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Abstract
The article proposes a differential flatness theory-

based control and filtering method for the model of a mo-
bile manipulator. This is a difficult control and robotics
problem due to the system’s strong nonlinearities and
due to its underactuation. Using the Euler-Lagrange
approach, the dynamic model of the mobile manipula-
tor is obtained. This is proven to be a differentially
flat one, thus confirming that it can be transformed into
an input-output linearized form. Through a change of
state and control inputs variables the dynamic model of
the manipulator is finally written into the linear canon-
ical (Brunovsky) form. For the latter representation of
the system’s dynamics the solution of both the control
and filtering problems becomes possible. The global
asymptotic stability properties of the control loop are
proven. Moreover, a differential flatness theory-based
state estimator, under the name of Derivative-free non-
linear Kalman Filter, is developed. This comprises (i) the
standard Kalman Filter recursion on the linearized equiv-
alent model of the mobile manipulator and (ii) an inverse
transformation, relying on the differential flatness prop-
erties of the system which allows for estimating the state
variables of the initial nonlinear model. Finally, by re-
designing the aforementioned Kalman Filter as a distur-
bance observer one can achieve estimation and compen-
sation of the disturbance inputs that affect the model of
the mobile manipulator.
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1 Introduction
Mobile manipulators are widely used in several indus-

trial and human assisting tasks. For instance they can

be used in pick and placement tasks and for carrying
objects, in assembling, in painting, spraying, harvest-
ing, for patrolling and defence purposes, as well as for
providing services to the elderly and the disabled [Li
et al., 2009], [Dai and Liu, 2017], [Abeygunawardhana
and Murakami, 2010], [Andaluz et al., 2015], [Li et al.,
2008]. Dexterity and accuracy in the handling of objects
as well as in the maneuvers performed by the mobile ma-
nipulators depend on the efficiency of the related control
algorithms [Rigatos and Busawon, 2018], [Boyle et al.,
2003], [Kocemarek et al., 2017], [Koraye and Nekao,
2016]. There are several results on nonlinear control
approaches for robotic vehicles and mobile manipula-
tors [Rigatos, 2011], [Rigatos, 2015], [Li et al., 2008],
[Li et al., 2016], [Najjaran and Goldenberg, 2007]. In
particular, the application of sliding-mode and backstep-
ping methods can be hindered by the need to transform
previously the dynamic model of mobile manipulators
into canonical or triangular state-space forms. One can
also note results on robust and adaptive control schemes
for mobile manipulators which aim at compensating for
model uncertainty and disturbances in these robotic sys-
tems [Xu et al., 2009], [Souzanchi et al., 2017], [Wu et
al., 2014], [Park et al., 2018], [Monzur and Kulawik,
2006]. There are also findings on global linearization-
based control schemes for mobile manipulators, as for
instance in the case of flatness-based control [Tang et
al., 2011], [Morales et al., 2014], [Lévine, 2011], [Fliess
and Mounier, 1999], [Sira-Ramirez and Agrawal, 2004],
[Villagra et al., 2007]. Apart from motion control and
the end-effector’s positioning problem for mobile ma-
nipulators, compliance tasks and joint position and force
control problems for the end-effector have been also an-
alyzed [Galicki, 2016], [Linn and Goldenberg, 2002],
[Mai and Wang, 2014], [Li et al., 2010], [Liu and Liu,
2009]. The development of functional mobile manipula-



58 CYBERNETICS AND PHYSICS, VOL. 9, NO. 1, 2020

tors is completed with the solution of the related motion
planning and trajectory generation problems.

In the present article, a differential flatness theory-
based approach is developed for solving the control
and state estimation problems in mobile manipulators
under parametric model uncertainty and external distur-
bances [Rigatos and Busawon, 2018], [Rigatos, 2011],
[Rigatos, 2015]. First the dynamic model of the mobile
manipulator, comprising a four-wheel vehicle and a
two-DOF robotic manipulator, is obtained through the
application of the Euler-Lagrange analysis. It is proven
that all state variables and the control inputs of the
dynamic model can be written as differential functions
of a subset of its state-vector elements, the so-called
flat outputs of the system. Besides it is shown that the
flat outputs of the system are differentially independent,
meaning that both these variables and their derivatives
are not connected through a relation in the form of a
linear differential equation. These come to confirm
that the dynamic model of the mobile manipulator is
a differentially flat one. By proving the differential
flatness of the mobile manipulator it is confirmed that
(i) it can be transformed into an equivalent input-output
linearized form, (ii) it can be written in the canonical
(Brunovsky) state-space form.

