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Abstract
We propose a decentralized method for adaptive pre-

diction of task processing times in dynamic environ-
ments. Each controller independently estimates the ex-
pected duration of incoming tasks using a gradient-
free update rule based on the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) algorithm. To
ensure coherence across the system, controllers synchro-
nize their models through consensus over a time-varying
communication graph. This approach enables efficient
learning under limited observability and noisy feedback,
without requiring access to gradients or global informa-
tion.

We provide theoretical guarantees for convergence un-
der bounded noise, drawing on recent results for dis-
tributed SPSA with consensus. Simulations demonstrate
the method’s resilience to abrupt changes in task behav-
ior (“drift”) and show that it outperforms baseline meth-
ods in terms of prediction accuracy and inter-controller
consistency. We further illustrate how the SPSA+Cons
approach can be deployed in a modular multi-agent AI
platform to align operational parameters across hetero-
geneous agents under uncertainty.

The proposed solution is lightweight, fully decentral-
ized, and suitable for a variety of settings where cen-
tralized control is infeasible or costly. Potential applica-
tions include collaborative scheduling, sensor coordina-
tion, and adaptive task routing in large-scale systems.
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tributed systems

1 Introduction
We focus on the problem of decentralized task allo-

cation in dynamic and uncertain environments, where

agents must operate without centralized coordination.
Such environments include robotic fleets, service sys-
tems, and distributed computational platforms. In these
settings, tasks arrive continuously, and individual com-
ponents must make decisions based on local observa-
tions, partial information, and noisy feedback.

Our approach focuses on distributed controllers that
analyze incoming tasks and predict their expected pro-
cessing time. Once the prediction is made, the task is
forwarded to a decentralized marketplace, where peer
components self-organize to select an executor using a
multi-agent negotiation mechanism. This setup allows
the system to remain flexible and scalable, without re-
quiring a global scheduler.

The core contribution of this work is a decentralized
method for synchronizing prediction models across con-
trollers. Each controller updates its model locally based
on recent task outcomes, while also periodically ex-
changing information with its neighbors to improve ac-
curacy and maintain consistency. We use a gradient-free
optimization technique based on Simultaneous Perturba-
tion Stochastic Approximation (SPSA), which enables
adaptation under noise, delays, and limited observabil-
ity.

This approach is model-agnostic and supports any
parametric prediction method. For example, a controller
may use a simple linear model or a tree-based ensemble;
our synchronization mechanism ensures that even under
drift or data sparsity, the prediction models converge.

Simulation results show that our method maintains
accurate task-time predictions and remains robust un-
der distributional shifts and partial feedback. The sys-
tem demonstrates good scalability and low coordination
overhead compared to classical optimization-based base-
lines.
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Beyond theoretical motivation and synthetic bench-
marks, the proposed method can be directly applied in
distributed AI platforms composed of interacting agents
(e.g., MLOps, DevOps, resource managers). In such
environments, coordination of noisy, partially observ-
able decisions becomes essential. We demonstrate this
in Section 8, where SPSA+Cons is used for cross-agent
synchronization and drift adaptation under live con-
straints.

2 Related Work
Decentralized task allocation has been widely studied

in multi-agent systems, with popular approaches includ-
ing auction-based protocols [Braquet and Bakolas, 2021;
Andreev et al., 2007] and evolutionary heuristics [Patel
et al., 2020]. While effective in some scenarios, these
methods often rely on global task visibility or fixed co-
ordination strategies, making them less suitable in envi-
ronments with uncertainty or partial observability.

Distributed optimization techniques provide more flex-
ibility and robustness, but many of them require access
to exact gradients [Nedic and Ozdaglar, 2009], which is
not always practical in real systems. A fundamentally
different class of methods, based on gradient-free opti-
mization, was pioneered in [Granichin, 1989], where a
randomized approximation scheme using input perturba-
tions was proposed. This approach demonstrated consis-
tency even under correlated observation noise. Subse-
quent developments [Granichin, 1992; Granichin, 2002]
extended the framework to broader classes of systems,
including those with arbitrary bounded disturbances.
These works laid the foundation for the class of methods
now known as Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) [Spall, 1992; Spall, 1997], where
updates require only one or two function evaluations
per iteration regardless of the dimension. The asymp-
totic optimality of gradient-free search procedures was
formally established in [Polyak and Tsybakov, 1990],
where the authors proved that no other iterative opti-
mization method can outperform the proposed scheme
(in terms of convergence rate) over a wide class of
stochastic problems. This result provides a strong the-
oretical underpinning for the use of randomized algo-
rithms in settings with noisy or uncertain feedback.

