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Abstract
The paper discusses some results related to applica-

tion of differential corollaries in qualitative investiga-
tion of mechanical systems. Examples of definite sys-
tems, for which this approach is efficient, are given.
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1 ON DIFFERENTIAL COROLLARIES
Let us consider the system of differential equations of

motion:

ẋi = Xi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n. (1)

Definition 1. The system (1) assumes a truncated
chain of differential corollaries when the following set
of equalities is valid:

V̇k ≡
n∑

i=1

∂Vk

∂xi
Xi +

∂Vk

∂t
= −ϕk+1(t, x)Vk+1(t, x),

k = 0, 1, . . . , g − 1, (2)

whereVk(t, x), (k = 0, 1, . . . , g − 1), ϕl(t, x), (l =
1, 2, . . . , g) andVg = 0 are some functions.
Let equations (1) have the chain of differential corol-

laries (2). Let us complement (2) with the following
system of equations:

˙ψm ≡
n∑

i=1

∂ψm

∂xi
Xi +

∂ψm

∂t
= ϕm(x)ψm−1(t, x),

ψ0 = 1, m = 1, 2, . . . , g, (3)

and then put system (1) in correspondence to the sys-
tem of differential equations

V̇k = −ϕk+1Vk+1, ψ̇k = ϕkψk−1,

k = 0, 1, . . . , g − 1, ψ0 = 1. (4)

We will consider the latter system in the capacity of the
comparison system. The following statement is valid.
Theorem 1.
If system (4) has the first integral

W (V0, . . . , Vg, ψ1, . . . , ψg−1), then system (1)
has the first integralW (V0 (t, x), . . . , Vg(t, x),
ψ1(t, x), . . . , ψg−1(t, x)), where functionsψl satisfy
equations (3), andVk satisfies, respectively, (2).
Validity of this statement is almost obvious. Accord-

ing to (2), (3), the derivative ofW computed due to dif-
ferential equations does not depend on definite forms of
functionsVk, ψl, ϕi.
Proposition 1.
If the chain of differential corollaries (2) is truncated:

V̇g−1 =
n∑

i=1

∂Vg−1

∂xi
Xi +

∂Vg−1

∂t
= 0, Vg = 0,

then the comparison system (4) takes the form:

V̇0 = −ϕ1V1, V̇1 = −ϕ2V2, . . . , V̇g−1 =

−ϕg−1Vg = 0, ψ̇1 = ϕ1,

ψ̇2 = ϕ2ψ1, . . . , ψ̇g−1 = ϕg−1ψg−2 (5)

and assumes the two first integrals:

Vg−1 = c1, K = V0 + ψ1V1 + . . .

+ψ(g−1)V(g−1)(x) = c2. (6)

Proof. The statement thatVg−1 is the first integral fol-
lows directly from the last equation in the first group of
comparison equations (5). In order to prove thatK is
the first integral, it is sufficient to compute the deriva-
tive of K due to equations (5). Indeed,

K̇ = V̇0 + ψ̇1V1 + ψ1V̇1 + ψ̇2V2 + ψ2V̇2 + . . .



+ψ(g−2)V̇(g−2) + ψ(g−1)V̇(g−1) + ψ̇(g−1)V(g−1).

Having substituted the values of derivativesV̇j (j =
1, . . . , g − 1), ψ̇k (k = 1, . . . , g − 1) from (5) into the
latter equation, we have

K̇ = −ϕ1V1 + ϕ1V1 − ψ1ϕ2V2 + ψ1ϕ2V2 + . . .