For the linearized state-space representation of the
robotic system, both the solution of its control and state
estimation problem becomes possible. Actually, to solve
the control problem one can apply pole-placement meth-
ods or optimal control approaches on the equivalent lin-
earized description of the system. Moreover, to solve the
associated state estimation problem a filtering method
under the name of Derivative-free nonlinear Kalman Fil-
ter can be used [Rigatos and Tzafestas, 2007], [Bas-
seville and Nikiforov, 1993], [Rigatos and Zhang, 2009].
This filtering approach consists of the standard Kalman
Filter recursion on the equivalent linearized description
of the system and of an inverse transformation that pro-
vides estimates for the state variables of the initial non-
linear model of the mobile manipulator. Moreover, by
redesigning the aforementioned Kalman Filter as a dis-
turbance observer, one can also estimate in real-time and
compensate for additive input disturbances that affect
the mobile manipulator. To this end, the state vector
of the robotic system is extended by considering as ad-
ditional state variables the disturbance inputs and their
time derivatives.

The structure of the article is as follows: in Sec-
tion 2 the dynamic model of the robotic manipulator
is obtained after applying the Euler-Lagrange analysis.
In Section 3 the differential flatness properties of the
model of the mobile manipulator are proven. In Sec-
tion 4 a flatness-based controller is designed for the mo-
bile manipulator and estimation of its state variables is
performed with the use of the Derivative-free nonlinear
Kalman Filter. In Section 5 the aforementioned Kalman
Filter is redesigned as a disturbance observer, thus al-
lowing to estimate and compensate for the perturbations

and model uncertainty terms of the mobile manipulator.
In Section 6 the performance of the differential flatness
theory-based control and estimation scheme is evaluated
through simulation experiments. Finally, in Section 7
concluding remarks are given.

2 Dynamic Model of the Mobile Manipulator

To obtain the dynamic model of the mobile manip-
ulator (Fig. 1) the Lagrangian functions of both the
robotic manipulator and of the wheeled platform are
computed first. The mass of the wheeled platform is
denoted byM and its moment of inertia for rotation
around the vertical axis is denoted asIz . The mass of
the first link of the robotic manipulator ism1 and the
associated moment of inertia (for rotation around its
center of gravity) isI1.The mass of the second link
of the robotic manipulator ism2 and the associated
moment of inertia (for rotation around its center of
gravity) isI2. The inertial reference frame of the system
is denoted asO1X1Y1Z1 while the body-fixed reference
frame is denoted asOMXMYMZM . The angle between
the transversal axis of the vehicle and theOX1 axis is
denoted asψ. The turn angle of the steering wheels
of the vehicle with respect to its transversal axis is
denoted asθ. The turn angles of the joints of the robotic
manipulator are denoted asθ1 andθ2 respectively.

Computation of the Lagrangian of the robotic manipu-
lator: About link 1 it holds

K1 = 1
2m1(lc1 θ̇1)

2 + 1
2I1θ̇

2
1 +

1
2m1(V

2
x + V 2

y )+

+ 1
2m1(lc1ψ̇)

2 + 1
2I1ψ̇

2

(1)

P1 = m1glc1cos(θ1) (2)

About link 2 it holds

K2 = 1
2m2vc2v

T
c2

+ 1
2I2(θ̇

2
1 + θ̇22)+

+ 1
2m2(V

2
x + V 2

y ) +
1
2m2{[l1 + lc2cos(θ2)]ψ̇}

2+

+ 1
2I2ψ̇

2

(3)
where the velocity of its center of gravity isvc2 =

[ẋc2 , ẏc2 ] and after intermediate operations one gets

vc2vc2
T = l21 θ̇

2
1 + l2c1(θ̇1+

+θ̇2)
2 + 2l1lc2cos(θ2)θ̇1(θ̇1 + θ̇2)

