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Abstract
In many practical problems, it is desirable to �nd an

equilibrium. For example, equilibria are important in
transportation engineering.
Many urban areas suffer from traf�c congestion. In-

tuitively, it may seem that a road expansion (e.g., the
opening of a new road) should always improve the traf-
�c conditions. However, in reality, a new road can actu-
ally worsen traf�c congestion. It is therefore extremely
important that before we start a road expansion project,
we �rst predict the effect of this project on traf�c con-
gestion.
When a new road is built, some traf�c moves to this

road to avoid congestion on the other roads; this causes
congestion on the new road, which, in its turn, leads
drivers to go back to their previous routes, etc. What
we want to estimate is the resulting equilibrium.
In many problems � e.g., in many transportation prob-

lems � natural iterations do not converge. It turns out
that the convergence of the corresponding �xed point
iterations can be improved if we consider these itera-
tions as an approximation to the appropriate dynamical
system.
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1 Many practical situations eventually reach equi-
librium

In many real-life situations, we have dynamical situa-
tions which eventually reach an equilibrium.
For example, in economics, when a situation changes,

prices start changing (often �uctuating) until they reach
an equilibrium between supply and demand.
In transportation, when a new road is built, some traf-

�c moves to this road to avoid congestion on the other

roads; this causes congestion on the new road, which,
in its turn, leads drivers to go back to their previous
routes, etc. [Shef�, 1985].

2 Speci�c challenges of transportation applica-
tions

Intuitively, it may seem that a road expansion (e.g.,
the opening of a new road) should always improve
the traf�c conditions. However, in reality, a new road
can actually worsen traf�c congestion. Speci�cally, if
too many cars move to a new road, this road may be-
come even more congested than the old roads initially
were, and so the traf�c situation will actually decrease
� prompting people to abandon this new road. This
possible negative effect of a new road on congestion is
a very well known �paradox� of transportation science,
a paradox which explains the need for a detailed anal-
ysis in the planning of the new road; see, e.g, [Shef�,
1985; Ahuja, Magnanti, and Orlin, 1993].

3 It is often desirable to predict the corresponding
equilibrium

For the purposes of the long-term planning, it is de-
sirable to �nd the corresponding equilibrium. For ex-
ample, for the purposes of economic planning, it is de-
sirable to know how, in the long run, oil prices will
change if we start exploring new oil �elds in Alaska.
For transportation planning, it is desirable to �nd out to
what extent the introduction of a new road will relieve
the traf�c congestion, etc.
In order to describe how we can solve this practically

important problem, let us describe this equilibrium pre-
diction problem in precise terms.



4 Finding an equilibrium as a mathematical prob-
lem

To describe the problem of �nding the equilibrium
state(s), we must �rst be able to describe all possible
states. In this paper, we assume that we already have
such a description, i.e., that we know the set X of all
possible states.
We must also be able to describe the fact that many

states x ∈ X are not equilibrium states. For example,
if the price of some commodity (like oil) is set up too
high, it will become pro�table to explore dif�cult-to-
extract oil �elds; as a new result, the supply of oil will
increase, and the prices will drop.
Similarly, as we have mentioned in the main text, if

too many cars move to a new road, this road may be-
come even more congested than the old roads initially
were, and so the traf�c situation will actually decrease
� prompting people to abandon this new road.
To describe this instability, we must be able to de-

scribe how, due to this instability, the original state x
gets transformed in the next moment of time. In other
words, we assume that for every state x ∈ X , we know
the corresponding state f(x) at the next moment of
time.
For non-equilibrium states x, the change is inevitable,

so we have f(x) 6= x. The equilibrium state x is the
state which does not change, i.e., for which f(x) = x.
Thus, we arrive at the following problem: We are given
a set X and a function f : X → X; we need to �nd an
element x for which f(x) = x.
In mathematical terms, an element x for which

f(x) = x is called a �xed point of the mapping f . So,
there is a practical need to �nd �xed points.

5 Fixed points in transportation engineering:
static case

To describe traf�c, we divided the urban area into
zones. For every two zones i and j, we �nd the num-
ber of drivers dij who need to go from zone i to zone
j. For each road link, we �nd the road capacity c � the
number c of cars per hour which can pass through this
road link. The travel time t along a link of length L
with a speed limit s is usually described by the Bureau
of Public Roads (BPR) formula

t = tf ·
[
1 + a ·

(v

c

)β
]

, (1)

where v is a volume along this link, tf = L/s is a
free-�ow time, a ≈ 0.15, and β ≈ 4.
When a new road is built, some traf�c moves to this

road to avoid congestion on the other roads; this causes
congestion on the new road, which, in its turn, leads
drivers to go back to their previous routes, etc. These
changes continue until there are alternative routes in
which the overall travel time is larger.
Eventually, this process converges to an equilibrium,

i.e., to a situation in which the travel time along all used

alternative routes is exactly the same � and the travel
times along other un-used routes is higher; see, e.g.,
[Shef�, 1985].
There exist ef�cient algorithms which, given the traf-

�c demand (i.e., the values dij) and the road capac-
ity, computes the corresponding equilibrium [Shef�,
1985]. This algorithm computes the traf�c volume
along each road link, the travel time between every two
zones, etc.