SPSA-based algorithms have shown strong applicabil-
ity in tracking tasks [Granichin and Amelina, 2015],
including nonstationary optimization problems [Vakhi-
tov et al., 2009] and large-scale consensus control [Ero-
feeva et al., 2021; Erofeeva et al., 2025]. A compre-
hensive treatment of randomized approximation under
unknown-but-bounded disturbances, including conver-
gence rate analysis and real-world applications, is pro-
vided in [Granichin et al., 2015]. These methods have
since been applied to control, estimation, and network
optimization tasks. Their stochastic structure enables
implementation under limited feedback and, in some
cases, allows natural extensions to quantum computa-

tion frameworks [Vakhitov et al., 2006]. The method
proposed in this work builds on these foundations and
adapts decentralized SPSA for predictive modeling in
collaborative systems under dynamic and partially ob-
servable conditions.

From a system perspective, our work is aligned
with ideas from cyber-physical systems (CPS), where
distributed sensing, computation, and local decision-
making are used to adapt to dynamic environments [Ra-
jkumar et al., 2010]. Related concepts include synchro-
nization in networks of oscillators [Arenas et al., 2008]
and decentralized control with limited communication
[Sandell Jr et al., 1978].

This paper contributes to the ongoing research on de-
centralized adaptation in cyber-physical systems. Re-
cent studies have addressed distributed optimization un-
der unknown-but-bounded disturbances using projec-
tion and separation principles [Kizhaeva and Erofeeva,
2023], as well as randomized multi-agent control of sen-
sor networks under partial observability and dynamic
communication topologies [Sergeenko and Granichin,
2022]. The method proposed in this work complements
these directions by offering a decentralized, gradient-
free strategy for predictive adaptation and synchroniza-
tion in task allocation scenarios, with theoretical guaran-
tees under bounded uncertainty.

3 System Model
We consider a decentralized system that processes a

continuous stream of tasks T = {T1, T2, . . . }. Each task
Ti is characterized by observable features such as arrival
time ri, type typei, and estimated complexity h(typei).
Some additional parameters, such as urgency or deadline
Di, may be inferred from historical context.

Each task is initially handled by a distributed con-
troller, which uses a parametric model to predict the ex-
pected processing time p̂i based on the task’s feature vec-
tor xi:

p̂i = f(xi, θ),

where f is a parameterized prediction model (e.g., linear
regression or decision-tree ensemble), and θ is the model
parameter vector.

After the prediction is made, the task is forwarded to
a decentralized marketplace, where agents participate in
peer-to-peer assignment using local policies. The con-
troller does not make the final assignment, but only con-
tributes a time estimate used in downstream decision-
making.

To adapt to nonstationary environments and delayed
feedback, each controller maintains a local history of
completed tasks and periodically updates its model pa-
rameters based on observed errors. In addition, con-
trollers exchange partial information with their neigh-
bours over a dynamic communication graph Gt, defined
by a time-varying symmetric stochastic matrix Bt.
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We assume that the average graph Gav = E[Gt] is
connected, ensuring long-term information propagation
across the network. This setup supports decentralized
learning under noise, limited visibility, and temporal
drift in task characteristics.

4 Decentralized Adaptive Controllers
Each task Ti is initially handled by a local controller,

which is responsible for predicting the expected process-
ing time before the task is released to the decentralized
assignment mechanism. Controllers operate indepen-
dently, using local data and partial feedback from pre-
viously processed tasks.

4.1 Task Time Prediction
For each incoming task Ti, the controller extracts a fea-

ture vector xi ∈ Rd describing relevant attributes such
as task type, estimated complexity, and contextual meta-
data. The controller then predicts the expected process-
ing time p̂i using a parametric model of the form:

p̂i = f(xi, θ), (1)

where θ ∈ Rd is the current parameter vector. The pre-
diction model f may take different forms, such as a lin-
ear regression model or a decision-tree ensemble. Con-
trollers may use different model architectures, but they
share the same parameter structure and synchronize θ us-
ing a decentralized optimization mechanism.