Thus the kinetic energy of the second link is given by

K2 = 1
2m2[l

2
1θ̇

2
1 + l2c1(θ̇1+

+θ̇2)
2 + 2l1lc2cos(θ2)θ̇1(θ̇1 + θ̇2)]+

+ 1
2I2(θ̇

2
1 + θ̇22) +

1
2m2(V

2
x + V 2

y )+

+ 1
2m2{[l1 + lc2cos(θ2)]ψ̇}

2 + 1
2I2ψ̇

2

(4)
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Figure 1. Diagram of the mobile manipulator together with the body-

fixed and the inertial reference frames

The potential energy of the second link of the manipu-
lator is given by

P2 = m2g(l1cos(θ1)) + lc2cos(θ1 + θ2) (5)

The Lagrangian of the robotic manipulator is given by:

Lr = K1 +K2 − P1 − P2 (6)

while the detailed description of the Lagrangian is

Lr =
1
2m1(lc1 θ̇1)

2 + 1
2I1θ̇

2
1+

+ 1
2m1(V

2
x + V 2

y ) +
1
2m1(lc1ψ̇)

2 + 1
2I1ψ̇

2

1
2m2[l

2
1θ̇

2
1 + l2c1(θ̇1 + θ̇2)

2+

+2l1lc2cos(θ2)θ̇1(θ̇1 + θ̇2)]+

+ 1
2I2(θ̇

2
1 + θ̇22) +

1
2m2(V

2
x + V 2

y )+

+ 1
2m2{[l1 + lc2cos(θ2)]ψ̇}

2 + 1
2I2ψ̇

2

−[m1glc1cos(θ1)]−m2g[(l1cos(θ1)) + lc2cos(θ1 + θ2)]
(7)

Computation of the Lagrangian of the robotic vehicle:
The kinetic energy of the vehicle is

Kv =
1
2M(V 2

x + V 2
y ) +

1
2Izψ̇

2 (8)

The vehicle’s velocity is initially expressed in the
body-fixed reference frameOMXMYMZM (Fig. 1) and
is given by the vector[Vx, Vy]. When the vehicle’s veloc-
ity is written in the inertial reference frameO1X1Y1Z1,
then it described by the vector[Ẋ, Ẏ ]. It holds that

Vx = cos(ψ)Ẋ − sin(ψ)Ẏ

Vy = sin(ψ)Ẋ + cos(ψ)Ẏ
(9)

It holds that

V 2
x + V 2

y = Ẋ2 + Ẏ 2 (10)

Consequently, the kinetic energy of the vehicle is also
written as

Kv =
1
2M(Ẋ2 + Ẏ 2) + 1

2Izψ̇
2 (11)

The potential energy of the vehicle is taken to be zero,
considering that the vertical distance between its center
of gravity and the ground is negligible.

Pv = 0 (12)

Thus, about the Lagrangian of the vehicle one has:

Lv = Kv − Pv (13)

and after using the previous relations the Lagrangian
of the vehicle becomes

Lv =
1
2M(Ẋ2 + Ẏ 2) + 1

2Izψ̇
2 (14)

The aggregate Lagrangian of the mobile manipulator
is

L = Lv + Lr (15)

Next, the state vector for the mobile manipulator is
defined asx = [X, Ẋ, Y, Ẏ , ψ, ψ̇, θ1, θ̇1, θ2, θ̇2]

T . The
control inputs which are applied to the model of the
mobile manipulator are as follows: (i) forceF which is
generated by the vehicle’s electric motor, (ii) ForceFb
which is generated by the vehicle’s brakes, (ii) torques
T1 andT2 which are generated by the actuators of the
manipulator.

The force giving propulsion to the vehicle isF . It is
considered that the vector of forceF forms an angle
θ with the longitudinal axis of the vehicle (this is the
angle of the steering wheels), and that the angle between
this axis and theO1X1 axis of the inertial reference
system isψ (Fig. 2).Moreover it is considered that
a breaking forceFb is exerted at the rear wheels of
the vehicle, which is aligned with the longitudinal
axis of the vehicle. Thus, one has that the aggregate
force exerted on the vehicle along theO1X1 axis is
FX = Fcos(ψ − θ) − Fbcos(ψ). Equivalently, the
aggregate force that is exerted on the vehicle along the
O1Y1 axis isFY = Fsin(ψ−θ)−Fbsin(ψ). Moreover,
considering that the distance between the front wheels
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Figure 2. Diagram of the forces and torques exerted on the robotic

vehicle

axis of the vehicle and its the transversal axis isL̄, one
has that the torque that causes rotation of the vehicle
around theOMZM axis isTz = Fsin(ψ − θ)L̄.

