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Abstract
In the classical multiple scales perturbation method

for ordinary difference equations (O∆Es) as devel-
oped in 1977 by Hoppensteadt and Miranker, differ-
ence equations are replaced at a certain moment in the
perturbation procedure by ordinary differential equa-
tions (ODEs). Taking into account the possibly dif-
ferent behaviour of the solutions of an O∆E and of
the solutions of a nearby ODE, one can not always
be sure that the constructed approximations by the
Hoppensteadt-Miranker method indeed reflect the be-
haviour of the exact solutions of the O∆Es. For that
reason an improved version of the multiple scales per-
turbation method for O∆Es will be presented and for-
mulated in this paper completely in terms of difference
equations.
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1 Introduction
Nowadays the multiple time-scales perturbation

method for differential equations is a well-developed,
well accepted, and very popular method to approximate
solutions of weakly nonlinear differential equations.
This method was developed in the period 1935-1962
by Krylov and Bogoliubov, Kuzmak, Kevorkian and
Cole, Cochran, and Mahony. In the early 1970s Nayfeh
popularized this method by writing many papers and
books on this subject (see for instance [Nayfeh, 1973]).
More recent books on this method and its historical
development are for instance the books by [Nayfeh,
1973], [Holmes, 1995], [Kevorkian and Cole, 1996],
[Murdock, 1991], and [Agarwal, Bohner, O’Regan and
A.Peterson, 2002]. The development of the multi-
ple scales perturbation method for ordinary difference
equations (O∆Es) started in 1960 with the work of
[Torng, 1960]. In this paper a second order O∆E is

reduced to a system of two first order O∆Es by means
of the method of variation of parameters for O∆Es.
Then, nonlinear terms are expanded in discrete Fourier
series, and a Krylov-Bogoliubov method (or equiva-
lently, an averaging method) is applied to obtain the
equations that describe the slow dynamics of the prob-
lem approximately. A similar method was presented in
1970 by Huston in [Huston, 1979]. From the results
in [Huston, 1979] and in [Torng, 1960] it is clear that
the solution of a weakly perturbed (non-) linear O∆E
behaves differently on different iteration scales. In
1977 Hoppensteadt and Miranker introduced in [Hop-
pensteadt and Miranker, 1977] the multiple scales per-
turbation method for O∆Es. For a problem with two
significant iteration scales these authors assume that the
solution xn of an O∆E for instance depends on n and
s = εn (that is, depends on a fast iteration scale and
on a slow iteration scale). In the O∆E xn+1 is then
replaced by x(n + 1, ε(n + 1)) = x(n + 1, s + ε). In
the perturbation scheme x(n + 1, s + ε) is expanded
in a Taylor polynomial, that is, x(n + 1, s + ε) =
x(n + 1, s) + ε∂x

∂s (n + 1, s) + O(ε2), and to avoid un-
bounded terms (or secular terms) in the perturbation ex-
pansion for xn one finally has to solve ordinary differ-
ential equations (ODEs) due to the derivatives in the
Taylor expansions. So, in the perturbation procedure
O∆Es are replaced (partly) by ODEs. A slightly dif-
ferent multiple scales perturbation method for O∆Es
was introduced in [Subramanian and Krishnan] by Sub-
ramanian and Krishnan in 1979. In their approach the
difference operator ∆ is replaced by partial difference
operators. For a problem with two significant iteration
scales the authors of [Subramanian and Krishnan] in-
troduced:

xn+1−xn = ∆x(n, s) = ∆n(n, s)+ε∆sx(n, s), (1)

where ∆nx(n, s) = x(n + 1, s) − x(n, s), and
∆sx(n, s) = x(n, s + ε) − x(n, s). This replacement



is based on the two-timescales perturbation method for
ODEs, where x(t) is replaced by x̃(t, τ) with τ = εt
and

dx(t)
dt

=
∂x̃(t, τ)

∂t
+ ε

∂ñ(t, τ)
∂τ

.

Nowadays the method of Hoppensteadt and Miranker
is assumed to be the standard form of the multiple
scales perturbation method for O∆Es (see for in-
stance [Holmes, 1995; Marathe and Chatterjee, 2006;
Mickens, 1987; Remickens,1987]). Also recently this
method was “rediscovered” by Luongo [Lungo, 1996]
and by Maccari [Maccari, 1999]. It should be observed,
however, that many results concerning ODEs carry
over quite easily to corresponding results for O∆Es,
while other results are completely different from their
continuous counterparts.

