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Abstract be used in pick and placement tasks and for carrying

The article proposes a differential flatness theory-objects, in assembling, in painting, spraying, harvest-
based control and filtering method for the model of a mo-ng, for patrolling and defence purposes, as well as for
bile manipulator. This is a difficult control and robotics providing services to the elderly and the disabled [Li
problem due to the system’s strong nonlinearities anet al., 2009], [Dai and Liu, 2017], [Abeygunawardhana
due to its underactuation. Using the Euler-Lagrangeand Murakami, 2010], [Andaluz et al., 2015], [Li et al.,
approach, the dynamic model of the mobile manipula2008]. Dexterity and accuracy in the handling of objects
tor is obtained. This is proven to be a differentially as well as in the maneuvers performed by the mobile ma-
flat one, thus confirming that it can be transformed intonipulators depend on the efficiency of the related control
an input-output linearized form. Through a change ofalgorithms [Rigatos and Busawon, 2018], [Boyle et al.,
state and control inputs variables the dynamic model 02003], [Kocemarek et al., 2017], [Koraye and Nekao,
the manipulator is finally written into the linear canon- 2016]. There are several results on nonlinear control
ical (Brunovsky) form. For the latter representation ofapproaches for robotic vehicles and mobile manipula-
the system’s dynamics the solution of both the controtors [Rigatos, 2011], [Rigatos, 2015], [Li et al., 2008],
and filtering problems becomes possible. The globallLi et al., 2016], [Najjaran and Goldenberg, 2007]. In
asymptotic stability properties of the control loop areparticular, the application of sliding-mode and backstep-
proven. Moreover, a differential flatness theory-baseging methods can be hindered by the need to transform
state estimator, under the name of Derivative-free nonpreviously the dynamic model of mobile manipulators
linear Kalman Filter, is developed. This comprises (i) theinto canonical or triangular state-space forms. One can
standard Kalman Filter recursion on the linearized equivalso note results on robust and adaptive control schemes
alent model of the mobile manipulator and (ii) an inversefor mobile manipulators which aim at compensating for
transformation, relying on the differential flathess prop-model uncertainty and disturbances in these robotic sys-
erties of the system which allows for estimating the statéems [Xu et al., 2009], [Souzanchi et al., 2017], [Wu et
variables of the initial nonlinear model. Finally, by re- al., 2014], [Park et al., 2018], [Monzur and Kulawik,
designing the aforementioned Kalman Filter as a distur2006]. There are also findings on global linearization-
bance observer one can achieve estimation and compelpased control schemes for mobile manipulators, as for
sation of the disturbance inputs that affect the model ofnstance in the case of flatness-based control [Tang et

the mobile manipulator. al., 2011], [Morales et al., 2014], [Lévine, 2011], [Fkes
and Mounier, 1999], [Sira-Ramirez and Agrawal, 2004],
Key words [Villagra et al., 2007]. Apart from motion control and

Mobile manipulators, differential flatness theory, flat the end-effector's positioning problem for mobile ma-
outputs, canonical forms, global linearization, g|oba|n|pulators, compliance tasks and joint position and force
stability, Kalman Filtering, disturbance observer. control problems for the end-effector have been also an-

alyzed [Galicki, 2016], [Linn and Goldenberg, 2002],
[Mai and Wang, 2014], [Li et al., 2010], [Liu and Liu,

! Introductu_m ) ) i 2009]. The development of functional mobile manipula-
Mobile manipulators are widely used in several indus-

trial and human assisting tasks. For instance they can
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tors is completed with the solution of the related motionand model uncertainty terms of the mobile manipulator.

planning and trajectory generation problems. In Section 6 the performance of the differential flatness
In the present article, a differential flathess theory-theory-based control and estimation scheme is evaluated

based approach is developed for solving the controlhrough simulation experiments. Finally, in Section 7

and state estimation problems in mobile manipulatorgoncluding remarks are given.

under parametric model uncertainty and external distur-

bances [Rigatos and Busawon, 2018], [Rigatos, 2011}, Dynamic Model of the Mobile Manipulator
[Rigatos, 2015]. First the dynamic model of the mobile . . . .
To obtain the dynamic model of the mobile manip-

manipulator, comprising a four-wheel vehicle and a ) ) .

