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Abstract: The paper treats a question of proportional-integral-derivative (PID) controller
design for aircraft pitch attitude in the presence of uncertain aerodynamics. The presented
design methodology guarantees desired pitch attitude transient performance indices by inducing
of two-time-scale motions in the closed-loop system where the controller dynamics is a singular
perturbation with respect to the system dynamics. Stability conditions imposed on the fast
and slow modes and sufficiently large mode separation rate between fast and slow modes can
ensure that the full-order closed-loop nonlinear system achieves the desired properties in such
a way that the pitch attitude transient performances are desired and insensitive to external
disturbances and variations of aerodynamic characteristics. The singular perturbation method
is used throughout the paper in order to get explicit expressions for evaluation of the controller
parameters. The high-frequency-gain online identification and gain tuning are incorporated in
the control loop in order to maintain the stability of the fast-motion transients for a large
range of aerodynamic characteristics variations. Numerical example and simulation results are
presented.
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1. INTRODUCTION

Due to the complexity, variability, and uncertainties of
aerodynamics, many different control techniques are used
in order to design of aircraft and missile control systems
aimed to maintain transient performances in the presence
of uncertain aerodynamics.

There are numerous approaches to flight control system
design, for instance, based on the Nonlinear Inverse Dy-
namics (NID) method, feedback linearization, nonlinear
H∞, linear matrix inequalities, l1 optimal control, and
LQR (see, for example, Petrov and Krutko (1981); Vuko-
bratović and Stojić (1988); Lane and Stengel (1988); Wise
(1995)). In particular, control systems with sliding mode
discussed by Schumacher (1994) and control systems with
the highest derivative in feedback treated by B lachuta et
al. (1997), Czyba and B lachuta (2003), are very powerful
tools for aircraft and missile control system design under
uncertainties. Note that the design methodology discussed
by B lachuta et al. (1997), Czyba and B lachuta (2003)
leads to the structure of proportional-integral-derivative
(PID) controller in case of systems with relative degree
equals two.

It is well known that throughout the huge set of flight con-
trol applications, the PI (PID) controllers are extensively
used. Problems of PI (PID) control system analysis and
design are discussed, for instance, by O’Dwyer (2003).
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The majority of known design procedures of PI (PID)
controllers are applicable merely for stable linear systems.
For example, the well known tuning rules suggested by
Ziegel and Nichols (1942), or its various modifications are
widely used for selection of controller parameters. In order
to fetch out the best PI and PID controllers in accordance
with the assigned design objectives, a set of tuning rules,
identification and adaptation schemes has been developed
(see Åström et al. (1993)). The main disadvantage for
the most part of the existing procedures for PI or PID
controller design is that the desired transient performances
can not be guaranteed in the presence of nonlinear plant
parameter variations and unknown external disturbances.
In order to overcome this disadvantage, the singular per-
turbation technique (see Kokotović et al. (1999), Naidu
(2002)) may be used for PI or PID controller design as
was shown by Yurkevich (2004) where desired output
transients are guaranteed by inducing of two-time-scale
motions in the closed-loop system. Stability conditions
imposed on the fast and slow modes and sufficiently large
mode separation rate between fast and slow modes can
ensure that the full-order closed-loop nonlinear system
achieves the desired properties in such a way that the
output transient performances are desired and insensi-
tive to external disturbances and parameter variations
of the system. The stability of fast-motion transients in
the closed-loop system is provided by proper selection of
controller parameters, while slow-motion transients corre-
spond to the stable reference model of desired mapping
from reference input into controlled output.



The critical point of the workability of the singular pertur-
bation design methodology is that the controller parame-
ters should be selected in accordance with the requirement
on fast-motion transients stability and, moreover, the de-
sired degree of time-scale separation between the fast and
slow modes in the closed-loop system should be provided
(see Yurkevich (2004)). However, the large variations
of parameters of the system may give the disappearance
of the two-time-scale structure of the trajectories in the
closed-loop system. In order to maintain the two-time-
scale structure of the trajectories in the closed-loop system
and the desired damping of fast transients, an adaptive
gain tuning scheme is proposed in this paper. As a result,
the desired pitch attitude transient performance indices
can be provided for significantly large range of aerody-
namic characteristics variations.

The paper is organized as follows. First, a model of the
aircraft longitudinal motion is defined. Second, the singu-
lar perturbation design methodology is highlighted for the
purpose of aircraft pitch attitude control in the presence of
uncertain aerodynamics. Third, the utmost importance of
high-frequency-gain online identification and gain tuning
in nonlinear control systems designed via singular pertur-
bation technique is shown. Fourth, a gain tuning procedure
and high-frequency-gain online identification procedure
are introduced. Finally, simulation results of the aircraft
pitch attitude adaptive control system are presented as
well.

