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Abstract— The paper deals with mathematical models of
motion of mechanical systems of sequentially joint solid bodies
in a viscous medium. Control laws are found to move the
considered systems from the initial state to a given one for
optimum energy consumption.

I. I NTRODUCTION

Intelligent autonomous vehicles and robots intended for
work in atypical environment has proved to form a great body
of knowledge interesting from the viewpoint of challenging
applications and being the source of new theoretical research.
Particular emphasis is placed on mobile manipulation robots
(just this term is preferred in E.P.Popov, A.F.Vereshchagin,
S.L.Zenkevich [1], F.L.Chernous’ko, N.N.Bolotnik, and
V.G.Gradetskii [2]) intended for work in a viscous medium.
It is caused, for example, by a need in robots to inspect and
assimilate water tanks, and to do various technological works
in those places. Design of a special mobile manipulation
robot (further we write, in shorthand, MMR) is a complicated
problem. Working out control systems matching up the MMR
destination is the principal step in solving this problem. The
situation when one has to deal with rather limited energy
supply of the MMR is natural and, sometimes, inevitable.
Then, the following control problem is topical: to find the
laws of the control forces and momentums behavior so as
to move the MMR from the initial position to a given
one for minimum energy consumption. Such a problem
is close to the ones of dynamic optimization considered
by F.L.Chernous’ko and other researches. So, the speech
goes about a new set of problems being topical from the
viewpoint of the theory of singular solutions of dynamic
optimization problems [3]. The totality of the problems
solved in the present paper can be used in both the applied
theory of singular dynamic optimization problems and design
of perspective samples of new machines.

II. H YDRODYNAMIC CONSTRAINTS

Hydrodynamic constraints listed below, being satisfied,
give a possibility to analyze necessary conditions for op-
timality. It is assumed that an inertial system and, inside it,
a right Cartesian coordinate systemOx1x2x3 are chosen.

Let v(t, x)=v(t, x1, x2, x3) be the velocity vector of fluid
particle at the pointM(x1, x2, x3) at the instantt, andv1,
v2, andv3 be its projections in the coordinate axes. The first
two constraints [4] are reduced to the following.
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L1: Fluid is incompressible.
With account of the equation of continuity, this constraint

is equivalent to zero velocity of the volume straindiv v = 0.
L2: The generalized Newton hypothesis is fulfilled

P = −pE + µ
(∂v

∂x
+

(∂v
∂x

)∗)
, (1)

whereP is the linear operator defined by the stress tensor,
p = p(t, x) denotes the scalar field of pressure,µ is the
dynamic viscosity coefficient,E is the identity mapping,
∂v/∂x is the Frechet derivative, and(∂v/∂x)∗ is the con-
jugate operator.

Let a body of bounded size with sufficiently smooth
boundaryS [5] move in fluid. A fluid mechanics axiom
and the constraint L1 imply that in the case of translational
motion of the body the following equality is fulfilled at its
surface (∂v

∂x

)∗
n = 0, (2)

where n is the unit vector of the outward normal to the
surfaceS at the pointx.

The stress on an elementdS of the body surface is
calculated by the formulapn = Pn, where n is the unit
vector of the outward normal todS. This equality and (1)
yield the formula for the principal vector of the forces acting
from fluid upon the body surface (hydrodynamic forces)

R =
∫

S

∫ (
−pE + µ

(∂v
∂x

+
(∂v

∂x

)∗)
n dS. (3)

The formula for the principal momentum of hydrodynamic
forces can be obtained similarly. According to (2), if the
body moves translationally, then the formula (3) is reduced
to

R =
∫

S

∫ (
−pE + µ

∂v
∂x

)
n dS. (4)

We need further the so-called moving coordinate system
Ocy1y2y3 with the body inertia center as the origin and the
axes rigidly connected with the body.

To find the principal vector and momentum, one has to
calculate on the body surface the pressure and the Frechet
derivative of the fluid velocity vector. To do this, one has
to solve a certain boundary-value problem for the vector-
valued Navier–Stokes equation. This equation is written out
below in the moving systemOcy1y2y3 with axes parallel to
the corresponding axes of the systemOx1x2x3 (the body
is assumed to move translationally). LetV be the velocity
vector of the body, andxc(t) be the radius vector of its
inertia center. In the moving coordinate system, denote the



absolute velocity vector of fluid and the pressure as follows:
v̂(t, y) = v(t, xc(t) + y), p̂(t, y) = p(t, xc(t) + y). Then the
Navier–Stokes equation is of the form

∂v̂
∂t

= −∂v̂
∂y

(v̂ −V)− 1
ρ

(∂p̂

∂y

)∗
+ ν div

∂v̂
∂y

+ F, (5)

whereF is the strength of the gravity field,ρ is the fluid
density,ν = µ/ρ is the kinematic viscosity coefficient.

