex network system with unknown 
bound nonlinear term 
 
The Duffing forced-oscillation system is used as 
nodes in a dynamical network. A singular Duffing 
forced-oscillation system is described as 

yx =& , txyy cos121.0 3 +−−=&  

Let it be defined xx =1 , yx =2 . Then the Duffing 
forced-oscillation system can also be expressed as 
follows: 

21 xx =& , txxx cos121.0 3
122 +−−=&  

Its phase portrait is depicted in the next figure.  
 

 
Fig. 5 Trajectory of Duffing forced-oscillation system in 

its 2D phase space. 
 
The corresponding network is described by 
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Fig. 6 The synchronization errors of the Duffing 

forced-oscillation system. 
 
By using making use of the controller in Theorem 3, 
the synchronization error trajectories of Duffing 
forced-oscillation system has been simulated and the 
error signals are depicted in Figure 8. These 



 

     

simulation results show the network synchronization 
by the designed variable structure controller is 
enforced rather efficiently. 
 
 

7. CONCLUSION 
 
The synchronization problem in coupled complex 
dynamic delay network has been explored. Both 
systems with known bound and with unknown bound 
on nonlinear terms have been successfully taken into 
consideration. Stability solutions to synchronization 
are proposed that employ variable structure control 
theory along with constructive design of the sliding 
surfaces and the switching. The switching surface has 
been designed via the left eigenvector function of the 
system, which can assure the synchronization sliding 
mode possesses stability. The hitting condition and 
the adaptive law for estimating the unknown network 
parameter have been used for designing the 
controller, which can assure the network state hitting 
the switching manifold in finite time.  
 
The two benchmark examples, based on employing 
chaotic Chua circuit and on Duffin’s oscillator at the 
nodes, have been used for illustrating the achieved 
performance via synchronization error trajectories. 
The respective computer simulations demonstrated 
both efficient network synchronization as well as 
quality transient performance.   
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