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Abstract
The statistics of interspike intervals is one of the prin-

ciple characteristics of the synaptic activity of neurons.
This statistics can be presented with the values of the
moments of these intervals. For the integrate-and-fire
type models, the formalism of first passage time pro-
vides partial differential equations for a rigorous cal-
culation of these values for neurons subject to a white
Gaussian noise. However, the procedure of derivation
of these equations is quite sophisticated and the results
for Gaussian noise are not as trivial as they can appear
if one does not look at the rigorous derivation procedure.
The derivation of analogous partial differential equations
for the case of alpha-stable (Lévy) noise is even more
involved. In this paper, the equations providing mo-
ments of interspike intervals are derived for quadratic
integrate-and-fire neurons subject to symmetric alpha-
stable noise. The results are presumably generalizable to
other integrate-and-fire type models (e.g., leakage ones).
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1 Introduction
The development of the first passage time formalism

on the basis of the Fokker–Planck equation for systems
subject to white Gaussian noise provided a partial dif-

ferential equation formulation delivering rigorous results
on the first passage time and its moments [Gardiner,
1997]. In particular, this formalism gives the mean in-
terspike interval and its variance for integrate-and-fire
type models in mathematical neuroscience [Brunel et al.,
2003; Lindner et al., 2003] (where other approaches
can deliver approximate results [Goryunov et al., 2024]
with their utility for one or another specific tasks, this
framework is exact as long as the conditions are time-
independent).

The case of non-Gaussian white noises, which must be
α-stable ones with α < 2 [Zolotarev, 1986], the gener-
alization ought to be constructed carefully as one has to
properly handle a non-Fickian diffusion term (fractional
derivative) [Klyatskin, 1980; Klyatskin, 2005; Chechkin
et al., 2003; Toenjes et al., 2013] instead of the nor-
mal diffusion one—the second order spatial derivative.
Meanwhile the case of non-Gaussian fluctuations (Lévy
flights) attracts attention in relation to the dynamics of
neural networks [Roberts et al.,2015; Wang et al., 2021;
Wang et al., 2022; Goldobin et al., 2024; Rybalova et al.,
2024a; Rybalova et al., 2024b] and other systems where
fractional-order derivatives emerge [Romero-Meléndez
et al., 2022; Dolmatova et al., 2023; Rybalova et al.,
2024c; Muhafzan et al., 2022].

2 Fractional backward Fokker–Planck equation
We consider a quadratic integrate-and-fire neuron

(QIF) with additive noise [Izhikevich, 2007; Ermentrout
et al., 1986],

V̇ = V 2 + η + σξ(t) ,
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where V is the membrane voltage, the term η contains
both the intrinsic properties of a QIF and its synaptic in-
put current, which includes the contributions from the
synaptic activity of other neurons in the population; σ
is the noise scale (“amplitude”), ξ(t) is the normalized
δ-correlated α-stable noise [Zolotarev, 1986]. When
the membrane voltage V reaches the threshold value
Vth → +∞, it is reset to Vres → −∞ and emits a synap-
tic spike into network. The conditional probability den-
sity function P (V, t|V0, t0) obeys a fractional Fokker–
Planck equation [Klyatskin, 2005; Chechkin et al., 2003;
Toenjes et al., 2013; Goldobin et al., 2024]:

∂P (V, t|V0, t0)

∂t
+

∂

∂V

(
f(V )P (V, t|V0, t0)

)
−Φ̇

(ξ)
t (iQ̂)P (V, t|V0, t0) = 0 , (1)

where f(V ) ≡ η + V 2 and Q̂ ≡ (∂/∂V ), with
initial conditions P (V, t0|V0, t0) = δ(V − V0). For
the case of a symmetric α-stable noise (confer Eq. (3)
in [Goldobin et al., 2024] with µ = β = 0) of ampli-
tude σ, function Φ̇

(ξ)
t (k) = −σα|k|α. Here and here-

after, we consider only this symmetric case and use the
form of operator Φ̇(ξ)

t (iQ̂) in the Fourier space, where
Φ̇

(ξ)
t (i(∂/∂V )) eikV ≡ −σα|k|αeikV , α ∈ (0; 2].
With the characteristic function

