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Abstract
This study presents a deep learning-based approach for

the automatic segmentation of the right ventricle (RV) in
gated myocardial perfusion SPECT images (gSPECT).
Unlike the left ventricle (LV), the RV poses significant
segmentation challenges due to its complex anatomy,
thinner walls, and lower perfusion. We manually an-
notated 384 SPECT volumes and propose the use of
the ResUNetSE3D neural network, incorporating both
anatomical and phase imaging data to enhance segmen-
tation accuracy. The model achieved a Dice coefficient
of 0.8272 and a Jaccard index of 0.7086. These results
demonstrate the feasibility of fully automated RV seg-
mentation, laying the groundwork for future clinical ap-
plications in quantitative cardiac assessment.
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1 Introduction
Gated single-photon emission computed tomography

(gSPECT) plays a crucial role in the diagnosis of car-
diovascular disease by providing detailed information
on myocardial perfusion and function [Ostroumov et al.,
2023]. This imaging modality is widely used for detect-
ing ischemic heart disease, assessing myocardial viabil-
ity, and stratifying patient risk. However, the complex-
ity of SPECT image processing necessitates the devel-
opment of specialized methods. Recently, deep learn-

ing techniques have demonstrated high effectiveness in
medical imaging tasks, enabling automated data analysis
and improving diagnostic accuracy [Miller et al., 2025;
Schmidt et al., 2023].

Segmentation of the right ventricle (RV) in radionu-
clide images remains a challenging task in cardiology.
Unlike the left ventricle (LV), the RV is not always vi-
sulized on nuclear imaging or is not visulized clearly and
also has a more complex structure, making it difficult to
process [Ostroumov et al., 2023]. Most existing algo-
rithms are tailored to LV analysis [Ploskikh and Kotina,
2021; Kotina, 2022; Germano et al., 2016; Germano and
Slomka, 2019], while RV segmentation remains signif-
icantly less explored. In addition, RV analysis is typi-
cally not included in standard image processing software
packages.

The extraction of information about the RV from nu-
clear tomoscintigraphy has long attracted the attention
of researchers [Kotina et al., 2012; Farag et al., 2019;
Ostroumov et al., 2015]. A semi-automatic approach
to the quantitative analysis of RV myocardium was
used in software ”Karfi” was developed on the base of
SPbU [Kotina et al., 2014].

Some articles discuss the construction of semi-
automatic methods for non-synchronized myocardial
perfusion tomoscintigraphy studies [Entezarmahdi et al.,
2023], in [Zhao et al., 2023], automatic construction of
RV contours using studies with 8 synchronization inter-
vals is considered. The present work proposes a deep
learning-based approach for fully automatic RV segmen-
tation in gated SPECT images.
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Figure 1. Representative slices from an original gated SPECT image
(left) and the corresponding phase image (right)

Figure 2. Contours annotated in CVAT. Left: epicardial and endocar-
dial boundaries of the right ventricle on a coronal slice. Right: a line
on the transverse slice indicates the correspondence between the coro-
nal and transverse planes.

2 Problem Statement
Automatic segmentation of the right ventricular (RV)

myocardium in gated SPECT images remains a chal-
lenging task [Ostroumov et al., 2023] due to the typi-
cally thinner RV wall, lower perfusion compared to the
left ventricle (LV), and more complex anatomical struc-
ture. The advancement of artificial intelligence (AI)
methods offers new opportunities for the automatic seg-
mentation of medical images, including RV myocardium
delineation.

This study focuses on gated myocardial perfusion
SPECT acquisitions with 16 synchronization intervals.
The primary objective is to develop a neural network
model for the automatic segmentation of the RV my-
ocardium. The task involves both data annotation and
model training. We also explore the inclusion of a phase
parametric channel in the input data to enhance segmen-
tation performance. A series of experiments with vary-
ing parameters is conducted, and the results are evalu-
ated using selected performance metrics.

3 Data
DICOM (Digital Imaging and Communications in

Medicine) is a widely used standard that facilitates the
exchange of medical images (such as SPECT, PET, CT,
and MRI) and associated data across different systems.
These files, typically with a .dcm extension, contain
both the image and a standardized header with tags that
store key information such as patient demographics and
scan settings.

The dataset comprises studies, each consisting of N
three-dimensional volumes corresponding to N tempo-
ral frames of a representative cardiac cycle acquired us-
ing gated myocardial perfusion SPECT imaging [Kotina,
2022]:

P1(i, j, k), . . . , PN (i, j, k), i = 1, n, j = 1,m, k = 1, s.

In this study, we consider N = 16 time intervals.
In addition to the arrays mentioned above, a phase ar-

ray Φ(i, j, k) (or phase image) is also considered, which
is constructed as follows:
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The phase three-dimensional images, calculated from

the source data, provide additional information about the
RV myocardium.

Figure 1 presents coronal slice from an original gated
SPECT image and its corresponding phase image.

Image annotation was performed manually using the
CVAT platform [Corporation, 2022]. For each slice, two
masks were created: an outer mask corresponding to
the epicardial contour of the right ventricular (RV) my-
ocardium and an inner mask outlining the RV cavity (see
Figure 2).

During the annotation process, an inter-slice interpola-
tion and tracking system was utilized, reducing the need
for manual labeling on individual slices by propagating
annotations across frames automatically.

The final dataset consists of 384 three-dimensional
SPECT myocardial perfusion images. Each slice has a
resolution of 64×64 pixels, and the number of slices per
volume ranges from 20 to 60. For simplicity, we assume
that each volume is represented as a 64× 64× 64 array.
If the original scan contains fewer slices, the volume is
zero-padded accordingly to match the target shape.