−ψg−2ϕg−1Vg−1 + ψg−2ϕg−1Vg−1 = 0,

i.e. K̇ = 0. This completes the proof.
Corollary 1. If system (1) assumes a truncated (effi-

cient) chain of differential corollaries, then, besides the
integralV(g−1), it possesses also the first integral

K(t, x) = V0 + ψ1(t, x)V1(t, x) + ψ2(t, x)V2(t, x)
+ . . . + ψ(g−1)(t, x)V(g−1)(t, x). (7)

Here functionsψl(x), l = 1, 2, . . . , g−1 satisfy partial
differential equations (3).
Validity of the latter statement follows from Theorem

1 and Proposition 1.
Note, the construction with truncated chains of equal-

ities has been used in other way by Laplace (see
[Laplace, 1799]) also for finding first integrals.
Corollary 2. If in equations (2) all the functionsϕi

are dependent only ont (ϕi = ϕi(t)), thenK is the
non-autonomous integral

K(t, x) = V0 + ψ1(t)V1(t, x) + ψ2(t)V2(t, x)
+ . . . + ψg−1(t)Vg−1(t, x),

where

ψ1(t) =
∫ t

0

ϕ1(ξ)dξ; ψ2(t) =
∫ t

0

ψ1(ξ)ϕ2(ξ)dξ; . . . ;

ψg−1(t) =
∫ t

0

ψg−2(ξ)ϕg−1(ξ)dξ.

The latter expressions forψi(t) are obtained by di-
rect sequential integration of the system of differential
equations (3), in which all the functions are considered
to be dependent only ont.
When additional conditions are imposed on the form

of the chain of differential corollaries, it is possible to
obtain (with the aid of these corollaries) considerably
more information on the initial system. For example,
if all ϕk(t, x) (k = 1, . . . , g) in the truncated chain of
differential corollaries of system (2) are similar, i.e.

V̇k ≡
n∑

i=1

∂Vk

∂xi
Xi +

∂Vk

∂t
= −ϕ(t, x)Vk+1(t, x),

k = 0, 1, . . . , g − 1, Vg = 0, (8)

then Theorem 2 is valid. If the system of differential
equations (1) assumes the truncated chain of differen-
tial corollaries (8), then it has the following first inte-
grals:

K(x, t) = V0(x, t)+ψ(x, t)V1(x, t)+
1
2
ψ2(x, t)V2(x, t)

+ . . . +
1

(g − 1)!
ψ(g−1)(x, t)V(g−1)(x, t),

∂K

∂ψ
= V1(x, t) + ψ(x, t)V2(x, t) +

1
2
ψ2(x, t)V3(x, t)

+ . . . +
1

(g − 2)!
ψg−2(x, t)Vg−2(x, t),

. . . . . . . . .

∂(g−2)K

∂ψ(g−2)
= Vg−2(x, t) + ψ(x, t)Vg−1(x, t),

where

ψ̇ ≡
n∑

i=1

∂ψ

∂xi
Xi +

∂ψ

∂t
= ϕ(x, t). (9)

Proof. Let us put the following comparison system

V̇0 = −ϕV1, V̇1 = −ϕV2, . . . , V̇g−1 = −ϕVg = 0,

ψ̇ = ϕ.

in correspondence to system (1) and show that it has
the first integral

K(V, ψ) = V0 + ψV1 +
1
2
ψ2V2 + . . .

+
1

(g − 1)!
ψ(g−1)V(g−1). (10)

When computing the derivative ofK(V, ψ) due to the
comparison system, we obtain the following identity:

dK

dt
= V̇0 + ψV̇1 + ψ̇V1 + ψψ̇V2 +

ψ2

2
V̇2 + . . .



+
ψg−2

(g − 2)!
ψ̇Vg−1+

1
(g − 1)!

ψg−1 ˙Vg−1 = −ϕV1+ϕV1−

ψϕV2+ψϕV2−1
2
ψ2ϕV3+. . .− 1

(g − 1)!
ψg−1ϕVg ≡ 0.