4.2 Model Synchronization via Decentralized SPSA
To ensure consistency across distributed controllers

and adapt to the dynamics of the task environment, we
apply a decentralized, gradient-free optimization method
based on Simultaneous Perturbation Stochastic Approx-
imation (SPSA) with consensus. We follow the asyn-
chronous formulation proposed in [Granichin et al.,
2021], where parameter updates occur every two time
steps.

Let θ̂i2k−2 denote the model parameters of the
controller Ci at iteration 2k−2, and let ∆i

k ∈
{− 1√

d
,+ 1√

d
}d be a random perturbation vector. The

perturbed parameter vectors are defined as:

xi,+
2k−1 = θ̂i2k−2 + βk∆

i
k,

xi,−
2k = θ̂i2k−2 − βk∆

i
k,

(2)

where βk > 0 is the perturbation magnitude.
Each controller observes the processing time preal

t of
a task T i

t and evaluates its prediction model f on the
current task feature vector xi

t. The prediction error is
normalized by the estimated complexity h(T i

t ), and the
observed loss is given by:

F i
t (θ) =

(
f(xi

t, θ)− preal
t

h(T i
t ) · preal

t + ϵ

)2

, (3)

where ϵ > 0 is a regularization constant to prevent divi-
sion by small values, h(Ti) is a complexity estimate de-
rived from historical duration statistics grouped by type
and urgency. Errors in h(Ti) may lead to biased learning,
but are mitigated through regularization and consensus
averaging.

Based on two consecutive evaluations, we define the
SPSA gradient estimate:

gik := ∆i
k ·

F i
2k−1(x

i,+
2k−1)− F i

2k(x
i,−
2k )

2βk
. (4)

The parameter update with consensus is then per-
formed as:

θ̂i2k = θ̂i2k−2−αk

gik + γk
∑
j∈N i

k

bijk (θ̂
i
2k−2 − θ̂j2k−2)

 ,

(5)
where αk > 0 is the learning rate, γk > 0 is the con-
sensus gain, bijk are the weights of the communication
graph at iteration k, and N i

k is the set of neighbours of
the controller i.

This approach enables each controller to improve its
predictive performance based on local feedback, while
gradually aligning its model with others in the network
through pairwise exchanges. The algorithm requires no
explicit gradient computations and remains stable under
noisy observations and limited communication.

In practical deployments, each controller executes the
SPSA update and consensus step in regular intervals,
typically aligned with monitoring or task assignment cy-
cles (e.g., every 30–60 seconds in systems with 5-second
SLA windows). The gradient-free update (Step 1) and
local evaluation (Step 2) are performed independently
and asynchronously across nodes, while consensus av-
eraging (Step 3) requires occasional communication but
can tolerate delays or partial participation without break-
ing convergence guarantees.

5 Execution Agent Behavior
Execution agents Ej are responsible for processing

tasks assigned through the task exchange mechanism.
Once a task is assigned, the agent executes it without
interruption. Each agent maintains its current status
sj(t), which indicates whether the agent is busy or idle
at global time t.

The estimated time of availability is computed based
on the agent’s current workload. If the agent j is cur-
rently executing task Ti, which started at the time τi and
has predicted processing time p̂i, then the expected time
at which the agent becomes available is:

tready
j = τi + p̂i. (6)

If the agent is idle at the time t, we assume tready
j = t.

This value is used by controllers to estimate when the
agent can receive new tasks.
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After completing a task, each agent provides feedback
to the issuing controller, including the actual processing
time preal, the start time τi, and the finish time. This feed-
back is used to improve prediction accuracy and adapt
the model to observed execution dynamics.

6 Theoretical Foundation
Each controller updates its local prediction model us-

ing a gradient-free Simultaneous Perturbation Approx-
imation (SPA) method combined with consensus-based
synchronization. Despite perturbations in observed pro-
cessing times, our update rule remains stable due to the
boundedness (but not randomness) of observation noise.

The theoretical guarantees follow from the conver-
gence results established in [Granichin et al., 2021],
specifically Theorem 1, which considers distributed
gradient-free optimization over a connected communica-
tion graph and assumes that the optimization is subject
to piecewise-smooth loss functions and non-random but
bounded perturbations.