FV (k, t) ≡ ⟨eikV ⟩ =
+∞∫

−∞

P (V, t|V0, t0) e
ikV dV , (2)

one can write the Fourier transform

P (V, t|V0, t0) =
1

2π

+∞∫
−∞

FV (k, t) e
−ikV dk , (3)

and

Φ̇
(ξ)
t (iQ̂)P (V, t|V0, t0)

=
−σα

2π

+∞∫
−∞

|k|αFV (k, t) e
−ikV dk . (4)

Hence, the fractional Fokker–Planck equation (1) reads

∂P (V, t|V0, t0)

∂t
+

∂

∂V

(
f(V )P (V, t|V0, t0)

)
+

σα

2π

+∞∫
−∞

dk|k|α e−ikV

×
+∞∫

−∞

dV1 e
ikV1P (V1, t|V0, t0) = 0 . (5)

Further, one can derive the backward fractional
Fokker–Planck equation (fractional Kolmogorov equa-
tion) for (5), which governs the conditional probabil-
ity density of the QIF to be at V0 at t0 if it is at V at
time instant t ≥ t0 —i.e. a version of partial differential
equation (5) with respect to V0, t0, instead of V, t. One
can make use of the fact that the probability of a path
trough point V1 at t1 is P (V, t|V1, t1)P (V1, t1|V0, t0) in-
tegrated over V1 is the total probability of the transition
(V0, t0) → (V, t),

+∞∫
−∞

dV1P (V, t|V1, t1)P (V1, t1|V0, t0) = P (V, t|V0, t0) ,

and therefore is independent of t1. Namely,

0 =
∂

∂t1

+∞∫
−∞

dV1P (V, t|V1, t1)P (V1, t1|V0, t0)

=

+∞∫
−∞

dV1

(
P (V, t|V1, t1)

∂P (V1, t1|V0, t0)

∂t1

+
∂P (V, t|V1, t1)

∂t1
P (V1, t1|V0, t0)

)
;

substituting the first time-derivative term from (5), one
obtains

+∞∫
−∞

dV1

(
− P (V, t|V1, t1)

∂
(
f(V1)P (V1, t1|V0, t0)

)
∂V1

− P (V, t|V1, t1)
σα

2π

+∞∫
−∞

dk|k|α e−ikV1

×
+∞∫

−∞

dV2 e
ikV2P (V2, t1|V0, t0)

+
∂P (V, t|V1, t1)

∂t1
P (V1, t1|V0, t0)

)
= 0 . (6)

For the first term one employs partial integration to find

−
+∞∫

−∞

dV1P (V, t|V1, t1)
∂
(
f(V1)P (V1, t1|V0, t0)

)
∂V1

= −P (V, t|V1, t1) f(V1)P (V1, t1|V0, t0)
∣∣∣V1=+∞

V1=−∞

+

+∞∫
−∞

dV1P (V1, t1|V0, t0) f(V1)
∂P (V, t|V1, t1)

∂V1

=

+∞∫
−∞

dV1P (V1, t1|V0, t0) f(V1)
∂P (V, t|V1, t1)

∂V1
,

(7)
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where the term (...)|V1=+∞
V1=−∞ is zero since the voltage re-

setting of a QIF effectively creates the periodic bound-
ary condition at V = ±∞. For the second term in the
integrand of (6), one changes the notation of integration
variables V1 ↔ V2 and k → −k to obtain

−
+∞∫

−∞

dV2P (V, t|V2, t1)
σα

2π

+∞∫
−∞

dk|k|α eikV2

×
+∞∫

−∞

dV1 e
−ikV1P (V1, t1|V0, t0)

= −
+∞∫

−∞

dV1P (V1, t1|V0, t0)
σα

2π

+∞∫
−∞

dk|k|α e−ikV1

×
+∞∫

−∞

dV2 e
ikV2P (V, t|V2, t1) , (8)

where we used the commutativity of the integrations
over V1 and V2 for the rearrangements in (8). Substi-
tuting (7) and (8) into (6), one finds

+∞∫
−∞

dV1P (V1, t1|V0, t0)

(
f(V1)