6 Fixed points in transportation engineering: dy-
namic case

To apply the above algorithm, we must know, at each
time interval t, the values dij(t). The problem is that
if we build a new road, these values may change. For
example, if the driver needs to be at work at 8:00am,
and the travel time to his or her destination is 30 min-
utes, then the driver leaves at 7:30 am. However, if
a new freeway decreases the expected travel time to
15 minutes, then the driver will leave at 7:45 am in-
stead of the original 7:30 am. In this case, the corre-
sponding value dij(7:30) decreases while dij(7:45) in-
creases. We need to take this choice of departure time
into account.
In transportation engineering, the most widely used

model for describing the general choice (especially the
choice in transportation-related situations) is the logit
model. In the logit model, the probability of departure
in different time intervals is determined by the utility
of different departure times to the driver. According to
this model, the probability Pt that a driver will choose
the t-th time interval is proportional to exp(ut), where
ut is the expected utility of selecting this time inter-
val. The coef�cient at exp(ut) must be chosen from
the requirement that the sum of these probabilities be
equal to 1. So, the desired probability has the form
Pt = exp(ut)/s, where s

def= exp(u1)+ . . .+exp(un).
To apply the logit model, we must be able to estimate

the utilities of different departure time choices. Ac-
cording to [Noland and Small, 1995], the utility ui of
choosing the i-th time interval is determined by the fol-
lowing formula:

ui = −0.1051 · E(T )− 0.0931 · E(SDE)

−0.1299·E(SDL)−1.3466·PL−0.3463· S

E(T )
, (2)

where E(T ) is the expected value of travel time T ,
E(SDE) is the expected value of the wait time SDE
when arriving early, E(SDL) is the expected value of
the delay SDL when arriving late, PL is the probabil-
ity of arriving late, and S is the variance of the travel
time.
Let us assume that we know the original traf�c pat-

tern x, i.e., the values dij(t) for each time interval t.



For each time interval t, we can solve the traf�c as-
signment problem corresponding to this time interval.
From the resulting traf�c assignment, we can compute
the values of the desired auxiliary characteristics, and
thus, estimate the expected utility ut of departing at this
time interval t. The logit formula Pt = exp(ut)/s en-
ables us to compute the probability Pt that the driver
will actually select departure time interval t.
The probability Pt means that out of N drivers who

travel from the given origin zone to the given destina-
tion zone, N · Pt leave during the t-th time interval.
The overall number of drivers who leave from the given
origin zone to the given destination zone can be com-
puted by adding the corresponding values for all time
intervals. Multiplying this sum by Pt, we get the new
value. These new values form the new traf�c pattern
f(x). The question is to �nd the equilibrium pattern x
for which x = f(x).

7 The problem of computing �xed points
Since there is a practical need to compute the �xed

points, let us give a brief description of the existing
algorithms for computing these �xed points. Readers
interested in more detailed description can look, e.g.,
in [Berinde, 2002].

8 Straightforward algorithm: Picard iterations
At �rst glance, the situation seems very simple and

straightforward. We know that if we start with a state
x at some moment of time, then in the next moment
of time, we will get a state f(x). We also know that
eventually, we will get an equilibrium. So, a natural
thing to do is to simulate how the actual equilibrium
will be reached.
In other words, we start with an arbitrary (reasonable)

state x0. After we know the state xk at the moment k,
we predict the state xk+1 at the next moment of time
as xk+1 = f(xk). This algorithm is called Picard it-
erations after a mathematician who started ef�ciently
using it in the 19 century.
If the equilibrium is eventually achieved, i.e., if in

real life the process converges to an equilibrium point
x, then Picard's iterations are guaranteed to converge.
Their convergence may be somewhat slow � since they
simulate all the �uctuations of the actual convergence
� but eventually, we get convergence.

