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Abstract
In aircraft control one of the most urgent problems is

providing desired motion regimes. In the general case it
is usually impossible to realize the desired motion pre-
cisely, due to the various indeterminacies. So feasible
accuracy in conditions of various disturbances is con-
sidered. The geometric method based on presentation
of phase limitations as symmetric polyhedrons, which
determine allowable variations of real aircraft motion
trajectories, is presented in this work.
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1 Introduction
While controlling aircrafts one of the most relevant

problems is the problem of the desired (programmed)
motion regimes realization. While solving this problem
we encounter many obstacles including first of all the
existence of various indeterminacies, which prevent us
from gaining the full information about the aircraft’s
model. For example: structural and parametric inde-
terminacies of aircrafts simulator; external and internal
indeterminacies, determined by external disturbances
and by disturbances in indicators channels. In the gen-
eral case precise realization of desired motion is usually
impossible, so the current problem can be appropriately
formulated as a realization of desired motion regimes
with feasible accuracy. This? realization accuracy
can be defined as providing of some phase limitations,
which desired motion trajectories must fulfill. Many
works [1]-[5] are dedicated to the problem of program
motion regimes synthesis. However, suggested meth-
ods generally disregard the above-mentioned indeter-
minacies and the existence of different variable motion
constraint, including phase limitations. At the same
time there are different methods, which can be used for
solving newly formulated problem: Pontryagin princi-
ple of maximum; dynamic programming method; Lya-
punov functions method. In the works [6]-[10] the us-
age of those methods is shown. But also in this case

the problem cannot be fully solved because of: high
model dimension, complexity of formulated correla-
tions and consideration difficulty of various limitations.
The method for solving problems of this type is pre-
sented in this work. This method allows direct consid-
eration of various limitations (first of all - phase limita-
tions), to analyze the solvability regarding the desired
law of control and to implement control by given phase
limitations.

2 Statement of the Task
Let’s operate with linear models of aircrafts (in gen-

eral case they can be taken from the linearization of
arbitrary aircrafts models regarding programmed tra-
jectories). We will consider models in the state space.
Let’s present an equation as:

ẋ = Ax+Bu+Dv (1)

Where x, u, v-n×1,m×1, r×1state, control and dis-
turbance vectors;A,B,D-n×n, n×m,n× r matrices
accordingly. The vectors u, v satisfy limitations:

u ∈ U, v ∈ V (2)

where U ⊆ Rm, V ⊆ Rr - some given sets in the Eu-
clidean spaces Rm, Rr. The state vector x must satisfy
the phase limitations of following type:

x = x(t) ∈ Q(t), t ≥ t0 (3)

where Q = Q(t) ⊂ Rn - some given set in the space
state Rn. Let’s regard Q as a convex polyhedron in Rn

and it is described by the following equations:

Q = {x ∈ Rn : ψi(x, t) ≤ 0, i ∈ 1, χ}
ψi(x, t) = (αi, x)− qi(t)

}
(4)



where qi(t), αi - given scalar function and n × 1 vec-
tor. From here on we will consider stationary case
only, when the system (1) is stationary and, besides,
αi ≡ const, qi(t) = qi ≡ const. Let’s regard Q as
a polyhedron symmetrical with respect to the grid ori-
gin 0 ∈ Rn. Besides, let’s consider polyhedrons with a
general number of sides in Rn equals 2n. For the sys-
tem (1) it is needed to choose such a control law that

u = Ky
y = Cx

}
(5)

where y-l× 1 output vector;K,C - m× l, l×n regula-
tor and output (measuring) matrices, that with consid-
eration of limitations (2) the phase limitations (3) will
be fulfilled.

3 Forming the Sufficient Conditions of Solvability
For solving the stated task we will use general equa-

tions of author’s above-formulated Phase Limitations
Variations Method (PLVM), which was offered in
works [11], [12]. In the general case the given equa-
tions look as follows:

(∇xψi, f(x, u, v)∂ψi

∂t ≤ 0
∀x ∈ ΓQ

⋂
ΓQi, i ∈ 1, χ, t ≥ t0

}
(6)

Where∇xψi - gradient of the function ψi;f(·) = Ax+
Bu + Dv;(X,Y ) =

∑n
i=1XiYi - scalar product of

vectors X,Y ∈ Rn; Q - border of polyhedron Q; Qi
- surface, forming i-side of polyhedron Q(ψi(x, t) =
0), x ∈ Rn. For this case of phase limitations regarding
[13] inequalities (6) are reformed to (here v ≡ 0):