two-DOF robotic manipulator, is obtained through theUIator. (Fig. .1) the Lagrangian functions of both the
application of the Euler-Lagrange analysis. It is provenrObOtIC mampulator and of the wheeled platform are
that all state variables and the control inputs of thecomputed first. Thg mass of the yvhegled p'a”OFm IS
dynamic model can be written as differential functionsdenOted byM "’?“d Its moment of inertia for rotation
of a subset of its state-vector elements, the so-calle round the vertical axis is denoted Bs The mass of

flat outputs of the system. Besides it is shown that thd"e f|r§t link of the robo'_uc mampulator ‘511 and the .
flat outputs of the system are differentially independentfissoc'ated mo_mer)t of inertia (for rotation arounq Its
meaning that both these variables and their derivative&Enter of grgvny) |§11.The mass of the second_ link
are not connected through a relation in the form of aof the robot!c m_anlpulator S22 and the_ associated
linear differential equation. These come to confirmmom_ent_ of mertl{i (fqr rotation around its center of
that the dynamic model of the mobile manipulator iSgraV|ty) isI. The inertial reference frame of the system

a differentially flat one. By proving the differential .

is denoted a®); X1Y; Z; while the body-fixed reference
flatness of the mobile manipulator it is confirmed that(rame is denoted a8, X Y Zpr- The angle between
(i) it can be transformed into an equivalent input-output

the transversal axis of the vehicle and h&’; axis is
linearized form, (ii) it can be written in the canonical gfr:ﬁ;eieﬁge -I\;\t]iteh tl;égpaer;?lﬁooii sfhter:a?]ts\?e”rr;gl V;T(?Seliss
Brunovsky) state-space form. . .
( ky) P denoted ag. The turn angles of the joints of the robotic

For the linearized state-space representation of th@ampulatorare denoted dsandg, respectively.

robotic system, both the solution of its control and state . . : .
estimation problem becomes possible. Actually, to solvt? Co.mputatlo_n of the Lagrangian of the robotic manipu-
the control problem one can apply pole-placement meth 2" About link 1 it holds
ods or optimal control approaches on the equivalent lin-
earized description of the system. Moreover, to solve the 1 N2 1T A2 1 9 9
associated state estimation problem a fitering method ' — 5m1(l°’1?1) * 5.11291 +1§m12(v”” TVE
under the name of Derivative-free nonlinear Kalman Fil- +amile,¥)” + 309 1
ter can be used [Rigatos and Tzafestas, 2007], [Bas- (1)
seville and Nikiforov, 1993], [Rigatos and Zhang, 2009].
This filtering approach consists of the standard Kalman
Filter recursion on the equivalent linearized description
of the system and of an inverse transformation that pro-
vides estimates for the state variables of the initial non-
linear model of the mobile manipulator. Moreover, by
redesigning the aforementioned Kalman Filter as a dis- Ky = tmgve, vl + 11,(02 + 02)+
turbance observer, one can also estimate in real-time and Ly (V2 +2V2) :l;‘; {[12 + 1, cos(62)] )2+
compensate for additive input disturbances that affect 2 Ve Y 2 > -21 e 2

the mobile manipulator. To this end, the state vector +ahy

of the robotic system is extended by considering as ad-
ditional state variables the disturbance inputs and thei
time derivatives.

The structure of the article is as follows: in Sec-
tion 2 the dynamic model of the robotic manipulator
is obtained after applying the Euler-Lagrange analysis.
In Section 3 the differential flatness properties of the
model of the mobile manipulator are proven. In Sec- 15 the kinetic energy of the second link is given by
tion 4 a flatness-based controller is designed for the mo-
bile manipulator and estimation of its state variables is
performed with the use of the Derivative-free nonlinear Ko = imy 1262 4 12 (61+
Kalman Filter. In Section 5 the aforementioned Kalman +0)2 + 211l02005(92)91(91 + 9'2)]+
Filtgr is rede_signed as a disturbance observer, thu_s al- +%12(9% 1 62) + %mQ(sz + Vy2)+
lowing to estimate and compensate for the perturbations +%m2{[ll L, 605(92)]1/}}2 n %121/}2

Py = mygle, cos(6y) (2)

About link 2 it holds

3)
where the velocity of its center of gravity is, =
f:b@ ,Je,] and after intermediate operations one gets

VenVey L = l%@f + lfl (91+
+92)2 + 2[1[02008(92)91 (091 + 092)