9 Situations when Picard's iterations do not con-
verge: economics

In some important practical situations, Picard itera-
tions do not converge.
The main reason is that in practice, we can have

panicky �uctuations which prevent convergence. Of
course, one expects �uctuations. For example, if the
price of oil is high, then it will become pro�table for
companies to explore and exploit new oil �elds. As a
result, the supply of oil will drastically increase, and

the price of oil will go down. Since this is all done
in a unplanned way, with different companies making
very rough predictions, it is highly probable that the
resulting oil supply will exceed the demand. As a re-
sult, prices will go down, oil production in dif�cult-to-
produce oil areas will become unpro�table, supply will
go down, etc.
Such �uctuations have happened in economics in the

past, and sometimes, not only they did not lead to an
equilibrium, they actually led to deep economic crises.

10 Situations when Picard's iterations do not con-
verge: transportation

Similar situations happen in transportation as well. In-
deed, let us assume that x is a current traf�c. Based on
the current traf�c, we will have some congestions and
traf�c delay. As a result, at the next moment, the drives
choose different routes, different departure times etc. �
to avoid the delays experienced the day before. This
next traf�c pattern will be denoted as f(x). Our objec-
tive is to �nd out the equilibrium state, i.e., the state for
which f(x) = x.
A seemingly natural idea it to start with some traf-

�c pattern x0, then observe the pattern at the next day
x1 = f(x0), the pattern two days later x2 = f(x1),
etc., until these patterns converge. In practice, how-
ever, this sequence may not converge.
This lack of convergence can be illustrated on a �toy�

example in which we have a single origin, single des-
tination, and two possible departure times. Let us as-
sume that the work starts at 8 am, that the free-�ow
traf�c time is 30 minutes, and that we consider two pos-
sible departure times 7:30 am and 7:15 am.
For simplicity, let us consider the situation when the

traf�c suddenly increases. In the original traf�c pattern
x0, congestion was low, so practically everyone could
reach the destination in 0 minutes. In this original situ-
ation, everyone leaves at 7:30 am and nobody leaves at
7:15 am.
• For those departing at 7:15 am, there was no traf-

�c, so the travel time was equal to the free-�ow
time of 30 minutes.

• The drivers departing at 7:30 am face a much heav-
ier traf�c, so we get a traf�c congestion. As a re-
sult of this congestion, the travel time increased to
45 minutes.

So:
• drivers who leave at 7:15 am spend only 30 min-

utes in traf�c and arrive 15 minutes early, while
• drivers who leave at 7:30 am spend 45 minutes on

the road and are 15 minutes late.
It is reasonable to assume that the penalties for being
late are heavy, while penalties for arriving early are
much lighter. As a result, the next day, almost everyone
leaves at 7:15 am and practically no one leaves at 7:30
am.
In this new traf�c pattern x1:



• for those departing at 7:30 am, there is no traf�c,
so the travel time is equal to the free-�ow time of
30 minutes;

• the drivers departing at 7:15 am face a much heav-
ier traf�c, so we get a traf�c congestion; as a result
of this congestion, the travel time increases to 45
minutes.

So:
• drivers who leave at 7:30 am spend only 30 min-

utes in traf�c and arrive on time, while
• drivers who leave at 7:15 am spend 45 minutes on

the road.
Since we assumed that there is a penalty for spending
extra time on the road, in the next moment of time, we
are back to the original arrangement x. These ��ip-
�op� changes continue without any convergence.

11 How can we handle these situation: a natural
practical solution

If the natural Picard iterations do not converge, this
means that in practice, there is too much of a �uctua-
tion. When at some moment k, the state xk is not an
equilibrium, then at the next moment of time, we have
a state xk+1 = f(xk) 6= xk. However, this new state
xk+1 is an not necessarily closer to the equilibrium: it
�over-compensates� by going too far to the other side
of the desired equilibrium.
For example, we started with a price xk which was too

high. At the next moment of time, instead of having a
price which is closer to the equilibrium, we may get
a new price xk+1 which is too low � and may even
be further away from the equilibrium than the previous
price.
In practical situations, such things do happen. In this

case, to avoid such weird �uctuations and to guarantee
that we eventually converge to the equilibrium point,
a natural thing is to �dampen� these �uctuations: we
know that a transition from xk to xk+1 has gone too
far, so we should only go �halfway� (or even smaller
piece of the way) towards xk+1.
How can we describe it in natural terms? In many

practical situations, there is a reasonable linear struc-
ture on the set X on all the states, i.e., X is a lin-
ear space. In this case, going from xk to f(xk)
means adding, to the original state xk, a displacement
f(xk) − xk. Going halfway would then mean that we
are only adding a half of this displacement, i.e., that we
go from xk to xk+1 = xk +

1
2
· (f(xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f(xk). (3)

The corresponding iteration process is called Kras-
noselskii iterations. In general, we can use a different
portions α 6= 1/2, and we can also use different por-
tions αk on different moments of time. In general, we

thus go from xk to xk+1 = xk + αk · (f(xk) − xk),
i.e., to

xk+1 = (1− αk) · xk + αk · f(xk). (4)

These iterations are called Krasnoselski-Mann itera-
tions.