By applying the Euler-Lagrange principle to the model
of the mobile manipulator one has:

∂
∂t
∂L
∂ẋ

− ∂L
∂x

= FX (16)

∂
∂t
∂L
∂ẏ

− ∂L
∂y

= FY (17)

∂
∂t
∂L

∂ψ̇
− ∂L

∂ψ
= TZ (18)

∂
∂t

∂L

∂θ̇1
− ∂L

∂θ1
= T1 (19)

∂
∂t

∂L

∂θ̇2
− ∂L

∂θ2
= T2 (20)

The aggregate Lagrangian for the model of the mobile
manipulator is

L = 1
2m1(lc1 θ̇1)

2 + 1
2I1θ̇

2
1 +

1
2m1(V

2
x + V 2

y )+

+ 1
2m1(lc1ψ̇)

2 + 1
2I1ψ̇

2+
1
2m2[l

2
1 θ̇

2
1 + l2c1(θ̇1 + θ̇2)

2+

+2l1lc2cos(θ2)θ̇1(θ̇1 + θ̇2)]+

+ 1
2I2(θ̇

2
1 + θ̇22) +

1
2m2(V

2
x + V 2

y )+

+ 1
2m2{[l1 + lc2cos(θ2)]ψ̇}

2 + 1
2I2ψ̇

2

−[m1glc1cos(θ1)]−m2g[(l1cos(θ1))+

+lc2cos(θ1 + θ2)] +
1
2M(Ẋ2 + Ẏ 2) + 1

2IZ ψ̇
2

(21)

From the Lagrangian equation given in Eq. (16) one
has:

Ẍ = 1
m1+m2+M

FX (22)

Ÿ = 1
m1+m2+M

FY (23)

ψ̈ = 1
Iz+I1+I2+m1l2c1

+m2(l1+lc2cos(θ2))
2TZ (24)

Moreover, about the dynamics of the robotic manipu-
lator one obtains

D11θ̈
2
1 +D12θ̈

2
2 + h1(θ, θ̇) + g1(θ) = T1 (25)

whereD11(θ) = m1l
2
c1

+ I1 + m1l
2
1 + m2l

2
c2

+
2m2l1lc2cos(θ2) + I2, D12(θ) = m2l

2
c2

+

m1l1lc2cos(θ2), h1(θ, θ̇) = −m2l1lc2sin(θ2)(2θ̇1+ θ̇2)
and g1(θ) = m1glc1sin(θ1) + m2g[l1sin(θ1) +
lc2sin(θ1 + θ2).

and also

D21θ̈
2
1 +D22θ̈

2
2 + h2(θ, θ̇ + g2(θ)) = T2 (26)

where D21(θ) = m2l
2
c1

+ m2l1lc2cos(θ2),
D22(θ) = m2l

2
c2
+ I2, h2(θ.θ̇) = −m2l1lc2sin(θ2)θ̇1 +

m2(l1 + lc2cos(θ2))(l2sin(θ2))ψ̇
2, and g2(θ) =

m2glc2sin(θ1 + θ2).

Thus, about the manipulator attached to the mobile
platform one arrives at the following state-space descrip-
tion:

(

D11 D12

D21 D22

)(

θ̈1
θ̈2

)

+

(

h1(θ, θ̇)

h2(θ, θ̇)

)

+

(

g1(θ)
g2(θ)

)

=

(

T1
T2

)

(27)
By inverting matrixD(θ), the state-space description

of the robotic manipulator can be written as

(

θ̈1

θ̈2

)

= − 1
D11D22−D12D21

(

D22 −D12

−D21 D11

)(

h1(θ, θ̇)

h2(θ, θ̇)

)

− 1
D11D22−D12D21

(

D22 −D12

−D21 D11

)(

g1(θ)
g2(θ)

)