The reader is referred to [Agarwal,1992; Agarwal,
Bohner, O’Regan and A.Peterson, 2002; Elaydi, 2005;
Holmes, 1995; Kadalbajoo and Patidar, 2002; Kelly
and Peterson, 1991; Mickens, 1987] for some further
striking differences (and similarities) in the theory for
ODEs and for O∆Es. In the multiple scales perturba-
tion method for O∆Es as developed in [Hoppensteadt
and Miranker, 1977] by Hoppensteadt and Miranker
difference equations are replaced at a certain moment
by differential equations. Taking into account the pos-
sibly different behaviour of the solutions of an O∆E
and of the solutions of an (nearby) ODE one can not
always be sure that the constructed approximations by
the Hoppensteadt-Miranker method indeed reflect the
behaviour of the exact solutions of the O∆E. For that
reason an improved version of the multiple scales per-
turbation method for O∆Es will be presented and for-
mulated in this paper completely in terms of difference
equations.
This paper is organized as follows. In section 2 of
this paper the multiple scales perturbation method for
O∆Es will be presented completely in terms of dif-
ference operators. How this method can be applied to
a second order regularly perturbed, linear O∆E will
be shown in this paper, and how it can be applied to
weakly nonlinear O∆Es will be shown in a forthcom-
ing paper [Van Horssen and Ter Brake]. The asymp-
totic validity of the constructed approximations on suf-
ficiently long iteration scales will be also discussed in
[Van Horssen and Ter Brake]. Finally, in section 3 of
this paper some conclusions will be drawn, and some
remarks on future research will be made.

2 The multiple scales perturbation method for
O∆Es

In this section the multiple scales perturbation method
for O∆Es will be presented in a complete “difference
operator” setting. Before introducing this method sev-
eral operators have to be defined (and motivated). The

well-known shift operator E, the difference operator
∆, and the identity operator I are defined as follows:

Exn = xn+1, ∆xn = xn+1−xn, and Ixn = xn.
(2)

The relationship between these operators easily follows
from (2.1):

E = ∆ + I ⇔ ∆ = E − I. (3)

The solution of a weakly perturbed O∆E usually con-
tains a rapidly changing part in n, and a slowly chang-
ing part in n. This is usually referred to as multiple
scales behaviour. Consider the following functions:

an = 3n ⇒ ∆an = 3n+1 − 3n = (3− 1)3n

= 2an = O(an),
bn = eεn ⇒ ∆bn = eε(n+1) − eεn = O(εbn),
cn = (1 + ε)n ⇒ ∆cn = (1 + ε)n+1 − (1 + ε)n

= O(εcn),
dn = 3n(1 + ε)n ⇒ ∆dn = 3n+1(1 + ε)n+1

−3n(1 + ε)n = (2 + 3ε)dn.
(4)

From (2.3) it is obvious that an only has a rapidly
changing part in n, that bn and cn only have a slowly
changing part in n, and that dn has a rapidly chang-
ing part in n and a slowly one. To make this be-
haviour more clear in notation the following notations
are proposed: an = a(n), bn = b(εn), cn = c(εn),
and dn = d(n, εn). It should be observed that these
notations are similar to the ones used in the multiple
timescales perturbation method for ODEs. Now it is
assumed that xn = x(n, εn). This assumption implies
that the solution of the O∆E depends on two vari-
ables. So, the O∆E actually becomes a partial differ-
ence equation. For that reason also partial shift opera-
tors and partial difference operators have to be defined.
The following definitions are proposed:

E1x(n, εn) = x(n + 1, εn),
Eεx(n, εn) = x(n, ε(n + 1)),
∆1x(n, εn) = x(n + 1, εn)− x(n, εn)

= (E1 − I)x(n, εn),
∆εx(n, εn) = x(n, ε(n + 1))− x(n, εn)

= (Eε − I)x(n, εn).

(5)

From (2.1), (2.2), and (2.4) it follows that (assuming
xn = x(n, εn)):
∆xn = xn+1 − xn = x(n + 1, ε(n + 1))− x(n, εn)

= E1Eεx(n, εn)− Ix(n, εn)
= (∆1 + I)(∆ε + I)x(n, εn)− Ix(n, εn)
= (∆1 + ∆ε + ∆1∆ε)x(n, εn).