12 Practical problem: the rate of convergence
drastically depends on αi

The above convergence results show that under cer-
tain conditions on the parameters αi, there is a conver-
gence. From the viewpoint of guaranteeing this con-
vergence, we can select any sequence αi which satis-
�es these conditions. However, in practice, different
choice of αi often result in drastically different rate of
convergence.
To illustrate this difference, let us consider the sim-

plest situation when already Picard iterations xn+1 =
f(xn) converge, and converge monotonically. Then, in
principle, we can have the same convergence if instead
we use Krasnoselski-Mann iterations with αn = 0.01.
Crudely speaking, this means that we replace each orig-
inal step xn → xn+1 = f(xn), which bring xn directly
into xn+1, by a hundred new smaller steps. Thus, while
we still have convergence, we will need 100 times more
iterations than before � and thus, we require a hundred
times more computation time.
Since different values αi lead to different rates of con-

vergence, ranging from reasonably ef�cient to very in-
ef�cient, it is important to make sure that we select op-
timal values of the parameters αi, values which guar-
antee the fastest convergence.

13 First idea: from the discrete iterations to the
continuous dynamical system

In this section, we will describe the values αi which
are optimal in some reasonable sense. To describe this
sense, let us go back to our description of the dynamical
situation. In the above text, we considered observations
made at discrete moments of time; this is why we talked
about current moment of time, next moment of time,
etc. In precise terms, we considered moments t0, t1 =
t0 + ∆t, t2 = t0 + 2∆t, etc.
In principle, the selection of ∆t is rather arbitrary. For

example, in terms of prices, we can consider weekly
prices (for which ∆t is one week), monthly prices,
yearly prices, etc. Similarly, for transportation, we can
consider daily, hourly, etc. descriptions. The above
discrete-time description is, in effect, a discrete approx-
imation to an actual continuous-time system.
Similarly, Krasnoselski-Mann iterations xk+1−xk =

αk · (f(xk)− xk) can be viewed as a discrete-time ap-
proximations to a continuous dynamical system which
leads to the desired equilibrium. Speci�cally, the dif-
ference xk+1 − xk is a natural discrete analogue of



the derivative dx

dt
, the values αk can be viewed as dis-

cretized values of an unknown function α(t), and so the
corresponding continuous system takes the form

dx

dt
= α(t) · (f(x)− x). (5)

A discrete-time system is usually a good approximation
to the corresponding continuous-time system. Thus,
we can assume that, vice versa, the above continuous
system is a good approximation for Krasnoselski-Mann
iterations.
In view of this fact, in the following text, we will

look for an appropriate (optimal) continuous-time sys-
tem (5).

14 Scale invariance: natural requirement on a
continuous-time system

In deriving the continuous system (5) from the for-
mula for Krasnoselski-Mann iterations, we assumed
that the original time interval ∆t between the two con-
secutive iterations is 1. This means, in effect, that to
measure time, we use a scale in which this interval ∆t
is a unit interval.
As we have mentioned earlier, the choice of the time

interval ∆t is rather arbitrary. If we make a different
choice of this discretization time interval ∆t′ 6= ∆t,
then we would get a similar dynamical system, but de-
scribed in a different time scale, with a different time
interval ∆t′ taken as a measuring unit. As a result of
�de-discretizing� this new system, we would get a dif-
ferent continuous system of type (5) � a system which
differs from the original one by a change in scale.
In the original scale, we identi�ed the time interval

∆t with 1. Thus, the time t in the original scale means
physical time T = t · ∆t. In the new scale, this same
physical time corresponds to the time

t′ =
T

∆t′
= t · ∆t

∆t′
. (6)

If we denote by λ =
∆t′

∆t
the ratio of the correspond-

ing units, then we conclude that the time t in the orig-
inal scale corresponds to the time t′ = t/λ in the new
scale. Let us describe the system (5) in terms of this
new time coordinate t′. From the above formula, we
conclude that t = λ · t′; substituting t = λ · t′ and
dt = λ · dt′ into the formula (5), we conclude that

1
λ
· dx

dt′
= α(λ · t′) · (f(x)− x), (7)

i.e., that

dx

dt′
= (λ · α(λ · t′)) · (f(x)− x). (8)

It is reasonable to require that the optimal system of
type (5) should not depend on what exactly time inter-
val ∆t we used for discretization.