Let Bt denote the communication matrix at iteration t,
and let Bav = E[Bt] be the expected matrix. The second-
smallest eigenvalue of the corresponding Laplacian ma-
trix L = I −Bav is denoted λ̄2 = λ2(L).

Theorem. Let each controller update its local model
using the decentralized SPSA algorithm with consensus
under bounded input perturbations and constant step size
α > 0. Suppose the following conditions are satisfied:

1. each local loss function is convex and has a shared
minimizer;

2. the regularized cost functions admit Lipschitz-
continuous subgradients;

3. the squared norm of the gradient estimate is uni-
formly bounded;

4. the iterates exhibit bounded drift, and local function
evaluations vary smoothly;

5. the communication matrices Bt are symmetric,
stochastic, i.i.d., and their expectation defines a con-
nected graph.

Then, under these assumptions, the decentralized op-
timization method converges in the mean-square sense,
provided that the step size satisfies

α <
λ̄2

c1 +
√
c2cm

,

where λ̄2 = λ2(L(E[Bt])) is the second smallest eigen-
value of the Laplacian of the expected communication
graph, and the constants c1, c2, and cm depend on prob-
lem parameters and noise bounds.

Moreover, under this condition, the following perfor-
mance bound holds:

lim sup
k→∞

E
[
∥θ(c)2k − θ∗∥2

]
≤ C,

where C is a constant whose value depends on system-
specific parameters, step-size, communication topology,
and noise bounds.

This result follows from Theorem 1 in [Granichin
et al., 2021]. In our case, where the observation noise
is unknown but bounded rather than stochastic, the con-
stants c2 and cm are determined using worst-case bounds
rather than expectations. Verification of the five required
assumptions is provided in Appendix A.

As an illustrative example, consider a fully connected
communication graph where every controller communi-
cates with each other with fixed probability p > 0 at
each step. The normalized matrix Bt assigns weights
bijt = 1

m−1 for i ̸= j when active, and selects diagonal
entries to ensure row sums equal 1. Then the Laplacian
is L = I −Bav with

λ̄2 = 1− 1

m− 1
.

For m = 5 controllers, we obtain λ̄2 = 3
4 , yielding an

explicit upper bound on α.
Lipschitz-continuous convex losses arise naturally in

many real-world systems, for example, when penalties
increase smoothly after SLA violations or when cost
functions grow linearly with delay or load. These struc-
tures are typical for applications involving bounded re-
sources, latency-sensitive operations, or adaptive service
control.

7 Simulation and Comparative Analysis
To evaluate the proposed method (referred to as

SPSA+Cons), we conducted 1,000 simulation runs with
time-varying task behavior. In each scenario, a sud-
den change (“drift”) occurred halfway through the ex-
ecution, altering the underlying processing time pattern.
This tests the ability of different methods to adapt under
changing conditions and noisy feedback.

We compared SPSA+Cons against the following base-
lines:

NoSPSA-NoCons (F). Each controller updates its
parameters independently using basic local error
minimization, without communication or coordina-
tion. This baseline reflects isolated learning.
NoSPSA-NoCons (T). Same as above, but includes
an additional stabilization term in the update rule.
However, no inter-controller interaction is applied.
DistSubgrad (partial). A classical distributed sub-
gradient approach that performs parameter averag-
ing between neighboring controllers. In this setup,
each node observes only partial and noisy informa-
tion, which limits the quality of gradient estimates.

SPSA+Cons combines gradient-free updates based on
observed processing times with consensus-based syn-
chronization across the network. It does not require ac-
cess to explicit gradients or centralized coordination.
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Figure 1. Comparative results under a drifting scenario. Left:
average prediction error over time. SPSA+Cons (red) adapts
quickly and maintains low error. Baselines struggle to recover
after the drift. Right: parameter consistency across controllers.
SPSA+Cons keeps models aligned, while baselines without
consensus diverge. Results are averaged over 1,000 random
seeds.

Figure 1 shows that SPSA + Cons achieves accurate
prediction and consistent controller states, even after
abrupt changes in system dynamics. The comparison
confirms that local updates alone are insufficient, and un-
reliable gradients reduce the stability of distributed sub-
gradient methods.