The dataset was partitioned into three subsets for train-
ing, validation, and testing of the model with the follow-
ing proportions: 75% for training, 12.5% for validation,
and 12.5% for testing.

4 Model
4.1 ResUNetSE3D Architecture

Having relatively small volume size and dense data
representation, we used the fully-convolutional Re-
sUNetSE3D neural network architecture [Toubal et al.,
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ID Experiment Configuration Dice MeanIoU

a All slices: ✗, In: 2, Out: 1 0.8272 0.7086

b All slices: ✗, In: 1, Out: 1 0.8040 0.6786

c All slices: ✓, In: 2, Out: 1 0.7179 0.5646

d All slices: ✓, In: 1, Out: 1 0.7210 0.5701

e All slices: ✗, In: 2, Out: 2 0.7893 0.6594

f All slices: ✗, In: 1, Out: 2 0.7932 0.6668

g All slices: ✓, In: 2, Out: 2 0.6263 0.4669

h All slices: ✓, In: 1, Out: 2 0.6525 0.4967

Table 1. Evaluation metrics for different experimental configurations

2020; Wolny, 2020]. Its structure is based on the original
UNet [Ronneberger et al., 2015] with encoder-decoder
architecture and skip connections. Both encoder and de-
coder consist of four (32, 64, 128 and 256 channels size)
double 3D-convolutional layers (3 × 3 × 3 kernel, 3D
batch normalization and LeackyReLU activation) with
residual connections followed by ”Squeeze and Excita-
tion” blocks [Hu et al., 2017]. The decoder block uses
transposed convolution for upsampling.

4.2 Training Configurations
The experiments were performed using the Re-

sUNetSE3D model to process three-dimensional images.
The input to the model consisted of either one or two
channels; in the latter case, a phase image was included
as an additional input. Similarly, the model produced ei-
ther one or two output channels. When two outputs were
used, the model generated two masks: an outer mask en-
compassing the entire right ventricle and an inner mask
delineating the right ventricular cavity. Depending on
the configuration, either all tomoscintigraphy slices or
only those containing the right ventricle were used for
training. The loss function employed was the BCE Dice
Boundary loss [Kervadec et al., 2021], with weight co-
efficients of 0.5, 0.25, and 0.25, respectively. Optimiza-
tion was carried out using the AdamW optimizer with a
learning rate of 1×10−3 and a weight decay of 1×10−5.
The learning rate was reduced by a factor of 0.5 every 20
epochs. Training was conducted for 100 epochs with a
batch size of 16.

Figure 3 shows the segmentation quality (Dice coef-
ficient) on the validation set during model training pro-
cess. These metrics were calculated for different model
configurations at each training epoch. The following no-
tations are used in the figures: ”All slices: ✓or ✗” cor-
responds to the ”layer type” parameter in the configura-
tion; ”In: 1, 2” indicates the use or absence of the phase
channel; ”Out: 1, 2” represents the number of output
channels (whether the mask was predicted as a whole or
as a combination of the outer and inner masks).

Figure 3. Values of the Dice coefficient on the validation set for dif-
ferent configurations during training process

5 Results
The results presented in Table 5 demonstrate the im-

pact of different model configurations on segmentation
quality. The configuration “All slices: ✗, In: 2, Out: 1”
showed the highest metric values: Dice is 0.8272 and
Jaccard is 0.7086. This may indicate the potential bene-
fit of using two input channels to improve segmentation
accuracy. The second result was achieved with the con-
figuration “All slices: ✗, In: 1, Out: 1”, where the Dice
score reached 0.8040 and the Jaccard index was 0.6786.

Several evaluated configurations relied on the assump-
tion that segmentation would be performed only on
slices containing the right ventricle, rather than on the
entire volume. Although this approach introduces a
manual preprocessing step, the identification of relevant
slices is relatively simple and has been found to improve
segmentation quality.

a b

Figure 4. Example of a coronal slice from the original image (a) with
the corresponding manually delineated right ventricular contour (b)

Figure 4 presents an example of a coronal slice along
with the corresponding contours obtained through man-
ual annotation.
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Figure 5. Masks and smoothed contours obtained in different exper-
imental configurations, corresponding to the data presented in Table 1

a b

Figure 6. 3D visualization of the segmented region produced by the
best-performing model configuration (a) and the manually annotated
region (b)

Figure 5 shows the masks and smoothed contours ob-

tained in different experimental configurations, corre-
sponding to the data presented in Table 5.

Figure 6 shows a 3D visualization of the segmented
region produced by the best-performing model configu-
ration alongside the corresponding manually annotated
region.

6 Conclusion
In this work, we proposed a method for automated

segmentation of the right ventricle (RV) of the heart on
gated SPECT images with 16 synchronization intervals.

The ResUNetSE3D model achieved a segmentation ac-
curacy of Dice is 0.8272 and Jaccard = 0.7086. This
result was obtained using a dual-channel input config-
uration (original volume and phase volume) and slices
containing the right ventricle.

The obtained results lay the foundation for fully au-
tomated quantitative assessment of clinically significant
parameters of the right ventricle.

While the current approach focuses on segmenting a
single three-dimensional volume, an important extension
for future research would be to develop a model that in-
corporates the entire gated study, consisting of all 16 3D
volumes. This would allow the model to utilize tempo-
ral information across all synchronization intervals, po-
tentially enhancing segmentation performance and en-
abling more detailed functional characterization of the
right ventricle.
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