Now, the above-mentioned boundary-value problem is
reduced to finding the solution of a system of partial dif-
ferential equations, namely, equation (5) plus the equation
of continuity div v̂ = 0. This solution must satisfy the
sticking conditionv̂(t, y)

∣∣∣
S

= V and the natural condition

lim
y→∞

v̂(t, y) = 0.

A flow is accepted to call established or stationary if the
field of its absolute velocity vectors in the moving coordinate
system does not change in time. Obviously, if the body
moves translationally, the necessary condition for the flow
to be stationary isV=V0 =const .

Suppose that the body has a symmetry axis. If the body
moves in such a manner that this axis remains in a given
plane (for example, in the planeOx1x2), then, according to
the statics theorems for an absolutely solid body, the totality
of forces acting from fluid upon the body can be reduced
to the resultant one called the hydrodynamic force [6]. As
usual the point of intersection of the symmetry axis and
the line of the hydrodynamic force action is referred to as
center of pressure. The hydrodynamic force is resolved into
components parallel to the velocity vectorV of the body
inertia center and perpendicular toV. The first component
D is known as the drag force, and the second oneDl is
called the lift force.

Let i, j be the unit vectors in the directionsOx1 andOx2,
respectively. We need further a mapping that puts a vector
a = a1i+a2j into correspondence toa⊥ = −a2i+a1j. Let V
be the magnitude ofV, D be that of the drag force, andDl

be that of the lift force. For needs of forthcoming references,
it is convenient to formulate the following assertion as
lemma.

Lemma 1:The drag and lift forces are calculated by the
formulae

D = sgn(V,D)DV −1V,
Dl = sgn(V,D)sDlV −1V⊥,
s = sgn((V, e)(V, e⊥)),

(6)

wheree is the directing vector of the body symmetry axis
(see Fig. 1).

Further we deal with mechanical systems of axially sym-
metric bodies (referred to as links). Let us introduce the
following constraint.

L3: Systems move in a volume of fluid which is either
very extended or is enclosed within rigid boundaries.

In the framework of the listed constraints, the coefficient
CD is a function of the body shape, Reynolds number and,
probably, the angle of attack between the velocity vector of
the body inertia center and the symmetry axis, i.e.,CD =
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Fig. 1. Drag and lift forces and the angle of attack
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Fig. 2. Reynolds numbers

CD(shape,Re, α) [7]. To determine the angle of attack (see
Fig. 1), one can use the formula

α = −s arccos |(e,V/V )|. (7)

The nonstationarity of the flow can be partially taken into
account by means of introducing the apparent additional
mass [7].

Hypothesis 1:The optimal displacement of the system
produces quasistationary flow of the system links.

Hypothesis 2:The optimal displacements of the considered
systems possess the following property: Reynolds numbers
of each link provide that the drag and lift coefficients of the
link are homogeneous functions of these numbers. See Fig. 2
for example.

III. T HE MECHANICAL SYSTEM OF SEQUENTIALLY JOINT

SOLID BODIES

A system is assumed to consist of axially symmetric links
sequentially joint with the help of cylindrical hinges (see
Fig. 3). The hinges are in the links inertia centers, their
axes are mutually parallel, the links axes are in the same
plane called the plane of the system [8]. The system hinges
control momentums generated by internal forces operate so
as the momentumUk, k = 1, . . . 3, acting on thekth



link is accompanied by the momentum−Uk acting on
the (k − 1)th link. The system moves with the help of
the force F acting in the plane. The mechanical system
under consideration is placed in fluid. Therefore, besides the
control and gravitational forcesmkg (mk is the mass of
the kth link) the links are subjected to the Archimedes and
hydrodynamic ones. These last forces can be reduced to the
forcesDk + Dl

k applied to the links inertia centers and the
momentumsMk. The drag forcesDk and the lift onesDl

k

act in the plane, and the momentumsMk are perpendicular
to it. These momentums are stipulated by the fact that the