And so, it follows that



∆ = ∆1 + ∆ε + ∆1∆ε, and E = E1Eε. (6)

Furthermore, for the partial difference operators ∆1

and ∆ε it is assumed that (also based on (2.3)):

∆1x(n, εn)= O(x(n, εn)), and
∆εx(n, εn)= O(εx(n, εn)). (7)

From (2.5) it is obvious that in (1.1) the operator
∆1∆ε is missing (see also [Subramanian and Krish-
nan]). When xn depends on m + 1 scales the given
definitions can readily be generalized, yielding: (for
j = 0, 1, ..., m)

xn = x(n, εn, ε2n, ..., εmn),
Eεj x(n, ..., εmn = x(n, εn, ..., εj(n + 1), ..., εmn),
∆εj x(n, ...εmn) = (Eεj − I)x(n, .., εmn),
E = E1EεEε2 ...Eεm ,
∆ = (∆1 + I)(∆ε + I)...(∆εm + I)− I,
∆εj x(n, ..., εmn) = O(εjx(n, ..., εmn)).

(8)
Now it will be shown how these operators can be used.
For that reason a simple example will be treated. Con-
sider the weakly perturbed, linear, second order O∆E

xn+2 + εxn+1 + xn = 0, (9)

where ε is a small parameter with 0 < ε ¿ 1. Using
(2.1) and (2.2) it follows that (2.8) can be rewritten in:

E2xn + εExn + Ixn = 0 ⇔
(∆ + I)2xn + ε(∆ + I)xn + Ixn = 0 ⇔
∆2xn + (ε + 2)∆xn + (2 + ε)xn = 0.

(10)

Assuming that xn depends on two scales (a fast scale
n, and a slow scale εn) it follows that xn = x(n, εn)
and that (2.8) or (2.9) becomes

(∆1 + ∆ε + ∆1∆ε)2x(n, εn)
+(ε + 2)(∆1 + ∆ε + ∆1∆ε)x(n, εn)+
+(2 + ε)x(n, εn) = 0 ⇔
(∆2

1 + 2∆1 + 2)x(n, εn) + (2∆1(∆ε + ∆1∆ε)
+2(∆ε + ∆1∆ε)
+ε∆1 + ε)x(n, εn) + O(ε2x(n, εn)) = 0 ⇔
(∆2

1 + 2∆1 + 2)x(n, εn) + (2(∆1 + I)(∆ε + ∆1∆ε)
+ε(∆1 + I))x(n, εn)
+O(ε2x(n, εn)) = 0.

(11)

To construct an approximation for xn = x(n, εn) one
now has to substitute into (2.10) a formal power series
(in ε) for xn, that is,

x(n, εn) = x0(n, εn)+ εx1(n, εn)+ ε2x2(n, εn)+ ....
(12)

Then, by taking together those terms of equal powers
in ε one obtains as O(1)-problem

(∆2
1 + 2∆1 + 2)x0(n, εn) = 0 ⇔

x0(n + 2, εn) + x0(n, εn) = 0,
(13)

and as O(ε)-problem

ε(∆2
1 + 2∆1 + 2)x1(n, εn)

+
(
2(∆1 + I)(∆ε + ∆1∆ε + ε

2 )
)
x0(n, εn) = 0,

(14)
and so on. The O(1)-problem (2.12) can readily be
solved, yielding

x0(n, εn) = f0(εn) cos
(nπ

2

)
+ g0(εn) sin

(nπ

2

)
,

(15)
where f0(εn) and g0(εn) are still arbitrary functions,
which can be used to avoid unbounded behaviour in
x1(n, εn) on the O( 1

ε ) iteration scale.
The O(ε)-problem (2.13) now becomes:

ε(x1(n + 2, εn) + x1(n, εn))
+2(x0(n + 2, ε(n + 1))− x0(n + 2, εn))
+εx0(n, εn) = 0

⇔ ε(x1(n + 2, εn) + x1(n, εn))
= (2∆εf0(εn)− εg0(εn)) cos(nπ

2 )+
+(2∆εg0(εn) + εf0(εn)) sin(nπ

2 ).

(16)

In the O∆E (2.15) for x1(n, εn) it is obvious that
the righthand side contains terms (i.e., cos(nπ

2 ) and
sin(nπ

2 )), which are solutions of the homogeneous
O∆E. Then, to avoid unbounded or secular behaviour
in x1(n, εn) it follows that f0(εn) and g0(εn) have to
satisfy:

2∆εf0(εn)− εg0(εn) = 0,
2∆εg0(εn) + εf0(εn) = 0.