+

+ 1
D11D22−D12D21

(

D22 −D12

−D21 D11

)(

T1
T2

)

(28)
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The dynamics of the robotic manipulator can be also
brought to the following form:





θ̈1

θ̈2



 =







− D22h1−D21h2

(D11D22−D12D21)
− D22g1−D21g2

(D11D22−D12D21)

− −D12h1+D11h2

(D11D22−D12D21)
− −D12g1+D11g2

(D11D22−D12D21)






+

+







D22

(D11D22−D12D21)
−D21

(D11D22−D12D21)

−D12

(D11D22−D12D21)
D11

(D11D22−D12D21)











T1

T2





(29)
Consequently, the state-space model of the mobile ma-

nipulator becomes:













Ẍ

Ÿ

ψ̈

θ̈1
θ̈2













=













F̃1

F̃2

F̃3

F̃4

F̃5













+













g11 0 0 0 0
0 g22 0 0 0
0 0 g33 0 0
0 0 0 g44 g45
0 0 0 g54 g55

























FX
FY
TZ
T1
T2













(30)
where F̃1 = 0, F̃2 = 0, F̃3 = 0,

F̃4 = − D22h1−D21h2

(D11D22−D12D21)
− D22g1−D21g2

(D11D22−D12D21)
,

F̃5 = − −D12h1+D11h2

(D11D22−D12D21)
− −D12g1+D11g2

(D11D22−D12D21)
,

while it also holds thatg11 = 1
m1+m2+M

, g22 =
1

m1+m2+M
, g33 = 1

IZ+I1+I2+m1l2c1
+m2(l1+lc2cos(θ2))

2 ,

g44 = D22

(D11D22−D12D21)
, g45 = −D21

(D11D22−D12D21)
,

g54 = −D12

(D11D22−D12D21)
, andg55 = D11

(D11D22−D12D21)
.

3 Differential Flatness Properties of the Model of
the Mobile Manipulator

It will be proven that the dynamic model of the mo-
bile manipulator is a differentially flat one, which im-
plies that all its state variables and its control inputs can
be expressed as differential functions of a specific sub-
set of its state vector elements which are known as flat
outputs of the system. The following state variables of
the mobile manipulator are defined:x1 = X , x2 = Ẋ ,
x3 = Y , x4 = Ẏ , x5 = ψ, x6 = ψ̇, x7 = θ1, x8 = θ̇1,
x9 = θ2, x10 = θ̇2. Additionally, the control inputs of
the robotic system are taken to beu1 = FX , u2 = FY ,
u3 = TZ , u4 = T1 andu5 = T2. Thus, the following
state-space description is obtained:

































ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10

































=

































x2
F̃1

x4
F̃2

x6
F̃3

x8
F̃4

x10
F̃5

































+

































0 0 0 0 0
g11 0 0 0 0
0 0 0 0 0
0 g22 0 0 0
0 0 0 0 0
0 0 g33 0 0
0 0 0 0 0
0 0 0 g44 g45
0 0 0 0 0
0 0 0 g54 g55













































u1
u2
u3
u4
u5













(31)

The vector of the system’s flat outputs isxf =
[x1, x3, x5, x7, x9]

T . It holds thatx2 = ẋ1, x4 = ẋ3,
x6 = ẋ5, x8 = ẋ7 andx10 = ẋ9. Therefore, all state
vector elements of the mobile manipulator can be written
as differential functions of the flat output vector. More-
over, from the second row of Eq. (31) one has

u1 = 1
g11
ẋ2 − F̃1⇒u1 = q1(xf , ẋf ) (32)

From the fourth row of Eq. (31) one has

u2 = 1
g22
ẋ4 − F̃2⇒u2 = q2(xf , ẋf ) (33)

From the sixth row of Eq. (31) one has

u3 = 1
g33
ẋ6 − F̃3⇒u3 = q3(xf , ẋf ) (34)

From the eight and tenth rows of Eq. (31) one has

(

u5
u6

)

= D

(

ẋ8
ẋ10

)

+

(

h1
h2

)

+

(

g1
g2

)

⇒
u4 =
u5 =

q4(xf , ẋf )
q5(xf , ẋf )

(35)

Consequently the control inputs of the mobile manip-
ulator are also written as differential functions of the flat
outputs vector and the system is a differentially flat one.