Fig. 3. The mechanical system of sequentially joined bodies

centers of pressure do not, in general, coincide with the links
inertia centers. The described physical model being given,
one can consider the equivalent plane mechanical systems of
point masses sequentially joint by indefinitely thin absolutely
solid rods. The above-listed forces are applied to those point
masses. The differential equations of the system motion are
obtained in the form of the 2nd kind Lagrange equations for
the equivalent systems of point masses. The bibliography on
robotics contains rather full exposition of various types of
engines generating angular guiding momentums. The angular
momentum,Uk, which is, as a matter of fact, a momentum
created by a couple of forces. This is, for example, the case
when the momentumUk is generated by an electric motor
with stator placed in one link and the rotor rigidly connected
with the next one.

Thus, formulas for the components of the generalized
forces corresponding to the drag and lift forces acting on the
links are obtained [9]. Moreover, the form of the generalized
forces corresponding to the generalized angle coordinates is
proven to be invariant with respect to the way of realization
of the controlling momentums.

IV. OPTIMIZATION

We indicated the three special features of the considered
optimization problems. The third of them consists of cal-
culating the energy consumption. To do this, one should
determine a correct, from the viewpoint of the theory of
distributions, method of multiplication of discontinuous ve-
locities by impulse controls. However, another approach is
chosen. Namely, with the use of schemes described in [10],
[11], the original problem is reduced to some auxiliary of
classical dynamic optimization. Such an approach corre-
sponds to a strict mathematical formalization of the specified

nonlinear operations with distributions. Reduction is based
on the fact that the systems motion happens in the potential
gravity field and a part of the work is spent to change the
kinetic energy. Since the boundary conditions are given, the
varied part of the work is the energy consumption needed
to overcome drag. Calculation of the power corresponding
to this consumption results in a certain auxiliary problem of
minimization of this consumption subject to the constraints
in the form of the kinematic constraints plus the equation for
the energy consumption needed to overcome drag. The so-
constructed auxiliary problem belongs formally to a number
of problems of the classical calculus of variations. This is
actually the case, if the system consists of bodies of smooth
surface. If the structure of the system includes bodies of
piecewise smooth surface (for example, cylindrical bodies),
then in the space of generalized coordinates and velocities
of the original problem there can appear manifolds in which
the projection of the mentioned bodies onto the plane per-
pendicular to the velocity vector of their inertia centers and,
consequently, the Hamiltonian become nondifferentiable.

The summarizing result of the carried out research can be
formulated as follows. Along the optimal systems displace-
ment the power is constant. If at all points of the optimal
state path the power is differentiable with respect to the
generalized velocities of the links, then its partial derivative
with respect to the vehicle velocity also remains constant.

For more details, the following generalized coordinates of
mechanical system are introduced:q0 = x0 is the horizontal
coordinate of the pointO0, qk = ϕk, k = 1, 2, 3 is the angle
between a vertical line and thekth link. Then, the power of
the hydrodynamic forces is of the form

Ẏ = σ>(C(q, σ)D + M̂), Y (τ) = Yτ . (8)

HereD = (D0, D1, D2, D3)>, D0, D1, D2, D3 are the mag-
nitudes of the drag forces applied to the links inertia centers
O0, O1, O2, O3 respectively,M̂ = (0,M1,M2,M3)>, Mk

is the momentum of the hydrodynamic forces acting upon
the kth link, k = 1, 2, 3, C(q, σ) is an4× 4 matrix,

q̇ = σ, q(τ) = qτ . (9)

Problem 1:Solve the problemY (tp) → minσ subject to
the dynamic constraints (8), (9) and the boundary conditions
q(tp) = qp.

Let the links be of smooth surface.
Problem 2:Find the initial velocities

σi(τ + 0) = σ0
i (qτ , τ), i = 0, . . . , n

that provide the boundary conditionsq(tp) = qp for the
system

q̇ = σ,
d

dt

(∂Ẏ

∂σ

)
=

∂Ẏ

∂q
. (10)

The standard Euler–Lagrange procedure results in the
assertion.

Theorem 1:Let the hydrodynamic constraints and Hypoth-
esis be fulfilled. Then

– Problems 1 and 2 are equivalent;



– in the interval(τ, tp), the optimal state path of the sys-
tem belongs to the manifold described by the equation

σ = σ0(q, t), σ0 = (σ0
0 , σ0

1 , σ0
2 , σ0

3)> ; (11)

– on the manifold (11), the following relations hold:
∂Ẏ
∂v

= const and Ẏ − ∂Ẏ
∂σ

σ = const .