(17)

System (2.16) for f0(εn) and g0(εn) can readily be
solved, yielding

f0(εn) = a0(1 + ε2

4 )
n
2 cos(nµ(ε))

+b0(1 + ε2

4 )
n
2 sin(nµ(ε)),

g0(εn) = −a0(1 + ε2

4 )
n
2 sin(nµ(ε))

+b0(1 + ε2

4 )
n
2 cos(nµ(ε)),

(18)



where a0 and b0 are arbitrary constants, and where µ(ε)
is given by cos(µ(ε)) = (1 + ε2

4 )−
1
2 , and sin(µ(ε)) =

ε
2 (1 + ε2

4 )−
1
2 . From these expressions µ(ε) can be ap-

proximated by

µ(ε) =
1
2
ε− 1

24
ε3 + O(ε5), (19)

and from (2.15) x1(n, εn) can be determined, yielding

x1(n, εn) = f1(εn) cos(
nπ

2
)+g1(εn) sin(

nπ

2
), (20)

where f1(εn) and g1(εn) are still arbitrary functions
which can be used to avoid secular terms in x2(n, εn).
At this moment, however, we are not interested in the
higher order approximations. For that reason we will
take in (2.19) f1(εn) and g1(εn) equal to the constants
a1 and b1 respectively. So far we have constructed an
approximation for the solution of the O∆E (2.8). In
this case the approximation x0(n, εn) can be compared
with the exact solution of the O∆E (2.8). The exact
solution is given by

xn = a 1n cos(nθ(ε)) + b 1n sin(nθ(ε)), (21)

where a and b are arbitrary constants, and where θ(ε) is
given by cos(θ(ε)) = − ε

2 and sin(θ(ε)) = (1 − ε2

4 )
1
2 ,

and θ(ε) can be approximated by θ(ε) = π
2 + ε

2 + ε3

48 +
O(ε5). The approximation x0(n, εn) is given by (2.14),
(2.17), and (2.18). This approximation can be rewritten
in the following form

x0(n, εn) = a0

(
1 + ε2

4

)n
2

cos
(

nπ
2 + nµ(ε)

)

+b0

(
1 + ε2

4

)n
2

sin
(

nπ
2 + nµ(ε)

)
.

(22)

From (2.20) and (2.21) it can readily be deduced that
the difference between the exact solution xn and the
approximation x0(n, εn) is of order ε for n ∼ 1

ε . So,
the constructed approximation is O(ε) accurate on an
iteration scale of order 1

ε . Usually of course the exact
solution of a weakly (non)linearly perturbed O∆E will
not be available. In a forthcoming paper [Van Horssen
and Ter Brake] it will be shown how for such cases
the asymptotic validity of an approximation can be ob-
tained on a sufficiently long iteration scale.

3 Conclusions and remarks
In this paper an improved version of the multiple

scales perturbation method for O∆Es has been pre-
sented and formulated completely in terms of differ-
ence equations. It can be shown (see[Van Horssen and

Ter Brake]) that this improved method can be applied to
regularly perturbed O∆Es and to singularly perturbed,
linear O∆Es. The relative and/or absolute errors in
the constructed approximations of the solutions of the
O∆Es can be determined, and it can be shown that
these approximations are valid on long iteration scales.
How solutions of singularly perturbed, linear O∆Es

can be approximated will also be shown in [Van
Horssen and Ter Brake]. Compared to the existing
rescaling procedures for singularly perturbed ODEs
and O∆ES (see for instance [Kevorkian and Cole,
1996; O’Malley, 1991; Sari and Zerizer, 2005; Ver-
hulst, 2005]) also a slightly revised rescaling proce-
dure will be presented in [Van Horssen and Ter Brake]
to find the significant scalings for some singularly per-
turbed, linear O∆Es

It is to be expected that the presented perturbation
method also can be applied successfully to weakly per-
turbed partial difference equations, and to singularly
perturbed, weakly nonlinear O∆Es. Of course, these
extensions will be interesting subjects for future re-
search. Finally, it should be remarked that the pre-
sented perturbation method also can be used in the nu-
merical analysis of certain classes of regularly or sin-
gularly perturbed differential equations to see whether
the solutions of the discretized equations (i.e. the dif-
ference equations) have the same type of behaviour as
the solutions of the differential equations or not.
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