4 Design of a Flatness-based Controller for the Mo-
bile Manipulator

The dynamic model of the mobile manipulator has
been given in Eq. (31) The following control inputs are
applied:

u1 = 1
g11

[ẍd1 − F̃1 − k11(ẋ1 − ẋd1)− k12(x1 − xd1)]
(36)

u2 = 1
g22

[ẍd3 − F̃2 − k21(ẋ3 − ẋd3)− k22(x3 − xd3)]
(37)

u3 = 1
g33

[ẍd5 − F̃3 − k31(ẋ5 − ẋd5)− k32(x5 − xd5)]
(38)

(

u4
u5

)

=

(

g44 g45
g54 g55

)

−1

{

(

ẍd7
ẍd9

)

−

−

(

F̃4

F̃5

)

−

(

k41(ẋ7 − ẋd7) + k42(x7 − xd7)
k51(ẋ9 − ẋd9) + k52(x9 − xd9)

)

}

(39)
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By applying the previous control inputs to the state-
space model of Eq. (31) one gets:

(ẍ1 − ẍd1) + k11(ẋ1 − ẋd1) + k12(x1 − xd1) = 0
(ẍ3 − ẍd3) + k21(ẋ3 − ẋd3) + k22(x3 − xd3) = 0
(ẍ5 − ẍd5) + k31(ẋ5 − ẋd5) + k32(x5 − xd5) = 0
(ẍ7 − ẍd7) + k41(ẋ7 − ẋd7) + k42(x7 − xd7) = 0
(ẍ9 − ẍd9) + k51(ẋ9 − ẋd9) + k52(x9 − xd9) = 0

(40)

By defining the state variables’ tracking error asei =
xi − xdi , i = 1, 2, · · · , 5 one obtains the tracking error
dynamics through the following equations:

ë1 + k11 ė1 + k12e1 = 0
ë2 + k21 ė2 + k22e2 = 0
ë3 + k31 ė3 + k32e3 = 0
ë4 + k41 ė4 + k42e4 = 0
ë5 + k51 ė5 + k52e1 = 0

(41)

Next, by selecting the feedback gains(ki1, k
i
2), i =

1, 2, · · · , 5 such that the characteristic polynomials
which are associated with the aforementioned differen-
tial equations to be Hurwitz stable , one has that

limt→∞ei = 0, i = 1, 2, · · · , 5⇒
limt→∞xi = xdi , i = 1, 2, · · · , 5

(42)

5 Design of a Flatness-based Disturbances Estima-
tor

Next, the dynamic model of the mobile manipulator is
considered to be affected by additive input disturbances:
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(43)
Using the previous state-space model the

following virtual control inputs are defined:
v1 = F̃1 + g11u1, v2 = F̃2 + g22u2, v3 = F̃3 + g33u3,
v4 = F̃4+g44u4+g45u5, andv5 = F̃5+g54u4+g55u5.
Equivalently, the dynamics of the mobile manipula-
tor under additive input disturbances is written as:
ẍ1 = v1 + d1, ẍ2 = v2 + d2, ẍ3 = v3 + d3,
ẍ4 = v4 + d4, ẍ5 = v5 + d5.

The disturbances termsdi, i = 1, 2, · · · , 5 are
considered to be described by the associated 2nd order
time-derivative and by the related initial conditions.
This is reasonable, because every functionf can
be equivalently represented by itsn-th order time-
derivativef (n)(t) and by the related initial conditions
f (i)(0), i = 1, 2, · · · , n− 1. However, since estimation
of such functions is going to be performed with the
use of Kalman Filtering, prior knowledge about initial
conditions becomes obsolete.

The second-order derivative of the aforementioned
disturbance inputs is given bÿdi = fdi , i = 1, 2, · · · , 5.
Next, the state variables and their time-derivatives are
denoted as additional state variables of the model of
the mobile manipulator. This results into the following
state-space description of the system:z1 = x1, z2 = ẋ1,
z3 = x2, z4 = ẋ2, z5 = x3, z6 = ẋ3, z7 = x4, z8 = ẋ4,
z9 = x5, z10 = ẋ5, z11 = d1, z12 = ḋ1, z13 = d2,
z14 = ḋ2, z15 = d3, z16 = ḋ3, z17 = d4, z18 = ḋ4 and
z19 = d5, z20 = ḋ5.