15 Conclusion: optimal Krasnoselski-Mann itera-
tions correspond to αk = c/k

Since a change of the time interval corresponds to
re-scaling, this means the system (5) must be scale-
invariant, i.e., to be more precise, the system (8) must
have exactly the same form as the system (5) but with
t′ instead of t, i.e., the form

dx

dt′
= α(t′) · (f(x)− x). (9)

By comparing the systems (8) and (9), we conclude that
we must have

λ · α(λ · t′) = a(t′) (10)

for all t′ and λ. In particular, if we take λ = 1/t′,
then we get α(t′) =

α(1)
t′

, i.e., α(t′) = c/t′ for some
constant c (= α(1)).
With respect to the corresponding discretized system,

this means that we take αk = α(k) = c/k.

Comment. The formula αk = c/k is not exact: it
comes form approximating the actual continuous de-
pendence by a discrete one. This approximation makes
asymptotic sense, but this formula cannot be applied
for k = 0. To make this formula applicable, we must
start with k = 1 � or, equivalently, start with k = 0
(since this is how most descriptions of iterations work),
but use the expression αk = c/(k + 1) instead.

16 Reasonable choice of the constant c
As we have mentioned, a reasonable idea is to use Pi-

card iterations. This is not always a good idea, because
we may get wild �uctuations. However, it makes some
sense to start with the Picard iteration �rst, to get away
from the initial state.
Picard iterations correspond to αk = 1; so, if we want

α0 = 1, i.e., c/(0 + 1) = 1, we must take c = 1. The
resulting iterations take the form

xk+1 =
(

1− 1
k + 1

)
· xk +

1
k + 1

· f(xk). (11)

17 Selection of αk = 1/(k +1) in the general case:
commonsense interpretation

The above formula (corresponding to c = 1) has a
natural commonsense interpretation.
Namely, in Picard iterations, as a next iteration xk+1,

we take f(xk). When there are wild oscillations, these
iterations do not converge. We expect, however, that



these oscillations are going on around the equilibrium
point. So, while the values xi are oscillating and not
converging at all, their averages x0 + . . . + xk

k + 1
and

the corresponding values f(x0) + . . . + f(xk)
k + 1

will be
getting closer and closer to the desired equilibrium.
Thus, if we want to enhance convergence, then, instead
of taking f(xk) as the next iteration, it makes sense to
take an average of the previous values of f(xk):

xk+1 =
f(x0) + . . . + f(xk−1) + f(xk)

k + 1
. (12)

Let us show that this idea leads exactly to our choice
αk = 1/(k + 1). Indeed, from

xk =
f(x0) + . . . + f(xk−1)

k
, (13)

we conclude that

f(x0) + . . . + f(xk−1) = k · xk, (14)

hence

f(x0)+ . . .+f(xk−1)+f(xk) = k ·xk +f(xk) (15)

and thus,

xk+1 =
f(x0) + . . . + f(xk)

k + 1
=

k · xk + f(xk)
k + 1

=

(
1− 1

k + 1

)
· xk +

1
k + 1

· f(xk). (16)

18 Selection of αk = 1/(k + 1) in transportation
problems: commonsense interpretation

For transportation problems, this interpretation can be
made even more natural. Indeed, when deciding on the
best route and on the best departure time xk+1 for the
moment k + 1, a reasonable driver takes into account
not only the traf�c pattern xk at the previous day, but
also the traf�c patterns at all previous days. A rea-
sonable idea is to base traf�c decisions on the aver-

age past traf�c, i.e., on ek
def=

1
k
·

k∑

i=1

xi. In other

words, instead of the previously considered divergent
iterations xk+1 = f(xk), we should consider new iter-
ations xk+1 = f(ek).
This formula leads to the new average

ek+1 =
1

k + 1
·
k+1∑

i=1

xi =
1

k + 1
·
(

k∑

i=1

xi + xk+1

)
=

1
k + 1

· (k · ek + xk+1). (17)

Since xk+1 = f(ek), we thus conclude that

ek+1 =
(

1− 1
k + 1

)
· ek +

1
k + 1

· f(ek), (18)

which is exactly the optimal iteration process.

19 This selection works well
Our experiments on the �toy� road network and on the

actual El Paso road network con�rmed that this proce-
dure converges [Cheu et al., 2007; Cheu et al., 2008].
The choice ak = 1/k have been successfully used in

other applications as well; see, e.g., [Su and Qin, 2006]
and references therein.
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