(4)
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It holds that
Z . .
‘ V24 V2=X2+Y? (10)
Consequently, the kinetic energy of the vehicle is also
written as
X . . .
: K,=3iM(X?+Y?%) + 1Ly? (112)
The potential energy of the vehicle is taken to be zero,
h considering that the vertical distance between its center
of gravity and the ground is negligible.
Figure 1. Diagram of the mobile manipulator together with tlody- P,=0 (12)
fixed and the inertial reference frames
Thus, about the Lagrangian of the vehicle one has:
The potential energy of the second link of the manipu- L,=K,—-P, (13)

lator is given by
and after using the previous relations the Lagrangian
of the vehicle becomes
Py, = mag(licos(01)) + leacos(61 + 02) (5)
The Lagrangian of the robotic manipulator is given by: L,=iM(X?4+Y?) + %]ijﬂ (14)

v T2

The aggregate Lagrangian of the mobile manipulator
L.=Ki+Ky— P — P, (6) is

while the detailed description of the Lagrangian is

Ly = %m1(1c191)2 + %[19%4‘ . Next, the state vector for the mobile manipulator is
+yma (Ve + V) + gma(le,y)” + 51197 defined ast = [X, X,Y,Y, 4, 4,01,061,05,05]7. The

3ma2[1707 + 12, (01 + 62)°+ control inputs which are applied to the model of the
+2l11c,c08(62)01 (01 + 02)]+ mobile manipulator are as follows: (i) forde which is
+%]2(9'f + 9'3) + %mg(Vf 4 vy2)+ generated by the vehicle’s electric motor, (ii) ForkEe

+ima{lh + le,cos(62)]9h}2 + %IMQ which is generated by the vehicle’s brakes, (ii) torques

—[m1gle,cos(61)] — mag[(licos(61)) + lacos(61 + ;)] T1 andT> which are generated by the actuators of the
(7)  manipulator.

Computation of the Lagrangian of the robotic vehicle

The kinetic energy of the vehicle is The force giving propulsion to the vehicle Is. It is
considered that the vector of fordé forms an angle

0 with the longitudinal axis of the vehicle (this is the
K, = %M(Vf + Vy2) + %]zw (8)  angle of the steering wheels), and that the angle between
this axis and theD, X; axis of the inertial reference
The vehicle’s velocity is initially expressed in the system isy> (Fig. 2).Moreover it is considered that
body-fixed reference fram@,; X ;Y2 Zys (Fig. 1) and @ breaking forcef; is exerted at the rear wheels of
is given by the vectdii/;., V,]. When the vehicle’s veloc- the vehicle, which is aligned with the longitudinal
ity is written in the inertial reference fran@, X,Y;Z,,  axis of the vehicle. Thus, one has that the aggregate
then it described by the vectpX, Y]. It holds that force exerted on the vehicle along tiig X, axis is
Fx = Fcos(¢y — 0) — Fyeos(v). Equivalently, the
aggregate force that is exerted on the vehicle along the
Vo = cos(¥)X — sin(y)Y ©) 0,Y; axisisFy = Fsin(y—0) — Fysin(v). Moreover,
Vy = sin() X + cos(¥)Y considering that the distance between the front wheels
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From the Lagrangian equation given in Eq. (16) one

Z, has:
X = m1+’f}l2+M FX (22)
X Y= s by (23)
1

v 1
1/1 - IerIlJrIQerllzl+m2(l1+lc2(;05(92))2 TZ (24)

Moreover, about the dynamics of the robotic manipu-
lator one obtains
Figure 2. Diagram of the forces and torques exerted on thetiob

vehicle . . )
D1160% + D1203 + h1(0,0) + g1(0) = Ty (25)
) , ) . where D11(0) = mqyl? + I, + mil? + mol? +
axis of the vehicle and its the transversal axig jone 1(0) e 3 1,1 2262
. . 2m2lllC2cos(92) + IQ, D12(9) = mglc +
has that the torque that causes rotation of the vehicle : . -2
around theD; Zy; axis isT, = Fsin(y — 0)L M1lile,005(62), 116, 0) = —malile, sin(0:) (261 +0)
MaM : ' and g1(0) = magle,sin(61) + magllisin(6y) +

By applying the Euler-Lagrange principle to the modellc2 sin(01 + 02).