(ÃTαi,Mν
i)− q̇ < 0, t ≥ t0, i ∈ 1, χ, ν ∈ 1, Ni (7)

Where Ã = A+BKC; Mν
i - arbitrary apex of i-side

Q
⋂
Qi of polyhedron Q; Ni- number of apexes on i-

side. If Q is a polyhedron with 2n sides (then χ = 2n),
symmetrical to 0 ∈ Rn, then correlations (7) equal the
following:

(ÃTαi,Mν
i)− q̇ < 0, t ≥ t0, i ∈ 1, n, ν ∈ 1, Ni (8)

Where Ni = N = 2n−1 ∀i ∈ 1, n, since for opposing
sides of Q inequalities are equal. At the same time nu-
merations of sides remains random. For above-stated
stationary case inequalities (8) become

(ÃTαi,Mν
i) < 0, t ≥ t0, i ∈ 1, n, ν ∈ 1, N,N = 2n−1

(9)
As the side numeration is random, then we will choose
random apex M ∈ Q, which is intersection of sides,
and we will renumber this sides from 1 to n. Consid-
ering this, let’s formulate synthesis task as following:
for system (1) it is needed to synthesize such control
law (5), that regarding limitations (2) for arbitrary apex
M =

⋂n
i=1 ΓQ ∩ ΓQi inequalities (9) will be fulfilled.

4 Task Reduction to Equivalent Form
Let’s convert the polyhedron Q into a more handy

form - rectangular parallelepiped, which sides are par-
allel to the coordinate hyper planes of space Rn (or
symmetry axis are parallel or are congruent with co-
ordinate axis of space Rn, which is the same). This
transformation can always be realized, ifQ satisfies the
above-stated conditions. For this satisfaction we will
turn to the new basis in space Rn, where Q has the de-
sired form. This in turn can be realized in the following
way: Let

z = Tx (10)

Where z - n × 1 new variable; T - n × n nonsingu-
lar transformation matrix, with help of which Q is con-
verted to desired rectangular parallelepipedQ. Regard-
ing (10) the state equation of the system (1) will reduce
to:

ż = Az +Bu+Dv, z(t0) = z0, t ≥ t0

A = TAT−1, B = TB,D = TD

 (11)

Let’s consider equations (9). For i-side of Q we will
get

(s,M i
ν) < 0, ν ∈ 1, N (12)

Then for fulfillment of (12) it is necessary and suffi-
cient, that

s ∈ Ki (13)

Where Ki - cone with an apex in grid origin and with
N sides, which belong to hyper planes Hi

ν = {s ∈
Rn : (s,M i

ν) = 0} accordingly. It is obvious, that
inequalities (9) fulfill then and only then, when

ÃTαi ∈ i, i ∈ 1, n (14)

Ki is assigned by the following correlation:

Ki = {x ∈ Rn : mixi +
n∑

j=1,j 6=i

(±mj)xj ≤ 0} (15)

where i-coordinates of all apexes M i
ν ∈ ΓQi

⋂
ΓQ are

the same and equal to mi, and all other apexes coor-
dinates on the side ΓQi

⋂
ΓQ can possess the values

±mj , j ∈ 1, nı. For distinctness we will choose an
apex M , which has

mi < 0,∀i ∈ 1, n (16)



Then Ki is assigned by inequality

xi ≥
1
mi
·

n∑
j=1,j 6=i

(±mj)xj (17)

It is easy to see, that Ki is a symmetric figure. At
the same time the symmetry axis of a cone Ki is a
positive axle 0xi. From this, regarding the sugges-
tion about choosing M (19), we will come to: αi =
[0 . . . 0︸ ︷︷ ︸
i−1

−1 0 . . . 0︸ ︷︷ ︸
n−i

]T . Then Then

ÃTαi = −ãi, i ∈ 1, n (18)

where

ãi = ai + C
T
KT bi (19)

and ai, bi - n × 1, m × 1 i-row vectors of A, B ma-
trices. Finally, regarding (17), we will come to the fol-
lowing correlation

−(ai + C
T
KT bi) ∈ Ki, i ∈ 1, n (20)

Which is sufficient condition of the phase limitations
(3) fulfillment. Then the problem of synthesis can be
formulated in the following way: for the system (1) it
is needed to synthesize such a matrix of regulator K,
which must provide the fulfillment of correlations (20).