∂P (V, t|V1, t1)

∂V1

− σα

2π

+∞∫
−∞

dk|k|α e−ikV1

+∞∫
−∞

dV2 e
ikV2P (V, t|V2, t1)

+
∂P (V, t|V1, t1)

∂t1

)
= 0 . (9)

The latter equality is satisfied for all t1 if the expres-
sion in the brackets is zero. This is the fractional back-
ward Fokker–Planck equation (or fractional Kolmogorov
equation):

−∂P (V, t|V0, t0)

∂t0
− f(V0)

∂

∂V0
P (V, t|V0, t0)

+ σα

∣∣∣∣ ∂

∂V0

∣∣∣∣α P (V, t|V0, t0) = 0 . (10)

3 First passage time problem
The conditional probability of staying in a < V < b at

time instant t for the system starting from V0 at t0 is

p(a < V < b, t|V0, t0) =

∫ b

a

P (V, t|V0, t0) dV

and obeys the same Kolmogorov equation (10), which
can be integrated with respect to V over the open interval
V ∈ (a; b) :

− ∂p(a<V<b, t|V0, t0)

∂t0
−f(V0)

∂p(a<V<b, t|V0, t0)

∂V0

+ σα

∣∣∣∣ ∂

∂V0

∣∣∣∣α p(a<V <b, t|V0, t0) = 0 . (11)

For the first passage problem, where the states are ad-
sorbed as soon as they arrive at the boundary, Eq. (11)
must be supplemented with the conditions:

p(a < V < b, t|V0, t0) = 0 for V0 ≤ a and V0 ≥ b ,

which serve as boundary conditions for this equation,
and obvious initial condition

p(a < V < b, t0|V0, t0) =

{
1 , for a < V0 < b ;

0 , otherwise.

The system state escapes the domain (a; b) during in-
finitesimal period dt with likelihood (−∂p

∂t dt); therefore,
for the first passage time T , one finds

⟨Tm⟩ =
+∞∫
t0

tm
(
−∂p

∂t
dt

)

= −tmp(a < V < b, t|V0, t0)
∣∣+∞
t0

+m

+∞∫
t0

tm−1p(a < V < b, t|V0, t0) dt

= tm0 +m

+∞∫
t0

tm−1p(a < V < b, t|V0, t0) dt , (12)

where we assumed no trapped states with infinite resi-
dence time and set

lim
t→+∞

tmp(a < V < b, t|V0, t0) = 0 . (13)

Multiplying Eq. (11) by tm−1 and integrating over t from
t0 to +∞ one finds

−
+∞∫
t0

dt
∂p(a < V < b, t|V0, t0)

∂t0
tm−1

− f(V0)
∂

∂V0

⟨Tm⟩
m

+ σα

∣∣∣∣ ∂

∂V0

∣∣∣∣α ⟨Tm⟩
m

= 0 ,

where we employed ∂
∂V0

tm0 = 0. For autonomous sys-
tems, p(a < V < b, t|V0, t0) depends on the time differ-
ence (t− t0), but not times t and t0 individually; hence,

∂p(a < V < b, t|V0, t0)

∂t0
= −∂p(a < V < b, t|V0, t0)

∂t

and

−f(V0)
∂

∂V0
⟨Tm⟩+ σα

∣∣∣∣ ∂

∂V0

∣∣∣∣α ⟨Tm⟩ = m⟨Tm−1⟩ ,

(14)
with ⟨Tm⟩ = 0 at adsorbing boundaries (V0 = a and
V0 = b).



CYBERNETICS AND PHYSICS, VOL. 13, NO. 3, 2024 209

4 Other boundary conditions and the case of QIF
Some physical set-ups (systems with the mirror-

symmetry of V , physically inadmissible domains of V ,
etc.) can correspond to different boundary conditions,
not adsorbing ones. Specifically, in the case of the prob-
lem of the interspike interval statistics of QIF, for the sys-
tem state travel from −∞ to +∞, one must set bound-
aries at a = −∞, b = +∞, where b is an absorbing
boundary:

⟨Tm⟩
∣∣
V0=b→+∞ = 0 . (15)