The model of the mobile manipulator can be written in
the following concise state-space form:

ż = Az +Bṽ

zm = Cz
(44)

where vector ṽ =
[u1, u2, u3, u4, u5, fd1, fd2 , fd3 , fd4, fd5 ]

T while
matricesA∈R20×20, B∈R20×10 and C∈R5×20 are
given by
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The associated state-vector and disturbances estima-

tion problem can be solved by considering a disturbance
observer in the form:

ẑ = Aoẑ +Bov +Kf [zm − ẑm]
ẑm = Coẑ

(48)

whereAo = A, Bo = B andBo is obtained from
B after zeroing all elements in its last 5 columns.
The estimator’s gainKf is computed by applying the
Kalman Filter’s recursion. To this end, matricesAo,
Bo andCo are substituted by their discrete-time equiv-
alentsAd, Bd, Cd after using common discretization
methods. The Kalman Filter’s recursion consists of a
measurement-update stage and of a time-update stage:

measurement update:

Kf(k) = P−(k)CTd [CdP
−(k)CTd +R]−1

ẑ(k) = ẑ−(k) +Kf(k)[zm − ẑm]
P (k) = P−(k)−Kf(k)CdP

−(k)
(49)

time update:

P−(k + 1) = AdP (k)A
T
d +Q

ẑ−(k + 1) = Adẑ(k) +Bdv(k)
(50)

By identifying the unknown disturbance termsdi, i −
1, 2, · · · , 5 the control system of the robotic unit is mod-
ified as follows:

u1 = 1
g11

[ẍd1 − F̃1 − k11(ẋ1 − ẋd1)− k12(x1 − xd1)− d̂1]
(51)

u2 = 1
g22

[ẍd3 − F̃2 − k21(ẋ3 − ẋd3)− k22(x3 − xd3)]
(52)

u3 = 1
g33

[ẍd5 − F̃3 − k31(ẋ5 − ẋd5)− k32(x5 − xd5)− d̂3]
(53)

(

u4
u5

)

=

(

g44 g45
g54 g55

)

−1

{

(

ẍd7
ẍd9

)

−

(

F̃4

F̃5

)

−

−

(

k41(ẋ7 − ẋd7) + k42(x7 − xd7)
k51(ẋ9 − ẋd9) + k52(x9 − xd9)

)

−

(

d̂4

d̂5

)

}

(54)

6 Simulation Tests

The performance of the proposed differential flatness
theory-based scheme for control and state estimation
in mobile manipulators has been confirmed through
simulation experiments. The Derivative-free nonlinear
Kalman Filter has been redesigned as a disturbances esti-
mator, thus allowing for simultaneous estimation of both
the non-measurable state variables of the robotic system
and of the additive perturbation terms that were affecting
it. The measured state vector elements wherex1 = X

that is the displacement of the robotic vehicle along the
X axis,x2 = Y that is the displacement of the robotic
vehicle along theY axis,ψ that is the rotation angle of
the vehicle around theZ axis, θ1 the turn angle of the
first joint of the robotic manipulator, andθ2 that is the
turn angle of the second joint of the robotic manipulator.
The obtained results are depicted in Fig. 3 to Fig. 18.
The real value of the state variables of the robotic sys-
tem is printed in blue, the estimated value is plotted in
green while the associated reference setpoints are shown
in red.

The advantages of using a global linearization-based
control method for the dynamic model of the mobile ma-
nipulator comprising a four-wheels ground vehicle and
a two-DOF robotic manipulator are outlined as follows:
(i) the transformation that is performed on the robotic
system’s state-space model is an exact one and does not
introduce any modelling errors (ii) by expressing the dy-
namic model of the mobile manipulator into the linear
canonical form it is assured that the separation principle
holds and that the design of the controller can be solved
independently from the design of the state-observer, (iii)
by using the Kalman Filter as a disturbance observer the
estimation and compensation of perturbation terms that
affect the mobile manipulator’s model is achieved and
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thus the robustness of the control scheme is improved
(iv) The robustness properties of the control method are
equivalent to those of LQG (Linear Quadratic Gaussian)
control, (v) by using the Kalman Filter as a disturbance
observer it is assured that the optimality of the estimation
performed by the Kalman Filter is retained.

