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Abstract
We discuss the case of a harmonic oscillator-based

quantum battery strongly coupled to a highly non-
Markovian thermal reservoir via the quantum charger
described by the Caldeira–Leggett model. The coupling
between the reservoir and the battery serves as a control
parameter for the system. We consider the system to stay
in the strongly underdamped regime. Within the frame-
work of the open-loop approach, we determine the opti-
mal shape of control for the battery charging work and
then restore the control coupling characteristics of QB
in the Hamiltonian for the alternative cases of low and
high temperatures. Ultimately, we discuss some possible
ways to develop our model for the feedback algorithms.
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1 Introduction: Control Algorithms for Quantum
Batteries

Quantum batteries are capable of storing and trans-
ferring energy at a quantum level. In recent years, we
have observed a boom in theoretical and experimental
research on such devices and their practical implementa-
tion. The work principles of a quantum battery (QB)
cannot be reduced to its classical analog, and specif-
ically, quantum concepts, such as the quantum many-
body approach in an open environment, must be devel-

oped to model such devices [Campaioli, Gherardini, et
al., 2024].

The charging and discharging processes in quantum
batteries, together with the possible energy loss during
its storage, in their inorganic (quantum dots and wells,
perovskite systems, superconductors) and even organic
(microcavities [Quach, McGhee, et al., 2022]) realiza-
tions are based on the thermodynamic principles of open
quantum systems [Camposeo, Virgili, et al., 2025]. As a
rule, the theoretical QB protocol includes the model for
the quantum battery itself, and its charger placed in the
external reservoir [Caravelli, Yan, et al., 2021]. Some
models study in detail the energy storage lifetime [Liu,
Zhang, et al., 2025] and dissipative processes during
the charging procedure [Pokhrel and Gea-Banacloche,
2025].

The set of control methods used for QBs can be algo-
rithmically divided into two categories: open-loop and
feedback algorithms.

1.1 The feedback approaches
Usually, the feedback methods are supposed to be more

efficient in controlling a physical system, especially be-
cause of their possibilities to design an optimal and
suboptimal control. For similar problems of the qubit
state control [Borisenok and Gogoleva, 2024] and qubit
energy control [Pechen and Borisenok, 2015; Pechen,
Borisenok, Fradkov, 2022] it was successfully applied in
the form of speed gradient [Fradkov, 2007]. Quantum-
inspired machine learning has been used for unravelling
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the decoding operation in the non-ideal quantum com-
munication channel [Tomilin and Il’ichov, 2023].

Optimal control for QBs can be applied both to direct
charging from the environment and to mediated charg-
ing via a charger [Mazzoncini, Cavina et al., 2023].
The comparison of two techniques has been studied for
coupled qubits and quantum harmonic oscillators. The
optimal control is usually formulated in the form of
Pontryagin’s Minimum Principles [Mazzoncini, Cavina,
et al., 2023], but may also cover the linear feedback
[Morrone, Talarico, et al., 2024; Rodrı́guez, Ahmadi,
et al., 2024; Hadipour and Haseli, 2025], homodyne-
based feedback [Song, Wang, et al., 2025], exploit-
ing dark states [Rodrı́guez, Ahmadi, et al., 2024], and
so-called ’bang-bang’ control (expending external fields
with Heaviside step functions) [Mazzoncini, Cavina, et
al., 2023]. The noise perturbation from the environment
and the effects originated in nonzero environmental tem-
peratures can be covered with the iterative numerical ap-
proach for drive optimization [Rodrı́guez, Ahmadi, et al.,
2024].

An interesting example of such a technique uses lo-
cal and non-local quantum measurement parameters as
a control, enhancing charging energy and ergotropy [Du
et al., 2025]. This approach is based on introducing new
degrees of freedom in the system that originates in the
measurement schemes.

1.2 The open-loop approaches
For the open-loop control in QBs, we can mention

time-dependent classical pulses [Gemme et al., 2024]
and Floquet engineering applying periodic driving fields
[Du et al., 2025; Song, Wang, et al., 2025] to drive dis-
sipative models. In [Cavaliere, Gemme, et al., 2025],
rectangular pulses are applied to the leakage of energy
by dynamical blockade.