But no states can escape from (a; b) through a if a →
−∞, as there is an infinite deterministic state flow
f(V ) = η + V 2 towards positive V [inwards the do-
main (a; b)], which dominates any negative fluctuative
displacements. On the other hand, the system instantly
leaves the (−∞)-state; therefore, the escape times from
initial states with large negative V0 must be nearly iden-
tical, i.e.,

lim
V0→a+0
a→−∞

∂⟨Tm⟩
∂V0

= 0 . (16)

For the interspike interval τ , one must calculate
⟨Tm⟩(V0) with partial differential equations (14) and
boundary conditions (15,16) and pick-up travels from
V0 = −∞ :

⟨τm⟩ = ⟨Tm⟩
∣∣
V0=−∞ . (17)

Consistency with the mean firing rate
The mean fining rate

r(t) = lim
V=±∞

V 2P (V, t|V0, t0)

after a long transient period, at a statistically stationary
state, r becomes constant and the asymptotic distribution
P0(V ) = limt→+∞ P (V, t|V0, 0) obeys the integral of
Eq. (1) [Goldobin et al., 2024]:

f(V )P0(V ) +

+∞∫
V

dV1 σ
α

∣∣∣∣ ∂

∂V1

∣∣∣∣α P0(V1) = r , (18)

which can be compared to Eq. (4) for m = 1:

−f(V0)
∂

∂V0
⟨T ⟩+ σα

∣∣∣∣ ∂

∂V0

∣∣∣∣α ⟨T ⟩ = 1 . (19)

Consider a cumulative distribution

G(V ) =

+∞∫
V

P0(V1) dV1 ;

hence, P (V ) = −∂G/∂V and Eq. (18) takes form:

−f(V )
∂G

∂V
−

+∞∫
V

dV1 σ
α

∣∣∣∣ ∂

∂V1

∣∣∣∣α ∂

∂V1
G(V1) = r .

(20)

In Fourier space, one can see that derivatives |∂/∂V1|α
and (∂/∂V1) are commutative; therefore, one finds for

the second term of (20) :
∫ +∞
V

dV1
∂

∂V1

∣∣∣ ∂
∂V1

∣∣∣α G(V1) =

−
∣∣ ∂
∂V

∣∣α G(V ) . Hence, Eq. (20) turns into

−f(V )
∂G

∂V
+ σα

∣∣∣∣ ∂

∂V

∣∣∣∣α G(V ) = r . (21)

Thus, we have identical partial differential equations
(19) and (21) for

⟨T ⟩(V0) and
G(V )

r

with boundary conditions

⟨T ⟩|V0=−∞ = ⟨τ⟩ , ⟨T ⟩|V0=+∞ = 0

and

G(−∞) = 1 , G(+∞) = 0 ,

respectively, which means an obvious relation

⟨τ⟩ = 1

r
.

The results for the first passage time (equivalent to the
interspike interval) are consistent with the mean firing
rate.

5 Conclusion
To conclude, the statistics of the interspike intervals

is formally given by problem (14) with boundary con-
ditions (15,16). It is consistent with the mean firing
rate. However, the cases of m > 1 require an involved
study with recurrent calculation of not just point values
⟨τm⟩ = ⟨Tm⟩|V0=−∞, but the functions ⟨Tm−1⟩(V0)
over the entire axis of V0. It is yet difficult to conclude
whether one can conduct this study in the same way as
for the calculation of r by means of the formalism of
characteristic functions in [Goldobin et al., 2024].

The case of Gaussian noise was solved in quadratures
in [Brunel et al., 2003; Lindner et al., 2003] and only
much later an analytical solution was presented for firing
rate r in [di Volo et al., 2022]. The latter solution allowed
for a progress in understanding and characterization of
the neural dynamics [di Volo et al., 2022; Goldobin et al.,
2024]. The rigorous formulation in terms of the chain
of partial differential equations (14) with corresponding
boundary conditions can help the development of the sta-
tistical theoretical characterization of interspike intervals
for integrate-and-fire models. For the leakage models
and specific types of synaptic networks one has to mod-
ify the function f(V ) and the position of adsorbing states
(i.g., in the case of leakage models).
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