of the mobile manipulator one has:

and also
9 9L _ 9L
Loy 98— Fy (16) . N .
orod - Or D102 + Dyoli2 + ho(0,0 + g2(0)) =T»  (26)
where D21(9) = mglgl + mglllCZCOS(QQ),
29L _ 9L _ p a7 2 j ; j
ot Oy oy Y D22(9) = 7’nglc2 + I, h2(99) = —mglllCQSln((gg)el +
ma(ly + leycos(62))(lasin(62))y?, and g2(0) =
magle, sin(fy + 02).
8 9L _ 9L
Siad o0 =1z 18
ooy 0¥ (18) Thus, about the manipulator attached to the mobile
platform one arrives at the following state-space descrip-
tion:
dios, — oo = 1 (19)
(Du Du) (91) n (hl(eaé)) i (91(9)> _ (Tl)
ooL oL _ 7 20 D2y D2z ) \ 6, ha(6,0) g2(0) Ty
It 06, 905 2 ( ) (27)

. . By inverting matrix D(6), the state-space description
The aggregate Lagrangian for the model of the mobile y 9 . ) SP P
) X of the robotic manipulator can be written as
manipulator is

_1 vN2 1742, 1 2 2 01\ 1 D3y —Di3\ (h1(6,0)
L le(lclfl) + 2,11291 tzm;(vm +V)+ (@2) = ~ D11 Das—DiaDm (D21 Dy ha(6,6)
Chm 07 + AR
smo[l367 + lgl_(éh' + 92')2-1- *DHDZ;DHDZI <_1§2 D 12> <g1(9)
2yl cos(02)6: (61 + o))+ 2L P/ g
17 (32 . 42y 4 1 2 2
‘1‘1512(91 +03) + §m2(Vz2+ ‘fy )+2 1 Doy —D12\ (Th
—|—§m2{[l1 + 162008(92)]1/1} + 512’(/1 +D11D22—D12D21 —Ds1 Dy Ts
—[magle, cos(61)] — mag|(lrcos(61))+ (28)

Fleacos(0y + 02)] + LM(X2 +V?2) + 11,92
(21)
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The dynamics of the robotic manipulator can be also The vector of the system’s flat outputs ise

brought to the following form:

Dozhy—Doiho Da2g1—=D21g2

61 " (D11D22—D12D21) = (D11D22—D12D21)
= +
9’ _ _=Dishi+Di1hy  _ _=Di2g1+Di119g2
2 (D11 D22—D12D2y1) (D11D22—D12D2y1)
D22 *D21 T
(D11 D22—D12D21) (D11D22—D12D21) 1
+
—Dio D1y Ty
(D11 D22—D12D21) (D11 D22—D12D21)
(29)

Consequently, the state-space model of the mobile ma-

nipulator becomes:

X £ gn 0 0 0 0\ [Fx

}i }5‘2 0 goo 0 0 0 Fy

.1./) = ||+ 0 0 g33 0 0 Ty

61 Fy 0 0 0 g4 945 T

D) Fy 0 0 0 gs54955 Ty
R 3 3 (30)
where 4 = 0, Fb, = 0, F3 = 0,

F4 _ _ __Dysh1—=Do>1hy _ D291 —D21g2
(D11 D22—D12D21) (D11 D22—D12D21)’

ﬁ' — _ _—=Dishi+Diihs  _ _—Dizgi+Di1ge
5 (D11 D22—D12D21) (D11 D22—D12D21)?

while it also holds thaty;, = —i—57, 922 =
1

1 —
mi+mo+M’ 933 = Iz+TLi+I2+malZ +ma(li+le, cos(62))?”
Do g - — =Do
(D11D22—D12D21)? 45 (D11 D22—D12D21)’

954 = (D11 D22—D12D21)? and955 " (D11D22—D12D21) "

ga4

3 Differential Flatness Properties of the Model of
the Mobile Manipulator

It will be proven that the dynamic model of the mo-

bile manipulator is a differentially flat one, which im-

61

[$1,$3,1‘5,IL‘7,£E9]T. It holds thatrg = T, T4 = T3,

r¢ = I, g = T7 andxig = Z9. Therefore, all state
vector elements of the mobile manipulator can be written
as differential functions of the flat output vector. More-
over, from the second row of Eq. (31) one has

up = iy — Fi=uy = qi(xp,@p) (32)
From the fourth row of Eq. (31) one has

up = iy — Fy=ug = qo(xp,p) (33)
From the sixth row of Eq. (31) one has

uz = ——ig — Fy=uz = q3(xs,@5) (34)

933

From the eight and tenth rows of Eq. (31) one has

(£)-+(2)+ ()
Ug T10 ha g2
§u4 :q4($f7 xf)
us =qs(xy, ay)

Consequently the control inputs of the mobile manip-
ulator are also written as differential functions of the flat
outputs vector and the system is a differentially flat one.