2. AIRCRAFT CONTROL PROBLEM

2.1 Aircraft Longitudinal Motion Model

The discussed approach to PID adaptive controller design
for aircraft pitch attitude angle is treated based on the
aircraft longitudinal motion model represented by Woj-
ciechowski et al. (1989):

θ̇ = q,

u̇ =−wq − g sin θ +
ac

m
δc +

+
1

2m
ρv2

a{Sxcx(α, δh) cos α − Szcz(α, δh) sin α},

ẇ = uq + g cos θ + (1)

+
1

2m
ρv2

a{Sxcx(α, δh) sin α + Szcz(α, δh) cos α},

q̇ =
1

2Jy
ρv2

aLySymy(α, δh),

where, in accordance with Fig. 1, we have that
va is an air velocity value, va = (v2

ax + v2
az)1/2;

vax, vaz are components of the air velocity,
vax = u − vwx cos θ + vwz sin θ;
vaz = w − vwx sin θ − vwz cos θ;

α is an angle of attack, α = tan−1(vaz/vax);
m is an aircraft mass, m = 2000 kg;
Jy is a moment of inertia, Jy = 5000 kg m2;
Ly is an equivalent arm force in the flow coordinate system,
Ly = 0.5 m;
Sx, Sy, Sz are equivalent areas in the flow coordinate
system, Sx = 0.5 m2, Sy = 2.0 m2, Sz = 10.0 m2;

ρ is the air density, ρ = 1.2 kg/m3;

g is the acceleration, g = 9.81 m/s
2
;

ac is a coefficient,ac = 20.0 N/% ;
θ is an aircraft pitch attitude angle, θ ∈ [−0.3, 0.3] rad;
u is a longitudinal velocity, u ∈ [50, 300] m/s;
w is a normal velocity, w ∈ [−20, 20] m/s;
q is an aircraft pitch rate, q ∈ [−0.15, 0.15] rad/s;
δh is an angle of elevator deflection, δh ∈ [−0.7, 0.7] rad;
δc is a thrust coefficient, δc ∈ [0, 400] % ;
vwx, vwz are components of wind velocity in the inertial
system, vwx ∈ [−20, 20] m/s, vwz ∈ [−10, 10] m/s;

We assume also that the functions cx(α, δh), cz(α, δh),
my(α, δh) have the following form:

cx(α, δh) = co
x + cα2

x α2 + ch2
x (δh)2

cz(α, δh) = co
z + cα

z α + ch
zδh

my(α, δh) = mα
y α + mh

yδh

where co
x = −0.2; cα2

x = −0.002; ch2
x = −0.002; ch

z =
−10−4; co

z = −0.15; cα
z = −8.6; mα

y = 0.057; mh
y =

−0.01.

Fig. 1. Aircraft longitudinal motion model.

2.2 Problem of Aircraft Pitch Attitude Control

The control problem is to provide the following condition:

lim
t→∞

eθ(t) = 0 (2)

where eθ(t) is the error of the reference input realization;
eθ(t) = θd(t)−θ(t); θd(t) is the reference input. Moreover,
the controlled transients eθ(t) → 0 should have a desired
behavior. These transients should not depend on the ex-
ternal disturbances and varying parameters of the aircraft
model (1).

2.3 Input-Output Mapping of Aircraft Model

From (1) it follows that the second time derivative of θ(t)
depends algebraically on the control variable δh, that is

d2θ/dt2 = fθ(·) + bθ(·)δh (3)

where

fθ(·) :=
1

2Jy
ρv2

aLySym
α
y α, bθ(·) :=

1

2Jy
ρv2

aLySym
h
y .

Hence, the second time derivative of θ(t) is the relative
highest derivative of the output variable θ(t). Note, the
condition bθ(·) < 0 holds for the above defined parameters.

Remark 1. The expression (3) describes the input-output
mapping of the aircraft model without taking into account
the internal dynamics of aircraft (in particular case, that
is zero-dynamics). It is assumed through the text that the
internal dynamics is stable or at least is bounded. The
analysis of the internal behavior of the system (1) was
done by Yurkevich et al. (1991).



Remark 2. The parameter bθ is called as the high-
frequency gain of the input-output mapping defined by
(3), where θ is considered as the output variable, while δh

is considered as the input variable.