This identity shows thatK(V, ψ) is indeed the first in-
tegral of the comparison system. Now, according to
Theorem 1, we obtain thatK(x, t) is the first integral
of system (1).
Next, compute the partial derivative ofK(V, ψ) with

respect toψ :

∂K

∂ψ
= W1 = V1 + ψV2 + . . . +

ψ(g−2)

(g − 2)!
V(g−1),

and compute the derivative of the latter expression due
to the comparison system. As a result, we have:

d

dt
(
∂K

∂ψ
) = V̇1 + ψ̇V2 + ψV̇2 + . . .

+
ψg−3

(g − 3)!
ϕVg−1 − ψg−2

(g − 2)!
ϕVg =

−ϕV2 + ϕV2 − ψϕV3 + ψϕV3 − 1
2
ψ2ϕV3

+ . . . +
1

(g − 3)!
ψg−3ϕVg−1

− 1
(g − 2)!

ψg−2ϕVg ≡ 0.

Since the derivative due to the comparison system has
appeared to be identically zero, it is possible to state
that the first partial derivative ofK with respect toψ
is the first integral of the comparison system. Conse-
quently, the function

∂K

∂ψ
= W1 = V1(x, t) + ψ(x, t)V2(x, t)

+ . . . +
ψ(g−2)(x, t)

(g − 2)!
V(g−1)(x, t),

due to Theorem 1 is the first integral of system (1).
When proceeding on similarly, it can easily be shown

that all the rest of the partial derivatives ofK (10) with
respectψ are first integrals of system (1). This com-
pletes the proof.
Now let us use the above technique for the analysis of

some problems of mechanics.
Consider the problem of motion of a rigid body, which

is described by Euler’s equations (an extended case).
Let equations of motion write:

Aṗ = (B − C)qr + ϕγ1, Bq̇ = (C −A)rp + ϕγ2,

Cṙ = (A−B)pq + ϕγ3,

γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2,

whereϕ = ϕ(p, q, r, γ1, γ2, γ3) is a smooth function
of its arguments. The equations assume the following
truncated chain of differential corollaries:

1
2

d

dt
(A2p2+B2q2+C2r2) = ϕ(Apγ1+Bqγ2+Crγ3),

d

dt
(Apγ1 + Bqγ2 + Cγ3) = ϕ(γ2

1 + γ2
2 + γ2

3),

d

dt
(γ2

1 + γ2
2 + γ2

3) = 0.

In this case (it can easily be shown), all the conditions
of the theorem 2 are satisfied. Consequently, Euler’s
differential equations have the first integrals

K =
1
2
(A2p2 + B2q2 + C2r2)− ψ(Apγ1

+Bqγ2 + Cγ3) +
1
2
ψ2(γ2

1 + γ2
2 + γ2

3) = h,

∂K

∂ψ
= (Apγ1 + Bqγ2 + Cγ3)− ψ(γ2

1 + γ2
2

+γ2
3) = c1,

∂2K

∂ψ2
= (γ2

1 + γ2
2 + γ2

3) = 1, (11)

where the functionψ(p, q, r, γ1, γ2, γ3) is defined by
the corresponding partial differential equation. While
using Routh-Lyapunov’s technique [Irtegov, 1989], let
us find the invariant manifolds of steady motions
(IMSMs), which correspond to the complete linear
bundle of the latter integrals in the problem under
scrutiny:

2K = A2p2 + B2q2 + C2r2 − 2ψ(Apγ1 + Bqγ2

+Crγ3) + ψ2(γ2
1 + γ2

2 + γ2
3)− λ1[ψ − (Apγ1

+Bqγ2 + Crγ3)] + λ2(γ2
1 + γ2

2 + γ2
3),

whereλ1 and λ2 are some constants (if it is neces-
sary, these may be considered also as constants of some
problem’s first integrals). Now write down the station-
ary conditions for the family of first integralsK with
respect to the phase variables:

∂K

∂p
= A(Ap−(ψ+λ1)γ1)−∂ψ

∂p
[(Apγ1+Bqγ2+Crγ3)



−ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0,

∂K

∂q
= B(Bq−(ψ+λ1)γ2)−∂ψ

∂q
[(Apγ1+Bqγ2+Crγ3)

−ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0,

∂K

∂r
= C(Cr−(ψ+λ1)γ3)−∂ψ

∂r
[(Apγ1+Bqγ2+Crγ3)

−ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0,

∂K

∂γ1
= −(ψ+λ1)Ap+(ψ2+λ2)γ1− ∂ψ

∂γ1
[(Apγ1+Bqγ2

+Crγ3)− ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0,

∂K

∂γ2
= −(ψ+λ1)Bq+(ψ2+λ2)γ2− ∂ψ

∂γ2
[(Apγ1+Bqγ2

+Crγ3)− ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0,

∂K

∂γ3
= −(ψ+λ1)Cr+(ψ2+λ2)γ3− ∂ψ

∂γ3
[(Apγ1+Bqγ2

+Crγ3)− ψ(γ2
1 + γ2

2 + γ2
3) + λ1] = 0.

It can readily be seen, the coefficient of the partial
derivatives ofψ with respect to the problem’s variables
is the first integral of equations of motion. Under the
respective choice ofλ1 the given terms turn zero. The
determinant of the rest of the terms for the respective
pairs of linear equations write:

∆ = (λ2 − λ2
1 − 2λ1ψ).

Obviously,∆ turns zero only for the constantψ:

ψ =
λ2 − λ2

1

2λ1

In this case, the system has the two-parameter family
of IMSMs:

Ap− λ2 + λ2
1

2λ1
γ1 = 0, Bq − λ2 + λ2

1

2λ1
γ2 = 0,

Cr − λ2 + λ2
1

2λ1
γ3 = 0.

Such a family of IMSMs takes place also for the clas-
sical Euler’s top in the Greenhill’s case [Appel, 1960].
Consider now the IMSMs, which correspond to the

family of integralsK for λ1 = 0. The stationary con-
ditions here write:

∂K

∂p
= A(Ap− ψγ1)− ∂ψ

∂p
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0,

∂K

∂q
= B(Bq − ψγ2)− ∂ψ

∂q
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0,

∂K

∂r
= C(Cr − ψγ3)− ∂ψ

∂r
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0,

∂K

∂γ1
= −ψ(Ap− ψγ1)− ∂ψ

∂γ1
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0,

∂K

∂γ2
= −ψ(Bq − ψγ2)− ∂ψ

∂γ2
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0,

∂K

∂γ3
= −ψ(Cr − ψγ3)− ∂ψ

∂γ3
[(Apγ1 + Bqγ2

+Crγ3)− ψ] = 0.

The expressionApγ1+Bqγ2+Crγ3−ψ = c is the first
integral. When the constant of this integral turns zero,
the stationary equations define the following IMSM for
the initial differential equations:

Ap−ψγ1 = 0, Bq−ψγ2 = 0, Cr−ψγ3 = 0. (12)

There is the following relation betweenψ andϕ:

ϕ(p, q, r, γ1, γ2, γ3) =
1

(1− ∂ψ
∂p

γ3
A + ∂ψ

∂q
γ3
B + ∂ψ

∂r
γ3
C )

{
(
∂ψ

∂p

(B − C)
A

qr +
∂ψ

∂q

(C −A)
B

rp

+
∂ψ

∂r

(A−B)
A

pq) + (
∂ψ

∂γ1
(rγ2 − qγ3)

+
∂ψ

∂γ2
(pγ3 − rγ1) +

∂ψ

∂γ3
(qγ1 − pγ2))

}
.