4 Design of a Flatness-based Controller for the Mo-
bile Manipulator

The dynamic model of the mobile manipulator has

plies that all its state variables and its control inputs ca€en given in Eq. (31) The following control inputs are
be expressed as differential functions of a specific subaPplied:
set of its state vector elements which are known as flat

outputs of the system. The following state variables of

the mobile manipulator are defined; = X, zo = X,
a3 =Y, x4 =Y, x5 = 9, x5 = 3, x7 = 01, 13 = 01,
T9 = Oy, 1190 = 0. Additionally, the control inputs of
the robotic system are taken to be = Fx, us = Fy,
ug = Tz, uqg = T1 andus = T5. Thus, the following
state-space description is obtained:

i o 00 0 0 0
i]g Fl gi11 0 0 0 0
i 4 00 0 0 0
N j23 0.g220 0 0 (M
5 | _ || [0 000 0ff:>
6 Fy 0 0 g3 0 0 u3
&7 T3 000 00 4
Zg Fy 0 0 O gaa 915 s
i 10 00 0 0 0
Z10 F 0 0 0 gs54955

(31)

up = g%[iﬁi — Fy — k(81 — 9) — k(21 — 29)]
(36)
Uz = gﬁ[i’g — Py — ki (i3 — §) — k3 (23 — 2§)]
(37)
s = 1 — By~ K5 i) Kl — )
(38)
—1 - d
(u4) _ (944 945) {(357) _
Us 954 G55 jg
(39)
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By applying the previous control inputs to the state- The disturbances termd;, i =

space model of Eqg. (31) one gets:

($1 — :Eil) + k%($1 — xil) + k%(:ﬂl — :Eil) =0
(i3 — &§) + k7 (&3 — @5) + k3 (w3 — 2§) = 0
(@5 — &8) + k(s — @) + k3(2s —2g) =0 (40)
(@7 — @9) + ki (i7 — @) + k3(27 —2§) =0
(&g — &§) + k(2o — &) + k3 (29 — x§) = 0

By defining the state variables’ tracking erroraas=

r; —ad, i =1,2,---,5 one obtains the tracking error

dynamics through the following equations:

él + k%el + k%el =0
52 + k/%EQ + k%ez =0
€3 + 1{3%63 + kg€3 =0
€4 + 1{341164 + k%€4 =0
55 + ki’es + kgel =0

(41)

Next, by selecting the feedback gaifis , k%), i =

1,2,---,5 such that the characteristic polynomials
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1,2,---,5 are
considered to be described by the associated 2nd order
time-derivative and by the related initial conditions.
This is reasonable, because every functifncan

be equivalently represented by itsth order time-
derivative f(")(¢) and by the related initial conditions
f9(0), i=1,2,---,n— 1. However, since estimation

of such functions is going to be performed with the
use of Kalman Filtering, prior knowledge about initial
conditions becomes obsolete.

The second-order derivative of the aforementioned
disturbance inputs is given hi = fa,,1=1,2,---,5.
Next, the state variables and their time-derivatives are
denoted as additional state variables of the model of
the mobile manipulator. This results into the following
state-space description of the system= x1, 2o = 1,
z3 = X2, 24 = &2, 25 = X3, 26 = &3, 27 = T4, 28 = &4,
z9g = Ts, 210 = &s, 211 = _d1, 212 = di, z13 = da,

214 = da, 215 = d3, 216 = d3, 217 = d4, 218 = d4 and
z19 = ds, 220 = ds.

which are associated with the aforementioned differen- The model of the mobile manipulator can be written in
tial equations to be Hurwitz stable , one has that

the following concise state-space form:

limysooe; =0, i=1,2,- 5= i = Az + Bo

o €i ; y 4y ) 44

limysoots = 2, i=1,2,--- 5 (42) eR (44)

5 Design of a Flatness-based Disturbances Estima- _ WNere vector v =
tor [u1;u2;u37u47u57fd17fd25fd37fd47fd5] while

Next, the dynamic model of the mobile manipulator is
considered to be affected by additive input disturbances:

matrices AcR?°%20, BeR¥*10 and CcR%*? are

given by

01000000000000000000

1 2 00000 0 00000000001000000000
2 £ 910000 d 00010000000000000000
a3 T 00000 w 0 00000000000010000000
T4 F 0922000 ff ° d 00000100000000000000
Tr | _ | e | | 00000 us 0 00000000000000100000
T Fs 0093500 1 ds 00000001000000000000
&7 s 00000 4, 0 00000000000000001000
T Fy 000 gas gas s 00000000010000000000
9 10 00000 0 00000000000000000010
10 F 000 g54 g5 ds A=100000000000100000000 | ©“®
_ _ (43) 00000000000000000000
Using the previous state-space model the 00000000000001000000
following virtual ~control inputs are defined: 00000000000000000000
v1 = 1+ guiu, vz = Fy + gaoua, vz = F3 + gazus, 00000000000000010000
vy = Fiy+gaaua+ gasus, andvs = F5 + gsaus + gssus. 00000000000000000000
Equivalently, the dynamics of the mobile manipula- 00000000000000000100
tor under additive input disturbances is written as: 00000000000000000000
Iy = v+ dy, By = va +dy, ¥3 = w3+ ds, 00000000000000000001
T4 = V4 +dyg, 5 = vs + ds.

000000000000O0O00OCOOOOOO
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0000000000
1000000000
0000000000
0100000000
0000000000
0010000000
0000000000
0001000000
0000000000
0000100000
0000000000
0000010000
0000000000
0000001000
0000000000
0000000100
0000000000
0000000001
0000000000

(46)

10000000000000000000
00100000000000000000
00001000000000000000
00000010000000000000
00000000100000000000

(47)
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ur = 2B — By — ki (d1 — &) — k(21 — ) — di]
(51)

up = S [i — Fy — k7 (43 — @) — k3 (23 — )]

(52)

us = g%[ Fg*k (£E57$5) k3($57£175) dg]
(53)

(i) = () G- (R)-
Us 954 955 id Fy

(54)

(k7 — 2%) + kg (w7 — 29)\ d:4 )
k3 (g — i) + k3 (x9 — §) ds
6 Simulation Tests

The performance of the proposed differential flatness
theory-based scheme for control and state estimation
in mobile manipulators has been confirmed through
simulation experiments. The Derivative-free nonlinear
Kalman Filter has been redesigned as a disturbances esti-
mator, thus allowing for simultaneous estimation of both

The associated state-vector and disturbances estlmg]e non-measurable state variables of the robotic system

tion problem can be solved by considering a disturbanc

observer in the form:

2:n%2+ U+K}[mfz@

ey (48)

whered, = A, B, = B and B, is obtained from

B after zeroing all elements in its last 5 columns.

The estimator’s gairf{ s is computed by applying the
Kalman Filter's recursion. To this end, matricds,

B, andC, are substituted by their discrete-time equiv-
alents A;, By, C, after using common discretization i
methods. The Kalman Filter's recursion consists of a
measurement-update stage and of a time-update stage;

measurement update

K¢(k) = P~ (k)CT[CyP~(k)CT + R~
i(k) =27 (k) + Kf(k)[ — Zm) (49)
P(k) =P~ (k) — K¢(k)CaP~ (k)
time update
P~ (k+41) = A4P(k)AT +Q
(b4 1) = Ag5(k) + Buo(h) (50)

By identifying the unknown disturbance termis i —
1,2,--- ,5the control system of the robotic unit is mod-
ified as follows:

@nd of the additive perturbation terms that were affecting
. The measured state vector elements whare= X
that is the displacement of the robotic vehicle along the
X axis,zo = Y that is the displacement of the robotic
vehicle along th&” axis, 1 that is the rotation angle of
the vehicle around th& axis, 6; the turn angle of the
first joint of the robotic manipulator, ang, that is the
turn angle of the second joint of the robotic manipulator.
The obtained results are depicted in Fig. 3 to Fig. 18.
The real value of the state variables of the robotic sys-
tem is printed in blue, the estimated value is plotted in
green while the associated reference setpoints are shown
n red.
The advantages of using a global linearization-based
control method for the dynamic model of the mobile ma-
nipulator comprising a four-wheels ground vehicle and
a two-DOF robotic manipulator are outlined as follows:
(i) the transformation that is performed on the robotic
system'’s state-space model is an exact one and does not
introduce any modelling errors (ii) by expressing the dy-
namic model of the mobile manipulator into the linear
canonical form it is assured that the separation principle
holds and that the design of the controller can be solved
independently from the design of the state-observer, (iii)
by using the Kalman Filter as a disturbance observer the
estimation and compensation of perturbation terms that
affect the mobile manipulator’s model is achieved and
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thus the robustness of the control scheme is improver :