Remark 3. The high-frequency gain bθ may undergo ex-
tensive variations depending on operating point and aero-
dynamic characteristics, in particular, due to the variation
of the air velocity va.

3. CONTROLLER DESIGN VIA TIME-SCALE
SEPARATION

3.1 PID Controller

Consider the controller given by

µ2 δ
(2)
h + d1µ δ

(1)
h = k[F (θ(1), θ, θd) − θ(2)] (4)

where µ is the small positive parameter, and

F (θ(1), θ, θd) := −a1θ
(1) − a0[θd − θ]

where a0 > 0 and a1 > 0. The parameters a0, a1 are
selected such that the polynomial

s2 + a1s + a0 (5)

has the desired root distribution inside the left part of the
s-plane, where roots of the polynomial (5) are defined by
the requirements imposed on the desired output transient
performance indices of θ(t) in the system (1).

Remark 4. The control law (4) can be expressed in terms
of transfer functions, that is the structure of the conven-
tional PID controller given by

δh(s) =
k

µ(µs + d1)

{a0

s
[θd(s) − θ(s)] − (s + a1)θ(s)

}

where the controller is proper and implemented without
an ideal differentiation of θ(t) or θd(t).

The replacement of θ(2) in (4) by the right member of (3)
yields the closed-loop system equations in the form

θ(2) = fθ(·) + bθ(·)δh (6)

µ2 δ
(2)
h + d1µ δ

(1)
h + kbθ(·)δh = k[F (θ(1), θ, θd) − fθ(·)].

Denote θ1 = θ, θ2 = θ(1), δh1 = δh, δh2 = µ δ
(1)
h . Hence,

from (6), the singularly perturbed differential equations

θ̇1 = θ2,

θ̇2 = fθ(·) + bθ(·)δh1

µ δ̇h1 = δh2, (7)

µ δ̇h2 =−kbθ(·)δh1 − d1δh2 + k[F (θ2, θ1, θ
d) − fθ(·)]

result as µ → 0.

If µ → 0, then fast and slow modes are artificially forced
in the system (7) where the time-scale separation between
these modes depends on the parameter µ. Hence, the
properties of (7) can be analyzed on basis of the two-
time-scale technique and, as a result, slow and fast motion
subsystems are derived in the next subsection of the paper.

3.2 Two-Time-Scale Motions Analysis

Let us introduce the new fast time scale t0 = t/µ. Hence,
from (7), the closed-loop system equations

d

dt0
θ1 = µθ2,

d

dt0
θ2 = µ[fθ(·) + bθ(·)δh1]

d

dt0
δh1 = δh2, (8)

d

dt0
δh2 =−kbθ(·)δh1 − d1δh2 + k[F (θ2, θ1, θ

d) − fθ(·)]

result. If µ → 0, then from (8) the FMS equations

d

dt0
δh1 = δh2, (9)

d

dt0
δh2 =−kbθ(·)δh1 − d1δh2 + k[F (θ2, θ1, θ

d) − fθ(·)].

follow. Then, by returning to the primary time scale t =
µt0, we obtain the following FMS equations:

µ δ̇h1 = δh2, (10)

µ δ̇h2 = −kbθ(·)δh1 − d1δh2 + k[F (θ2, θ1, θ
d) − fθ(·)]

where θ1 and θ2 are treated as the constant values during
the transients in (10). This requirement can be easily
satisfied for sufficiently small design parameter µ. Finally,
the FMS equations (10) may by rewritten as

µ2 δ
(2)
h + d1µ δ

(1)
h + kbθ(·)δh = k[F (θ(1), θ, θd) − fθ(·)](11)

where fθ(·) and bθ(·) are treated as the constant values
during the transients in (11).

Assume that the sign of k is selected such that the
condition kbθ(·) > 0 holds and the desired fast damping
of FMS transients is provided by selection of controller
parameters d1, µ, and k. Then , the quasi-steady state for
the FMS (11) yields δh(t) = δid

h (t) where

δid
h = b−1

θ (·)[F (θ(1), θ, θd) − fθ(·)]

and δid
h is exactly the inverse dynamics solution. Substitu-

tion of δh = δid
h into (3) yields the SMS equation

θ(2) + a1θ
(1) + a0θ = a0θ

d. (12)

By the another way, the SMS equation (12) can be directly
derived from (7), by taking µ = 0.