The choice of particular control methods depends on
the specific type of QB, its charging mechanism, and
the desired performance characteristics [Shastri, Jiang,
et al., 2025].

In [Borisenok, 2020], we already studied an open-loop
control approach for the Dicke quantum battery, where
the controlled coupling between the cavity and quan-
tum two-level system. The model was formulated for
the Tavis–Cummings Hamiltonian. In this paper, we
discuss the case of quantum harmonic oscillator bat-
tery strongly coupled to a highly non-Markovian ther-
mal reservoir via the quantum charger described by the
Caldeira–Leggett model [Caldeira and Leggett, 1983].
Such a model has been developed in [Cavaliere, Gemme,
et al., 2025] for driving the QB with a set of short-time
rectangular pulses.

We follow here a different approach, finding the opti-
mal shape of control for the charging work of the battery,
and then restoring the control coupling characteristics of
QB in the Hamiltonian.

2 Model for the Reservoir Engineering
Some studies consider the interaction of quantum bat-

teries with the standard thermal reservoir [Elghaayda,
Ali, et al., 2025].

Nevertheless, the more advanced technique involving
the manipulation by the environment that the quantum
battery interacts with to drive its charging dynamics is
called a reservoir engineering. It presents diverse strate-
gies for optimizing the charging processes of QBs [Ah-
madi, Mazurek, Horodecki, et al., 2024; Lu, Tian, et al.,
2025].

2.1 Reservoir engineering
One way to induce a directed energy flow from the

charger to the battery is introducing nonreciprocity [Ah-
madi, Mazurek, Horodecki, et al., 2024; Lu, Tian, et al.,
2025] or Floquet engineering [Song, Wang, et al., 2025]
to enhance charging efficiency and energy storage. Ad-
ditionally, it can help in suppressing the self-discharging
of QB [Che, Tan, et al., 2025].

Structured reservoir engineering can be used to im-
prove the ergotropy by coupling QBs to a topological
photonic waveguide in the long-time limit [Lu, Tian, et
al., 2025].

The other alternative approach replaces the direct co-
herent interaction between a charger and a battery with a
dissipative interaction mediated by an engineered shared
reservoir to redistribute the energy optimally during the
charging process [Ahmadi, Mazurek, Barzanjeh, et al.,
2025].

2.2 The Caldeira-Leggett model
To describe the reservoir control for QB, we focus here

on the semi-empirical Caldeira–Leggett model for the
quantum system coupled to an engineered environment
[Caldeira and Leggett, 1983].

The model demonstrates a few advantages: it involves
a relatively simple model Hamiltonian, is analytically
easily treatable, mimics all basic features of real physi-
cal systems, and covers the processes of dissipation [Fe-
rialdi, 2017].

The Hamiltonian of the Caldeira–Leggett model is rep-
resented with the three terms [Cavaliere, Gemme, et al.,
2025]:

Ĥ = ĤB + ĤR + θ(t)ĤC , (1)

with the components of the battery (B), reservoir (R),
and the coupling (C) between B and R, which plays a
role of charger. The unitless coupling parameter θ is off
at the initial moment: θ(0) = 0, and then it belongs to
the interval [0,1].

According to the charging protocol [Cavaliere,
Gemme, et al., 2025], the charging time is short, and
the coupling must be switched off after that.
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2.3 Energy characteristics of QB charging
The charging process described by (1) has two main

energy characteristics. The first one is given by:

∆EB(t) =< ĤB(t) > − < ĤB(0) > , (2)

with < ... >= Tr[..., ρ̂(0)] with ρ̂(0) is the density ma-
trix of the system (1) at the initial moment of time. In
(2), < ĤB(t) > represents the energy stored in QB
at the moment t to compare with the initial quantity
< ĤB(0) >.