5 Solving the Synthesis Problem
Let’s present correlation (20) as

K
T
bi ∈ ãi +Ki, i ∈ 1, n (21)

where K
T

= −CTKT Let bi = [bi1 bi2 . . . bim]T , i ∈
1, n. Then (21) can be presented as following:

m∑
j=1

bijkj ∈ ai +Ki, i ∈ 1, n (22)

where kj is a n × 1 column vector of matrix
overlineKT . If ϕ ∈ Ki is a random element of cone
Ki, then it can be described as:

ϕi = Pi · si (23)

Where Pi will be named as cone operator, and si - some
vector, which coordinates will be positive random val-
ues. It is easy to see, that as cone operator Pi we can

use a matrix with columns, which were formed from
vectors, which are cone sides of Ki themselves. Then
Pi = [pi1 p

i
2 . . . p

i
N ] - n×N matrix, i ∈ 1, n; piν - cone

sides, ν ∈ 1, N ; si = [si1 s
i
2 . . . s

i
N ], N × 1 vector,

siν ≥ 0 ∀i ∈ 1, n, ν ∈ 1, N Considering (23) correla-
tions (22) can be transformed into

m∑
j=1

bijkj = ai + Pis
i, i ∈ 1, n (24)

The solvability of equations (24) concerning K de-
pends on the choice of positive vectors si, i ∈ 1, n.
Let’s consider the existence of si > 0, i ∈ 1, n, which
determine the solvability of (27). For this we will re-
duce equations (24) to the standard form, i.e. when
unknown variables in the left part of equation (matrix
K coefficients) are brought to one column vector. Let
kj = [k1j k2j . . . knj ]T , j ∈ 1,m. Let’s form the fol-
lowing vector:

k̃ = [k11 . . . k1m k21 . . . k2m . . . kn1 . . . knm]T−(nm)×1
(25)

Then considering this variables order we will convert
equation system (27) into:

B̃ · k̃ = a+ p(s) (26)

Where B̃ =


B 0 0 0
0 B 0 0

0 0
. . . 0

0 0 0 B

 ;n2 × (n · m)

a = [(a1)T (a2)T . . . (an)T ]T -n2 × 1
ai = [a1i a2i . . . ani]T , j ∈ 1,m
- i-column vector of matrix A; p =
[(p1

1, s
1) . . . (pn1 , s

n) (p1
2, s

1) . . . (pn2 , s
n) . . . (p1

n, s
1)

. . . (pnn, s
n)]T , where piξ = [piξ1 p

i
ξ2 . . . p

i
ξN ]T - ξ-row

vector of matrix Pi. Equation (26) is solvable then and
only then, when the following condition is fulfilled:

a+ p(s) ∈ L(B̃) (27)

Where L(B̃) is a subspace in Rn
2

formed by column
vectors of matrix B̃. Condition (27) will be fulfilled
then and only then, when the distance ρ(a + p, L) be-
tween vector (a+p(s)) and subspaceL(B̃) equals null,
i.e.

ρ(a+ p(s), L(B̃) = 0 (28)

Let rankB̃ = m̃. Then in B̃ m̃ of linearly indepen-
dent columns can be picked out: b1, b2, . . . , bm̃, which
form the basis of a subspace L(B̃). Let’s form the ma-
trix B̂ = [b1, b2, . . . , bm̃]. The distance ρ(·) is defined



as

ρ(·) = ‖â− â0‖ (29)

Where â = a + p(s); â0 - orthogonal projection of
vector â onto subspace L(B̃, ‖ · ‖ - Euclid norm in
Rn

2
. It is known, [14], that

â0 = B̂(B̂T B̂)−1B̂T â = F · â (30)

Considering (29) we will have

ρ(·) = ‖â− â0‖ = ‖(E − F )â‖ (31)

E - n2 × n2 unitary matrix. Then for the fulfillment of
condition (31) the fulfillment of the following correla-
tion is needed:

min
si, i∈1,n

‖(E−F )(a+p(s1, s2, . . . , sn))‖2 = 0 (32)

That is equal to (28). Correlation (32) is fulfilled with
positive vectors si ≥ 0, i ∈ 1, n then and only then,
when the conditions (20)-(22) are fair. I.e., if (20)-(22)
are fair, then there are always desired positive vectors
si, i ∈ 1, n, for which (32) is fulfilled. The problem
of minimization of quadratic function ρ2(·) can be re-
duced to the system of algebraic equation of the fol-
lowing type:

∇siρ2(·) = 0, i ∈ 1, n (33)

Where ∇siρ2 - vector si gradient of function ρ2. For
system (36) already known algorithms of quadratic
programming can be used. As is easy to see, that the
problem of synthesis can be severely simplified, if in
(26) we will use not the full cone operator Pi, but a
”truncated” operator P̂i, which corresponds to some
”truncated” cone K̂i, which has a more simple form
than Ki, and for which

ϕ = P̂iŝ
i ∈ K̂i ⊂ Ki, i ∈ 1, n (34)

where the ”truncated” vector ŝi has lower dimension
than si.