(iv) The robustness properties of the control method are = 77— T
equivalent to those of LQG (Linear Quadratic Gaussian) ¢ & & & & » & » "
control, (v) by using the Kalman Filter as a disturbance 4

observer itis assured that the optimality of the estimatior

performed by the Kalman Filter is retained.
It is noted that by finding control inputs,, us andus

the previously analysed procedure computed actually th:

forcesFx, Fy and the torqud’z which are exerted on
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the mobile robot and which define the motion performed

by the mobile manipulator. To find also the real control

@) (b)

inputs applied on the mobile robot, that is the propul-

sion forceF of its motor, the turn anglé of its steer-
ing wheels and the braking forde, applied to the rear
wheels of the vehicle, the following relations are used:

Fx = Fcos(y) — 6) — Fycos(v)

Figure 5. Test 1: (a) Estimation of the disturbance inplitsd> and
d3 affecting the robotic vehicle with the use of a Kalman Filbeised
disturbance observer (b) Estimation of the disturbancets, and
ds affecting the robotic arm. with the use of a Kalman Filtesdx
disturbance observer

- — T ——
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Fy = Fsin(y — 0) — Fysin(e) (55)
Ty = Fsin(yp —0)L

yeb
yp-ypd

Figure 3. Test 1: (a) Tracking of reference path (red line)thmy
robotic vehicle (blue line), (b) Tracking of reference péthd line)
by the end-effector of the robotic arm (blue line)

(@) (b)

Figure 4. Test1: (a) Convergence of state varialles= X, r3 =

Y andxs = ) of the robotic vehicle to setpoints (b) Convergence of

statesr; = 61, andxg = 65 of the robotic arm to setpoints
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Figure 6. Test 1: (a) Control inputs{, 42 andus applied to the

robotic vehicle (b) Control inputst4 andus applied to the robotic
arm

—
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Figure 7. Test 2: (a) Tracking of reference path (red line)thy
robotic vehicle (blue line), (b) Tracking of reference pé#tad line)
by the end-effector of the robotic arm (blue line)
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Figure 8. Test2: (a) Convergence of state varialiles= X, x3 =

of state variablest; = 61, andxg = 65 of the robotic arm to
setpoints
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Figure 11. Test 3: (a) Tracking of reference path (red lingtte

Y andxs = 1) of the robotic vehicle to setpoints (b) Convergence robotic vehicle (blue line), (b) Tracking of reference péttd line) by
the end-effector of the robotic arm (blue line)
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Figure 9. Test2: (a) Estimation of the disturbandgsds andds at
the robotic vehicle. with the use of a Kalman Filter-basestutbance
observer (b) Estimation of the disturbance inpdts and d5 at the
robotic arm
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Figure 10. Test 2: (a) Control inputs|, 42, us3 applied to the
robotic vehicle. (b) Control inputay4, 5 applied to the robotic arm

(@)

Figure 12. Test 3: (a) Convergence of state variables = X,
x3 = Y andxs = 1) of the robotic vehicle to setpoints (b) Conver-
gence of state variables; = 61, andzg = 05 of the robotic arm

to setpoints
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Figure 13. Test 3: (a) Estimation of the disturbance inplits do
anddg affecting the robotic vehicle, with the use of a Kalman Filte
based disturbance observer (b) Estimation of the distagbamputsd
andds affecting the robotic arm. with the use of a Kalman Filtesés

disturbance observer
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Figure 14. Test 3: (a) Control inputs;, u2 andug applied to the
robotic vehicle. (b) Control inputs4 andus applied to the robotic
arm
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Figure 15. Test 4: (a) Tracking of reference path (red lingxte
robotic vehicle (blue line), (b) Tracking of reference pétd line) by
the end-effector of the robotic arm (blue line)
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Figure 16. Test 4. (a) Convergence of state variablgs = X,
xr3 = Y andxs = 1 of the robotic vehicle to their reference
setpoints (b) Convergence of state variatles= 61, andxg = 05
of the robotic arm to their reference setpoints
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Figure 17. Test 4: (a) Estimation of the disturbance inplits do
andd3 affecting the robotic vehicle, with the use of a Kalman Filte
based disturbance observer (b) Estimation of the dist@gaputsdy
andds affecting the robotic arm. with the use of a Kalman Filtesét
disturbance observer
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Figure 18. Test 4: (a) Control inputs;, u2 andug applied to the
robotic vehicle. (b) Control inputsi4 andus applied to the robotic
arm