Remark:Following to the accepted terminology, the man-
ifolds of type (11) are called singular [3], [12].

Corollary: The Euler theorem on homogeneous functions
makes the third statement of Theorem 1 be of the form

Ẏ = const,
∂Ẏ

∂v
= const .

Thus, the optimal control histories are shown to have two-
impulse structure. The aim of the initial impulse is to move
the systems state to the singular surface, then travel along
the singular surface until a state is reached from which the
terminal impulse will take the state to the specified position.
As a result, the original problem is reduced to a boundary-
value one. Such a problem can be numerically solved by the
so-called method of shooting.

In the circumstances of indeterminate fluid fluctuations,
the equations of the systems motion contain the control
actions jointly with additive disturbances. The problem is
to construct an optimal feedback control law ensuring the
following requirement: in the case when the disturbances
vanish, the law provides the optimal completion of the
control process with respect to the attained position. For the
law specified, we make use of a positioning procedure of
impulse correction to move the systems state to the singular
surface (11). As the time between two sequential corrections
decreases, the state is more and more frequently moves to the
surface (11). As a result, the control process is supplemented
by an effect like sliding along the singular surface. One of
the questions naturally arising here is whether the state path
of the system tends to the so-called “ideal sliding” [14]
as the frequency of correction increases. Such sliding is
described by the original perturbed system in which the
controls make the singular surface (11) be an integral man-
ifold. Since this system coincides with the system of the
optimal displacements (9), (10), the affirmative answer to
the raised question would allow one to conclude that the
procedure of impulse correction, when the frequency grows
infinitely, ensures the optimal behaviour of the system for all
perturbationsδUi(t) (i = 1, . . . , n), δF (t), 0 < t < tp and,
in particular, solves the problem of optimal feedback control.
This is really the case, since the equations of the systems
motion and the singular surface (11) satisfy the conditions
of Theorem 2.2 [14].

To produce the 2nd kind Lagrange equations to describe
the systems motion, one has to estimate the kinetic energy
of the system. It consists of the kinetic energy of its vehicle
and links. By the Kenig formula, the kinetic energy of the
kth link is equal to

1
2

mkV 2
k +

1
2

Jckω2
k, (12)

whereJck is the inertia momentum of thekth link. Then, the
kinetic energy can be presented as follows:2K = q̇>A(q)q̇.
Here q = (q0, q1, q2, q3)>, A(q) = (aij) is the 4 × 4
symmetric matrix with the elements

a00 =
3∑

k=0

mk, a0j =
3∑

k=j

mk lj cos ϕj ,

aij =Jciδij +
3∑

k=j

mk lj li cos(ϕj−ϕi), ( 16 i6j 63 ),

whereδij is the Kronecker symbol.
We now begin to calculate the generalized forces. We need

the following notation:Vk is the velocity vector of the inertia
center of thekth link, and Vk is its length. The following
formulae hold:

Dk = −Dk
1
Vk

Vk, Dl
k = −skDl

k

1
Vk

V⊥
k ,

sk = sgn((V, ek)(V, e⊥k )),

whereek = − sin ϕk i + cos ϕk j is the direction vector of
the kth link axis.

Let Qq = (Qx0 , Qϕ1
, Qϕ2 , Qϕ3)

> be the generalized
forces column-matrix corresponding to the generalized co-
ordinatesx0, ϕ1, ϕ2, ϕ3. With the help of the above-written
formulae for the components of the hydrodynamic forces,
one can obtain the expression

Qq = B(q)P − C(q, q̇)D + E(q, q̇)Dl + M + NU.

Here we denote the column(k0m0, k1m1, k2m2, k3m3)>g
by P, whereki are the correction coefficients to take into
account the Archimedes forces

D = (D0, D1, D2, D3)>, Dl = (Dl
0, D

l
1, D

l
2, D

l
3)
>,

M = (M0,M1,M2,M3)>, U = (F, U1, U2, U3)>.