The second important characteristic is the ergotropy,
i.e., the maximum amount of energy that can be
extracted from the battery through unitary processes
[Koshihara and Yuasa. 2023; Hoang, Metz. et al., 2024]:

E(t) =< ĤB(t) > −ω0

√
detσB(t). (3)

Here ω0 is a basic frequency scale for the given QB, and
σB(t) is the covariance matrix; for details see [Cavaliere,
Gemme, et al., 2025].

Correspondingly, based on (2) and (3), the perfor-
mance of QB is represented with two ratios: The energy
ratio

ηB(t) =
E(t)

< ĤB(t) >
, (4)

and the work ratio

ηW (t) =
E(t)

W (t)
, (5)

where W (t) is the work of charging.
For the high efficiency of QB, both ratios (4) and (5)

should be as close to 1 as possible.

2.4 Typical time scales and damping regimes in the
model

Apart from the eigenfrequency ω0, the model (1) pos-
sesses two typical inverse time scales: the coupling
strength γ0 and the Drude act-off, i.e. the inverse mem-
ory time scale ωD, here we follow the notations in [Cav-
aliere, Gemme, et al., 2025]. Based on them, one can
define the frequency:

Ω =
√
γ0ωD. (6)

.
There are two distinct asymptotic regimes in the sys-

tem, the underdamped:

γ0 << ω0, ωD, (7)

and the overdamped one:

γ0 >> ω0, ωD. (8)

In this paper, we study the underdamped regime (7),
where the dissipation decreases and decoherence slows
down as the reservoir damping is increased [Buxton,
Russo, et al., 2023]. In such a case, the ergotropy (3)
is already extremely close to the optimal one:

E(t) ≃< ĤB(t) > , (9)

such that for the control of the QB efficiency control, one
can focus on (5).

3 Control in the Undamped Regime
We discuss here the open-loop control for the strongly

underdamped regime (7) in the model (1). For further
representation, we use the energy units with the Boltz-
mann constant k = 1 and the Planck constant ℏ = 1.

3.1 Control on the work of charging
In the strong underdamped regime (7) at the low tem-

perature T << ωD, we can present the ergotropy (3)
as:

< ĤB(t) >≃ E(t) ≃ Ω2

4ω0
u(t), (10)

and the charging work as:

W (t) =≃ Ω2

4ω0

[
1− e−ωDt + u(t)

]
. (11)

Here u(t) is a unitless non-negative control signal, such
that u(0) = 0. The control is applied at the time scale
1/ωD.

Unlike [Cavaliere, Gemme, et al., 2025], we first en-
gineer the shape of the signal u(t), and then restore the
shape of the coupling parameter θ(t) via the auxiliary
functions:

χ(t) =
1

Ω

√
u(t), (12)

and

γ(t) = γ0e
−ωDtθ(t), (13)

which are expressed one with another with their im-
ages in the Laplace domain s [Cavaliere, Gemme, et al.,
2025]:

χ̃(s) =
1

s2 + ω2
0 + sγ̃(s)

. (14)

In the similar manner, at the high temperature T >>
ωD one can get: for the ergotropy:

< ĤB(t) >≃ E(t) ≃ (15)

≃ T

2

[
u(t) +

(
1− e−ωDt

)]
,
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and for the charging work:

W (t) ≃ T

2

[
u(t) +

Ω2

ω2
0

(
1− e−

2ω2
0ωD
Ω2 t

)]
. (16)

Then we can again apply Eqs (12)-(14).
The coupling in the model is short-time and must be

switched off at the scale 1/ωD. The typical scales for
the frequencies are: γ0 belongs to the interval from 10 to
100 s−1, ωD - from 10 to 200 s−1, and ω0 = ωD/3

√
3

[Cavaliere, Gemme, et al., 2025]. Let’s chose γ0 = 49
s−1, and ωD = 100 s−1, then by (6) Ω = 70 s−1.