The latter partial differential equation may be used, for
example, for definingϕ when ψ(p, q, r, γ1, γ2, γ3) is
given. Let us use the first integralK for obtaining suf-
ficient conditions of stability of the IMSMs found. To
this end, introduce deviations from IMSMs (12)

y1 = Ap− ψγ1, y2 = Bq − ψγ2, y3 = Cr − ψγ3,

and – with the aid of these expressions – exclude
γ1, γ2, γ3 from integralK. As a result, we have:

2K = [(y1 + ψγ1)2 + (y2 + ψγ2)2

+(y3 + ψγ3)2]− 2ψ[γ1(y1 + ψγ1) + γ2(y2 + ψγ2)
+γ3(y3 + ψγ3)] + ψ2(γ2

1 + γ2
2 + γ2

3) =
(y2

1 + y2
2 + y2

3).

Since the integral is a sign-definite quadratic form
of the variablesy1, y2, y3 for any bounded functions
ψ(p, q, r, γ1, γ2, γ3), hence according to Zubov’s the-
orem [Zubov, 1989], the IMSM is stable.

2 CYCLIC CHAINS
Consider the following linear system of equations:

ẋ = ax + by, ẏ = bx− ay. (13)

It can easily be verified that the system assumes the
following cyclic chain of differential corollaries:

dV

dt
= W,

dW

dt
= 2(a2 + b2)V,

where2V = x2 + y2, W = ax2 + 2bxy − ay2. This
system may be considered as a comparison system for
the system (13).
It can easily be shown that the system of differential

equations

V̇ = AW, Ẇ = BV, A = const, B = const

has the first integral

V 2 − A

B
W 2 = const.

This first integral writes:

Ω = (a2+b2)(x2+y2)2−(ax2+2bxy−ay2)2 = const.

The latter expression is factorized:

Ω = (
√

(a2 + b2)(x2 + y2)
−(ax2 + 2bxy − ay2))

(
√

(a2 + b2)(x2 + y2) + (ax2 + 2bxy − ay2)).

It can easily be verified that the two quadratic forms
obtained in this case are the particular integrals of dif-
ferential equations (13), i.e. these define the invariant
manifolds of system (13). So, the cyclic chain also al-
lows to find first integrals, while reducing the solution
of the problem to integration of systems of differential
equations, which may turn out to be simpler than the
initial system of equations.

3 THE SECOND ORDER SYSTEM
Theorem 3. If a system of second order differential

equations has the differential corollary of the form

V̇ = ϕ(t)V (ẋ, x, t),

whereV (ẋ, x, t) is the function linear with respect to
velocities

V (ẋ, x, t) =
n∑

i=1

bi(x)ẋi,

then, as a result of replacement of the independent vari-
able, the system is reduced to the form

ẍi =
n∑

j=1

n∑

l=1

bj(x)ẋj ẋl

and assumes the first integral

V (ẋ, x, t) =
n∑

i=1

bi(x)ẋi.

Proof. Compute the derivative of the functionV =∑n
i=1 bi(x)ẋi due to the system of equations

ẍi = fi(x, ẋ) i = 1, 2, . . . , n.

Using the differential corollary, we have:

V̇ =
n∑

i=1

bi(x)ẍi+
n∑

i=1

n∑

i=1

∂bi

∂xl
ẋiẋl = ϕ(t)

n∑

i=1

bi(x)ẋi

or

n∑

i=1

[bi(x)fi + (
n∑

i=1

∂bi

∂xl
ẋl − ϕ(t)bi(x))ẋi] = 0.

Hence

fi = ϕ(t)ẋi −
n∑

i=1

∂ ln bi

∂xl
ẋlẋi.



Therefore, the initial system writes:

ẍi − ϕ(t)ẋi = −
n∑

i=1

∂lnbi

∂xl
ẋlẋi. (14)

Replace the independent variable

dτ = e
∫ t
0 ϕ(ξ)dξdt.

As a result of simple computations, system (14) writes:

d2xi

dτ2
= −

n∑

l=1

∂lnbi

∂xl

dxl

dτ

dxi

dτ
, i = 1, ..., n.

Obviously, the latter system assumes the first integral

V =
n∑

i=1

bi(x)
dxi

dτ
.
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