The matrices in the formula for the generalized forces
column-matrix are defined as follows:B(q) = (bij) is the
4× 4 matrix with the elements

b0j = 0, ( 0 6 j 6 3 ),
bij = 0, ( 0 6 j 6 i− 1, 1 6 i 6 3 ),
bij = li sinϕi ( 1 6 i 6 j 6 3 ),

C(q, q̇) = (cij) is the4× 4 matrix with the elements

c00 = sgn v,

c0j = 1
Vj

(
v −

j∑
k=1

lkωk cos ϕk

)
, ( 1 6 j 6 3 ),

cij = 0, ( 0 6 j 6 i− 1, 1 6 i 6 3 ),

cij = li
Vj

(
−v cosϕi +

j∑
k=1

lkωk cos(ϕi − ϕk)
)
,

( 1 6 i 6 j 6 3 ),

E(q, q̇) = (eij) is the4× 4 matrix with the elements

e00 = 0, e0j = sj

Vj

j∑
k=1

lkωk sin ϕk, ( 1 6 j 6 3 ),

eij = 0, ( 0 6 j 6 i− 1, 1 6 i 6 3 ),

eij = sj
li
Vj

(
v sin ϕi −

j∑
k=1

lkωk sin(ϕi − ϕk)
)
,

( 1 6 i 6 j 6 3 ),



andN = (νij) is the4×4 triangular matrix with the elements

νii = 1, ( 1 6 i 6 3 ),
ν01 = 0, νi,i+1 = −1, ( 1 6 i 6 2 ),
νij = 0, ( i + 2 6 j 6 3, 0 6 i 6 1 ).

Above information is sufficient to present the systens
motion in the form

A(q)D2
t q +

n∑

j=0

q̇j

(∂Aj

∂q
− 1

2

(∂Aj

∂q

)>)
q̇ =

= B(q)P − C(q, q̇)D + E(q, q̇)Dl + M + NU, (13)

whereAj is the jth column of the matrixA(q), ∂Aj/∂q is
the matrix of the Frechet derivative, i.e., the matrix with
the ith row of the form ∂aij/∂x, ∂aij/∂ϕ1, ∂aij/∂ϕ2,
∂aij/∂ϕ3, (0 6 i, j 6 3), Dt is the distributional differ-
entiation operator. The use of such an operator corresponds
to expecting impulse components in the optimal control.

The expression for the power of the control forces and
momentums is of the form

Ẇ = q̇>NU. (14)

In (14), the difficulty to multiply impulse actions by the
system simultaneously jumping generalized velocities was
circumvented above by physical analysis of the done work.
However, there exists another possibility to endow the ex-
pression (14) with strict sense.

Theorem 2:The work of control actions on the system can
be written out in the form

W = K + Π + Y + const, Ẏ = q̇>(CD + M̂), (15)

whereΠ is the potential energy that is equal to

Π =
3∑

i=1

( 3∑

j=1

kjmjg
)
li cos ϕi.

Proof: Indeed, to justify this assertion, one should
eliminate the control variables between the Lagrange equa-
tions (13) and substitute the resultant expression into (14).
Then, in the obtained relation

DtW =
(
Dt

(∂K
∂q̇

))
q̇ − ∂K

∂q
q̇+

+
(
C(q, q̇)D + M̂ − E(q, q̇)Dl −B(q)P

)>
q̇,

one should make use of the definitions
∂K
∂q̇

D2
t q = DtK − ∂K

∂q
q̇,(

Dt
∂K
∂q̇

)
q̇ + ∂K

∂q̇
D2

t q = Dt

(
∂K
∂q̇

q̇
)
,

which corresponds to the approach developed in [11] for the
problem of multiplication of distributions. Finally, applying
the Euler theorem on homogeneous functions, we see that
∂K/∂q̇ q̇ = 2K. The last enables one to write out the
expression for the work as follows:W = K +Π−Π(0−
0)+Y +const, where Y is a solution of (15), if only the
identity (v, ω1, ω2, ω3)E(q, q̇) = 0 is taken into account.
It should be stressed that the above-written formulae of
multiplication have the classical sense in the case of ordinary
control functions.

V. CONCLUSIONS

In conclusion, let us discuss the physical sense of the
above-described dynamic optimization problems. A piece of
the body state history in which the power of each control
action is nonnegative is naturally to call accelerating. The
problems considered here consist, in essence, in minimizing
the difference between the energy (in the technical sense)
consumption needed to accelerate the body and, then, to
damp it, the time and distance of the displacement being
given. Hence, if the interval[0, tp] of the optimal control
process is accelerating, then the speech goes about solving
the problem of the given displacement for minimum (in the
technical sense) energy consumption. Obviously, hypothesis
on the quasistationarity of the optimal flow provides this if
the terminal control impulse is accelerating.
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