3.2 Engineering the control signal
The control is done at the time scales 1/Ω for t ≥ 1,

such that:

u(t) =
(
eΩt − 1

)2
. (17)

Then by (12):

χ(t) =
1

Ω

(
eΩt − 1

)
, (18)

with the Laplace image:

χ̃(s) =
1

s(s− Ω)
. (19)

Then by (14):

γ̃(s) = −Ω− ω2
0

s
, (20)

with

γ(t) = −Ω2δ(Ωt)− ω2
0 , (21)

and, by (13) the coupling parameter:

θ(t) = − 1

γ0

[
Ω2δ(Ωt) + ω0

]
eωDt . (22)

The negative sign corresponds to the charging procedure,
i.e., transfer of energy from the reservoir to the battery.
The control must be switched off at the time scale 1/ωD.

4 The Low and High Temperature Cases
Now we can study the work ratio (5) for different tem-

perature regimes [Cavina and Esposito, 2024; Zhang,
Tan, et al., 2024]. The case of medium temperatures,
which demands more accurate modification of the damp-
ing terms in the corresponding Lindblad equation, is not
covered here. see [Diósi, 1993].

4.1 The law temperature case
For the law temperature (LT) case, substituting (10)

and (11) to (5), one obtains:

ηLTW (t) =
u(t)

u(t) + 1− e−ωDt
, (23)

that by (17) implies:

ηLTW (t) =

[
1 +

1− e−ωDt

(eΩt − 1)
2

]−1

. (24)

Obviously, the function ηLTW (t) tends to 1 exponen-
tially fast at the scale 1/Ω ≃ 0.014 s, while the control
time scale is evaluated as 1/ωD ≃ 0.01 s.

4.2 The high temperature case
In the same manner, for the high temperature (HT) case

by (15)-(16):

ηHT
W (t) =

u(t) + 1− e−ωDt

u(t) + Ω2

ω2
0

(
1− e−

2ω2
0ωD

Ω2 t

) , (25)

one gets:

ηHT
W (t) =

[
1 +

1− e−ωDt

(eΩt − 1)
2

]
× (26)

×

1 + Ω2

ω2
0

(
1− e−

2ω2
0ωD
Ω2 t

)
(eΩt − 1)

2


−1

,

which also tends to 1 exponentially fast.
Thus, for both cases, the low and the high temperature,

the control (17) provides the achievability of the goal.

5 Conclusions
The Caldeira–Leggett model demonstrates an ex-

tremely rich variety of damping regimes caused by dif-
ferent physical factors [Hagstrom and Morrison, 2011].

In the underdumped regime, our open-loop control ap-
proach allows us to formulate a quite efficient way to en-
gineer the coupling between the reservoir and the battery
to optimize the charging work.

The optimisation demonstrates an exponential charac-
ter. The algorithm is simple and does not demand suffi-
cient computational costs.

Nevertheless, we believe that the feedback control can
work much more efficiently, as we observed already in
other models for quantum batteries [Borisenok, 2020].
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6 Discussions
The feedback control in the form of speed gradi-

ent [Fradkov, 2007] works well in other quantum sys-
tems like qubits [Pechen, Borisenok, Fradkov, 2022;
Borisenok and Gogoleva, 2024], and we consider it to be
a prominent candidate for the application to Caldeira–
Leggett model. The speed gradient algorithm is robust
and not very sensitive to the system perturbations, which
can be extremely important in the case of a quantum
noisy environment. The main problem with this method
is related to the violation of the Fradkov–Pogromsky the-
orem conditions [Fradkov and Pogromsky, 1998], with-
out which the control goal may not be achieved. Some-
times this occurs in models of quantum systems. In any
case, for physical systems, it works better than the al-
ternative target attractor feedback [Kolesnikov, 2013]: it
often demands too strong energy control, and also cre-
ates many computational costs.

The additional noisy effects can be studied in
Caldeira–Leggett Hamiltonians, like Gaussian noise
[Onofrio and Sundaram, 2022; Christie, Bolhuis, et al.,
2024], and the noise time-correlation functions in differ-
ent regimes [Pelargonio and Zaccone, 2023].

Above all, for the further development of the con-
trol models, the influence of external magnetic fields
on Caldeira–Leggett systems may be a subject of great
research interest and prominent perspectives [Jauffred,
Onofrio, et al., 2017; Matevosyan and Allahverdyan,
2023].
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