The model of the mobile manipulator which is pre-
sented in this manuscript is an indicative example of
a multi-body system that satisfies differential flatness
properties and on which both differential flathess theory-
based control and differential flatness theory-based fil-
tering techniques can be used. Besides, it is a cyber-
physical system because filtering techniques are used to
estimate missing sensorial information that is needed for
implementing state-feedback control. The article’s ap-
proach for the joint control and state estimation problem
of mobile manipulators is outlined as follows: (1) By
proving that differential flathess properties hold, then it
can be assured that such systems can be transformed into
the input-output linearized form which is both control-
lable and observable, (ii) it is shown that for the input-
output linearized form, or equivalently for the canonical
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Brunovsky form of such systems the solution of the re- to motion generatiorintl. Journal of Robotic Research
lated control and state estimation problems can be acom-J. Wiley, vol.22, no 7-8, pp. 565-581.
plished with the use of linear control and filtering tech- Dai G.B. and Liu Y.C. (2017). Distributed coordination

niques. and cooperation control for networked mobile manip-
ulators, IEEE Transactions on Industrial Electronics
7 Conclusions vol. 64, no. 6, pp. 5065-5074.

A differential flatness theory-based method has beenF!i€ss M. and Mounier H. (1999). Tracking control and
proposed for control and state estimation of mobile ma- 7-frééness of infinite dimensional linear systems, In:
nipulators. It has been proven that the dynamic model of G- Picci and D.S. Gilliam EdsDynamical Systems,
a mobile manipulator, comprising a four-wheels vehicle €0ntrol, Coding and Computer Visiowol. 258, pp.
and a two-DOF robotic manipulator, is a differentially 41~68, Birkhauser. , , ,
flat one. The differential flatness property of the model G&licki M. (2016). Real-time constrained trajectory
confirmed that this could be transformed into an input- 9eneration of mobile manipulatorRobotics and Au-
output linearized form and that it could be also written 10NOmMous SystemBlsevier, vol.78, pp.49-62.
in an equivalent linear canonical (Brunovsky) form. Kocemarek M., Domski W., and Mazur A. (2017).
For the latter representation of the system’s dynamicsPosition-force control of mobile manipulator — non-
the solution of both the control and state-estimation 2d@ptive and adaptive casarchives of Control Sci-
problem has become possible. Actually, it has been€NcesDeGruyter, vol27,no. 4, pp. 487-503.
shown that one can stabilize the mobile manipulator by Korayé M.-H. amd Nekao S.R. (2016). The SDRE

applying a pole placement technique on its linearized CONtrol of mobile-base  cooperative manipulators:
equivalent model. Collision-free path planning and moving obstable

avoidance,Robotics and Autonomous Systeraése-

Moreover, to perform state estimation the Derivative- Vi€T: Vol 88, pp. 86-105. . _
free nonlinear Kalman Filter has been introduced. This Lévine, J. (2011). On necessary and sufficient condi-
consists of the recursion of the standard Kalman Filter ions for differential flatnessipplicable Algebra in En-
applied on the linearized equivalent model of the mo- 9iN€€ring, Communications and Computigpringer,
bile manipulator and of an inverse transformation basedvql' 22,no. 1, pp. 47-90, .
on differential flathess theory which allows for comput- LiZ, TanP.Y, Ge S'S_" Adams M., and Wues_omaW._S.
ing estimates of the state variables of the initial nonlin- (2009). Robust adaptive control of cooperative mobile
ear model of the robot. Additionally, to estimate and Manipulators with relative motiodEEE Transactions
compensate for model uncertainty and external distur-©" Systems, Man and CyberetiesPart B: Cybernet-
bances affecting the mobile manipulator, the aforemen-CS: Vol.37, no.1, pp. 103-116. )
tioned Kalman Filter has been redesigned as a distur-L1 £, Tan P.Y.,_Ge S.S., Adams M., and Wueso_maW.S.
bance observer. To this end, the state vector of the mo-(2008). Adaptwe_robust qutput-feedback m_ot|on/ fqrce
bile manipulator has been extended by including as ad_cont_rol of electrically drlven nonholonomic mobile
ditional state variables the disturbance inputs and their Manipulators|EEE Transactions on Control Systems
time-derivatives. By obtaining accurate estimates of 'echnologyvol. 16, no. 6, pp. 1308-1315.

such perturbation terms their compensation has becomé-! -+ Tan P.Y.,, Ge S.S., Adams M., and Wijesoma
also possible. W.S. (2008). Robust adaptive control of uncertain

force/motion constrained nonholonomic mobile manip-
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