In accordance with the main qualitative property of
the singularly perturbed systems (see Klimushchev and
Krasovskii (1962); Hoppensteadt (1966); Kokotović et al.
(1999); Naidu (2002)), we have, if an isolated equilibrium
point of the FMS (11) exists and one is exponentially
stable, then there exists µ∗ > 0 such that for all µ ∈ (0, µ∗)
the trajectories of the singularly perturbed system (7)
approximate to the trajectories of the SMS (12). So, if a
sufficient time-scale separation between the fast and slow
modes in the system (7) and exponential convergence of
FMS transients to equilibrium are provided, then, after
the damping of fast transients, the desired output behavior
prescribed by (12) is fulfilled despite that fθ(·) and bθ(·)
are unknown complex functions. Thus, the output tran-
sient performance indices are insensitive to parameter vari-
ations of the nonlinear system and external disturbances,
by that the solution of the discussed control problem (2)
is maintained.



4. PID ADAPTIVE CONTROLLER

4.1 Problem of High-Frequency-Gain Online Identification
and Gain Tuning

The critical point of the workability of the discussed design
methodology via singular perturbation technique is that
the controller parameters should be selected in accordance
with the requirement on FMS stability and, moreover, the
desired degree of time-scale separation between the fast
and slow modes in the closed-loop system (7) should be
provided.

From (11), the FMS characteristic polynomial

Afms(s) = µ2s2 + d1µ, s + γ (13)

follows, where γ = kbθ(·).

The main disadvantage is that the decrease of time-
scale separation degree and loss of the FMS transient
performances may occur in case of large variations of the
high-frequency gain bθ(·).

In order to overcome the disadvantage caused by variations
of bθ, two problems have to be solved. The first one is
online identification of bθ. The second one is the adaptive

gain tuning based on the knowledge of an estimate b̂θ for
bθ. Then, by taking

k = k1k̄0 and k̄0 = b̂−1
θ (14)

the condition γ ≈ k1 holds where k1 > 0. As a result
of gain tuning given by (14), the variations of the high-
frequency gain bθ do not alter the FMS transient perfor-
mance indices.

4.2 Adaptive Gain Tuning

The block diagram of the proposed aircraft pitch attitude
control system with adaptive gain tuning is shown in
Fig. 2. Take k̄0 = k̄k0 and

δh = k̄k0δ̂h (15)

where δ̂h is the new control variable, k̄ = sgn(bθ) = −1, k0

is the tuning gain, and k0 > 0.

Fig. 2. Block diagram of the aircraft pitch attitude control
system with adaptive gain tuning

Consider the method of online identification based on a
high-frequency probing signal (see, for example, Eykchoff
(1974)). Let

δ̂h(t) = δ̃h(t) + δ0
h sin(ωt) (16)

where δ0
h sin(ωt) is the high-frequency probing signal with

small value of amplitude δ0
h. Next, let us rewrite the

controller given by (4) as

µ2 δ̃
(2)
h + d1µ δ̃

(1)
h = k1[F (θ(1), θ, θd) − θ(2)] (17)

Take, for example, the tuning rule in the following form
dk0

dt
= αγ [γd

0 − γ̂0], k0(0) = k0
0 (18)

where γd
0 is the desired value of γ0 and γ̂0 is the estimate

of γ0 := k̄k0bθ(·). It is clear, in the case of steady-state

when dk0/dt = 0, from (18) the condition k0 = γd
0/(k̄b̂θ(·))

results where b̂θ(·) is an estimate of bθ(·).

4.3 High-Frequency-Gain Online Identification

The high-frequency small oscillations are forced in δ̂h(t)
and θ(t) due to the high-frequency probing signal δ0

h sin(ωt)
what was incorporated in the control system. Let Aδ̂h

be
the amplitude of oscillations with frequency ω that are

forced in the control δ̂h(t) and Aθ be the amplitude of
oscillations with frequency ω that are forced in the output
θ(t). From (3) and (15) it follows that

lim
ω→∞

Aθ(ω)

Aδ̂h
(ω)

ω2 = γ0. (19)

Hence, the high-frequency-gain online identification via
relation (19) involves two amplitude detectors for Aθ(ω)
and Aδ̂h

(ω). For example, the amplitude detector based

on the relationship Aξ =
√

ξ2 + (ξ̇/ω)2 can be used when

ξ(t) = Aξ sin(ωt). The approach by the use of (19), which
is additionally supplemented by the low-pass and high-
pass filtering, is used in this paper in order to get the
estimates Âθ(ω) and Âδ̂h