It is noted that by finding control inputsu1, u2 andu3
the previously analysed procedure computed actually the
forcesFX , FY and the torqueTZ which are exerted on
the mobile robot and which define the motion performed
by the mobile manipulator. To find also the real control
inputs applied on the mobile robot, that is the propul-
sion forceF of its motor, the turn angleθ of its steer-
ing wheels and the braking forceFb applied to the rear
wheels of the vehicle, the following relations are used:

FX = Fcos(ψ − θ)− Fbcos(ψ)
FY = Fsin(ψ − θ)− Fbsin(ψ)

TZ = Fsin(ψ − θ)L̄
(55)
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Figure 10. Test 2: (a) Control inputsu1, u2, u3 applied to the
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robotic vehicle. (b) Control inputsu4 andu5 applied to the robotic

arm
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Figure 15. Test 4: (a) Tracking of reference path (red line) by the

robotic vehicle (blue line), (b) Tracking of reference path(red line) by

the end-effector of the robotic arm (blue line)
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Figure 16. Test 4: (a) Convergence of state variablesx1 = X ,

x3 = Y andx5 = ψ of the robotic vehicle to their reference

setpoints (b) Convergence of state variablesx7 = θ1, andx9 = θ2
of the robotic arm to their reference setpoints
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Figure 17. Test 4: (a) Estimation of the disturbance inputsd1, d2
andd3 affecting the robotic vehicle, with the use of a Kalman Filter-

based disturbance observer (b) Estimation of the disturbance inputsd4
andd5 affecting the robotic arm. with the use of a Kalman Filter-based

disturbance observer
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Figure 18. Test 4: (a) Control inputsu1, u2 andu3 applied to the

robotic vehicle. (b) Control inputsu4 andu5 applied to the robotic

arm

The model of the mobile manipulator which is pre-
sented in this manuscript is an indicative example of
a multi-body system that satisfies differential flatness
properties and on which both differential flatness theory-
based control and differential flatness theory-based fil-
tering techniques can be used. Besides, it is a cyber-
physical system because filtering techniques are used to
estimate missing sensorial information that is needed for
implementing state-feedback control. The article’s ap-
proach for the joint control and state estimation problem
of mobile manipulators is outlined as follows: (1) By
proving that differential flatness properties hold, then it
can be assured that such systems can be transformed into
the input-output linearized form which is both control-
lable and observable, (ii) it is shown that for the input-
output linearized form, or equivalently for the canonical
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Brunovsky form of such systems the solution of the re-
lated control and state estimation problems can be acom-
plished with the use of linear control and filtering tech-
niques.

7 Conclusions
A differential flatness theory-based method has been

proposed for control and state estimation of mobile ma-
nipulators. It has been proven that the dynamic model of
a mobile manipulator, comprising a four-wheels vehicle
and a two-DOF robotic manipulator, is a differentially
flat one. The differential flatness property of the model
confirmed that this could be transformed into an input-
output linearized form and that it could be also written
in an equivalent linear canonical (Brunovsky) form.
For the latter representation of the system’s dynamics
the solution of both the control and state-estimation
problem has become possible. Actually, it has been
shown that one can stabilize the mobile manipulator by
applying a pole placement technique on its linearized
equivalent model.

Moreover, to perform state estimation the Derivative-
free nonlinear Kalman Filter has been introduced. This
consists of the recursion of the standard Kalman Filter
applied on the linearized equivalent model of the mo-
bile manipulator and of an inverse transformation based
on differential flatness theory which allows for comput-
ing estimates of the state variables of the initial nonlin-
ear model of the robot. Additionally, to estimate and
compensate for model uncertainty and external distur-
bances affecting the mobile manipulator, the aforemen-
tioned Kalman Filter has been redesigned as a distur-
bance observer. To this end, the state vector of the mo-
bile manipulator has been extended by including as ad-
ditional state variables the disturbance inputs and their
time-derivatives. By obtaining accurate estimates of
such perturbation terms their compensation has become
also possible.
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