6 Synthesis Regarding Nonlinearity and Indeter-
minacies

Let’s consider a more general case, when the object
mode looks like:

ẋ = ϕ(x) +Bu+Dv (35)

where ϕ(x)-n× 1 vector-function, which takes on lim-
ited values on the polyhedron Q.

ϕ(x) = Ax+ f(x) (36)

where

f(x) ∈ Φ∀x ∈ ΓQ (37)

Φ-some given set, which contains the value area of the
function f(x) on polyhedron Q. Then

ẋ = Ax+Bu+ w,
w = f(x) +Dv.

}
(38)

For the system (38) the equations (6) become

(ÃTαi,M i
ν) ≤ wi, t ≥ t0, i ∈ 1, n, ν ∈ 1, N

wi = fi(x) + (di, v)

}
(39)

where wi, fi - i-components of vector-functions w and
f(x), di - i-row-vector of matrix D.
Analogously to the derivation of correlation (14), it can
be shown, that inequalities (39) are equal to the follow-
ing condition

ÃTαi ∈ wi
mi

ei +Ki, i ∈ 1, n (40)

where ei = [0 . . . 0 1 0 . . . 0]T and which with taking
into consideration (18)-(20) comes to

k
T
bi ∈ ai

wi
mi

ei +Ki, i ∈ 1, n (41)

Let’s designate s = [(s1)T (s2)T . . . (sn)T ]T

p =



p1
1 0 . . . 0
0 p2

1 . . . 0
...

...
. . .

...
0 0 . . . pm1
. . . . . . . . . . . .
. . . . . . . . . . . .
p1
m 0 . . . 0
0 p2

m . . . 0
...

...
. . .

...
0 0 . . . pnn


;n2 × (N · n) matrix,

Ñ = N · n, pi - n2 × 1-column-vector, 0-1 × N -null
vector;
∆ = [ w1

m1
eT1

w2
m2
eT2 . . . wn

mn
eTn ]T - n2 × 1 vector. Then

similarly to (25), the condition (41) comes to equation

B̃k̃ = ∆ + a+ Ps. (42)



For solvability of (42) the existence of such a vector
s > 0 for which

∆ + a+ Ps ∈ L(B̃). (43)

is necessary and sufficient. Let’s use the condition (43)
for the synthesis problem’s solvability check and solv-
ing. Let

P = P0 + P ,∆ = ∆0 + ∆, a = a0 + a, (44)

where a0,∆0 ∈ L(B̃); a,∆ ⊥ L(B̃);P0, P - matrices,
with columns, that belongs to L(B̃) and are orthogonal
to L(B̃) accordingly. And according to (30)

P0 = F · P,∆0 = F ·∆, a0 = ∆ · a, (45)

Equation (42) will come to

B̃k̃ = (∆0 + a0 + P0s) + (∆ + a+ Ps) (46)

For solvability of (46) it is necessary and sufficient, that

∆ + a+ Ps = 0, s ≥ 0. (47)

Besides (47) for the existence of a fixed matrix ¡K ¿ the
following correlation must fulfill

∆0 + P0s = σ ≡ const, s ≥ 0. (48)

Then from the equation

B̃k̃ = a0 + σ (49)

the required matrix k̃ is derived. Since because of in-
determinacy vector ∆ can take on different values, i.e.
∆ ∈ Ω (Ω - given set, determined with the consider-
ation of sets V (2), Φ (37) and with correlation (38)),
then equations (47), (48) must fulfill for ∀∆ ∈ Ω.

7 Conclusion
The method, presented in this work, allows solving the

problem of regulator synthesis regarding limitations on
motion trajectories. Those limitations are symmetrical
phase polyhedrons. In this case it is possible to simplify
the correlations, which the system must satisfy, and
to reduce their quantity. New correlations form con-
nection between properties of phase polyhedron and
properties of system under consideration, which de-
fine the solvability condition of the synthesis problem.
These correlations are algebraic equations, which can

be solved by the known vectorial methods. The exam-
ined case of control by state vector can be generalized
in case of the control by output. These obtained cor-
relations can be severely simplified with the usage of
”truncated” cone operators. The presented method al-
lows solving the problem of robust control of dynamic
objects efficiently enough.
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