(ω), where the amplitude detector

for Âδ̂h
(ω) is described by

τ2
0

d2δ̄h

dt2
+ 2τ0

dδ̄h

dt
+ 1 = τ2

0

d2δ̂h

dt2

τ2
f

d2u1

dt2
+ 2τf

du1

dt
+ 1 = δ̄h

τ2
f

d2u2

dt2
+ 2τf

du2

dt
+ 1 =

dδ̄h

dt
(20)

Âδ̂h
= kf

√

u2
1 + (u2/ω)2

kf =
√

[1 − (τfω)2]2 + (2τfω)2

The amplitude detector for Âθ(ω) is the same as (20).
Then, with the help of the low-pass filter given by

τ1
dγ̂0

dt
+ γ̂0 =

Âθ

Âδ̂h
+ ε

ω2, γ̂0(0) = γ̂0
0 , (21)

the estimate γ̂0 results where ε is the small positive
parameter in order to avoid the singularity condition in
the right member of (21).

5. SIMULATION RESULTS

The simulation results of the closed-loop system are based
on the aircraft longitudinal motion model (1) with (15).
The high-frequency probing signal is incorporated in the
system as shown in (16). In accordance with (17), consider
the feedback controller (C) in Fig. 2 in the following form:

µ2 δ̃
(2)
h + d1µ δ̃

(1)
h = k1[−a1θ

(1) − a0[θd − θ] − θ(2)]. (22)

The adaptive gain tuning for k0 is provided in accordance
with the rule (18) while the high-frequency-gain online



identification scheme consists of (20)-(21). The controller
parameters are selected as k1 = 10, a0 = 0.1145, a1 =
0.4, and µ = 0.6609 s. The parameters of the adaptive
gain tuning scheme and the high-frequency-gain online
identification scheme are selected as γd

0 = 1, γ̂0(0) = 1,
ε = 10−5. αγ = 0.2, k0(0) = 65, ω = 100 rad/s,
Aω = 0.0003, τf = 0.003 s, τ0 = 0.01 s, τ1 = 0.3 s,
and δc(t) = 150 % for all t. The simulation results of
the closed-loop system are shown in Figs. 3–12. Figure 3
contains the plots of θd(t) and θ(t) showing the output step
response in the closed-loop system where the air velocity
va(t) variations are displayed in Figure 4. From Figure 9
it can be observed that the condition γ̂0(t) → γd

0 is kept
due to the tuning of the gain k0(t) as seen in Figure 10.

Fig. 3. Plots of the aircraft pitch attitude θ(t) (rad) and
θd(t) (rad).

Fig. 4. Plot of the air velocity va(t) (m/s).

Fig. 5. Plot of the normal velocity w(t) (m/s).

Fig. 6. Plot of the aircraft pitch rate q(t) (rad/s).

Fig. 7. Plot of the angle of attack α(t) (rad).

Fig. 8. Plot of the elevator deflection δh(t) (rad).

Fig. 9. Plot of γ̂0(t) where γ̂0(t) is the estimate of γ0(t).

6. CONCLUSION

The main advantage of the discussed singular perturba-
tion technique for control system analysis and design is
that the parameters of the PID adaptive controller for
nonlinear aircraft model can be analytically derived in



Fig. 10. Plot of the tuning gain k0(t).

Fig. 11. Plot of wind gusts vwx(t) (m/s).

Fig. 12. Plot of wind gusts vwz(t) (m/s).

accordance with such indirect performance objectives as
the desired root distribution of the reference model char-
acteristic polynomial, while the desired root distribution is
defined by such direct aircraft pitch attitude performance
objectives as the settling time and overshoot.

The application of the singular perturbation technique in
the presented design methodology allows to get desired air-
craft pitch attitude transient performance indices for non-
linear aircraft model under uncomplete knowledge about
external disturbances and aerodynamic characteristics. It
has been shown, the high-frequency-gain online identifi-
cation and gain tuning in the discussed adaptive control
system allow to maintain the two-time-scale structure of
the trajectories of the closed-loop system and desired
transient performance indices of fast transients in case
of significantly large range of aerodynamic characteristics
variations. Simulation results show the effectiveness of the
proposed control laws.
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Vukobratović, M. and Stojić, R. (1988). Modern aircraft
flight control. Lecture Notes in Control and Information
Sciences, Springer-Verlag, volume 109.

Wise, K. A. (1995). Applied controls research topics in the
aerospace industry, Proc. of the 34th Conf. on Decision
and Control, New Orleans, LA, 751–756.

Wojciechowski, K., Ordys, A., and Polańska, J. (1989).
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