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Abstract

Simplified nonlinear dynamical equations of circular cylindrical shell are obtained on the basis of asymptotic simplification. It is shown than nonlinear equations are of the 4th order in axial variable. Edge effect described by linear quasi-static equations. Approaches for solving obtained boundary value problems are discussed.
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1
Introduction

An exhaustive literature review of work on the nonlinear vibrations of shell is given in [Amabili and Paidoussis, 2003; Moussaoui and Benamar, 2002; Kubenko and Koval’chuk, 1998; Avramov, Mikhlin and Kurilov, 2007]. One of the most important problems in this field is construction of correct reduced-order models. In this paper asymptotic procedure is used for this aim.

We use governing equations in the form proposed by Shkutin [1972]
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In nondimensional variables one has
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Let us suppose that the ends of shell are simply supported:
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where 
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 is the shell length. For further we suppose that shell has middle lengths, i.e. L has the order of 5-10 R.

2
Asymptotic procedure
In the linear case the most widely used is the theory of inextensional oscillations, based on the assumption that the variability of the stress-strain state in the circumferential direction is much larger than in the longitudinal one. In the nonlinear case it is natural to use the same assumptions. Using natural small parameter 
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 and the multiscale approach [Awrejcewicz, Andrianov and Manevitch, 1998], we introduce “fast variable” 
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where w1, F1 are the periodical due to ( function with period 
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New expression for derivative reads
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We accept the following asymptotic estimations, natural for analysed type of oscillations:
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Substituting expressions (4),(5) into equations (1),(2), taking into account estimations (6) and applying averaging operator  
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, one obtains


[image: image28.wmf]00

1/2

111111

0

4

200

1/2

2

111

0

(2),

();

b

b

Faw

a

wFwFwFd

b

Fw

a

wwwd

b

xxtt

xxyyyyxxxyxy

xx

xxyyxy

y

y

-+=

ì

ï

ï

+-

ï

ï

í

Ñ+=

ï

ï

ï

éù

--

ëû

ï

î

ò

ò

   (7)


[image: image29.wmf]2

11

1/2

1101

10111

1

11

1/22

1011

[()

()2];

[()()]0.

awaw

FaFFw

wwFFw

aFw

awwww

yyyytt

xxxxxxyy

xxxxyyxyxy

yyyyxx

xxxxyyxy

a

-

ì

+=

ï

ï

++

ï

ï

++-

í

ï

+

ï

ï

++-=

ï

î

        (8)

Boundary conditions for systems (7),(8) follow from (3) after splitting of governing boundary conditions [Awrejcewicz, Andrianov and Manevitch, 1998]:
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Near ends of shell take place rapidly decaying edge effect. For deriving edge effect equations we introduce “fast variable” 
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and the following expansions:
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New expression for derivative reads
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We accepted further the following asymptotic estimations:
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Then we substitute expressions (6), (10),(11) into the equations (1), (2) and take into account equations (7),(8) and estimations (5),(12). In functions
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 we can now suppose 
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Equations of edge effect (13),(14) are linear and quasistatic.

Boundary conditions for systems (13), (14) follow from (3) and (9) after splitting of governing boundary value problems [Awrejcewicz, Andrianov and Manevitch, 1998]. For 
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3
Natural nonlinear oscillations
Solution of the dynamical problems for circular cylindrical shells is strongly depends upon boundary conditions. Let us compare in the linear case fundamental frequencies of the cylindrical shell with boundary conditions
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where 
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,
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are the axial and the circumferential displacements respectively; 
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 is the axial force.

Fundamental frequencies for boundary conditions (15) and (16) can differ in 1.5 times. The most important boundary conditions for the case (15) are
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and for the case (20) are
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For the system (11),(12) the conditions
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follows automatically from the conditions
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So, one must satisfy the following boundary conditions:
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or
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If one does not satisfy boundary conditions (17) (or (18)), it is impossible to obtain correct solutions. For example, Evensen [1974] proposed (this approach was used in many papers) Bubnov-Galerkin method with approximated function which exactly satisfy compatibility equation but does not satisfy boundary condition (17) (or (18)). It brings large error for linear case (and, naturally, for nonlinear case also). It seems more natural use for nonlinear problem Reissner variational approach [Reissner, 1955], exactly satisfy boundary conditions (17) (or (18)) and approximately – governing or simplified dynamical equations.
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