8 Application of SPSA+Cons in a Multi-Agent AI
Platform

In the context of a multilayer, agent-based AI platform
(the AIoT Constructor), where different agents are re-
sponsible for functions such as resource management,
MLOps, DevOps, logging, and so on, SPSA+Cons can
be used to adaptively align and optimize their operational
parameters.

An illustrative use case is the dynamic allocation
of compute resources between model-serving agents
(MLOps agents) and monitoring agents (resource man-
ager agents) under variable platform load.

The technical challenge arises from the fact that in-
ference latency and data-stream processing times can
change abruptly (drift caused by new sensor events, load
fluctuations, node failures), while feedback from agents
(latency and throughput metrics) is noisy aand only par-
tially visible due to the trade-off between high-quality
monitoring (which consumes additional compute) and
allocating those same resources to task execution.

The SPSA+Cons solution for this problem works as
follows:

1. Local parameter vectors. Each agent maintains
its own vector of parameters (e.g., queue-priority
weights, batch sizes, mode-switch thresholds).

2. SPSA update cycle. In each SPSA cycle, an agent
perturbs its parameters in small random directions,
measures the resulting change in overall latency (or
another quality metric) and performs a stochastic
approximation of the gradient.

3. Consensus averaging. Periodically, all agents ex-
change their current parameter estimates through a
consensus protocol and average them according to
the platform’s communication topology (e.g., agent-
to-agent, broker-mediated, or neighborhood-based
exchange). This alignment prevents disparate or
conflicting configurations.

4. Rapid adaptation after drift. Following a drift
event (e.g. latency doubling due to a node failure),
SPSA+Cons enables quick recovery: local SPSA
steps re-tune parameters and consensus ensures the
entire agent pool converges toward a new, shared
optimal configuration.

A key advantage of this approach is that it does not re-
quire an explicit model of the performance gradient of
the system. Simulation results indicate strong robust-
ness to noisy metrics and partial telemetry loss, while
preserving parameter consistency across agents, which
is critical for coordinated actions (for example, synchro-
nized ’training’/’inference’ mode switches). Moreover,
both horizontal and vertical scalability are supported,
since consensus exchanges can occur only among log-
ically adjacent agents without a central coordinator.

This methodology can also be extended to coordi-
nate hyperparameter selection in distributed training,
dynamically balance data channels between Streaming
agents and Analytics agents, and adaptively manage
SLA thresholds in the DevOps agent based on real-time
traffic and performance.

9 Conclusion
We presented a decentralized method for adaptive

task duration prediction based on gradient-free SPSA
updates and consensus-based synchronization between
controllers. The approach is robust to noisy feedback
and sudden changes in task characteristics, making it
suitable for systems with partial observability and lim-
ited prior knowledge.

Theoretical analysis guarantees convergence under
bounded noise and connectivity assumptions on the com-
munication graph. Experimental results confirm that the
method maintains low prediction error and consistency
across controllers, even in environments with drift.

We further demonstrated how the proposed approach
can be integrated into a modular multi-agent AI plat-
form, where it supports dynamic coordination and align-
ment of operational parameters across heterogeneous
agents under uncertainty. This use case highlights the
method’s broader applicability in decentralized opti-
mization scenarios beyond task prediction.

Future work will explore asynchronous updates, real-
time deployment in physical systems, and integration
with other forms of distributed decision-making. Poten-
tial application areas include collaborative scheduling,
smart manufacturing, and sensor-based monitoring sys-
tems. A related method for change tracking based on
input-perturbed gradient-free optimization was recently
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proposed by the authors in [Akinfiev et al., 2025], where
theoretical convergence and tracking properties were es-
tablished in a simpler setting. The present work extends
those ideas to a distributed, consensus-driven architec-
ture suitable for multi-agent task coordination.
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Appendix A. Convergence Verification under
Bounded Perturbations

We verify that the decentralized SPSA method with
consensus update satisfies the assumptions required for
convergence in the presence of unknown but bounded
noise. The local objective at controller Cc is:

F (c)(p) = E
i∈H(c)

k

[(
max

{∣∣p̂i + x⊤
i p− preal

i

∣∣− δ, 0
})2]

,

(7)
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where p ∈ Rd is the parameter vector. The perturbations
in observations are deterministic, unknown, but satisfy
|ξ±(c)

k | ≤ ξmax.

A1. Monotonicity
Define

fi(p) =
(
max

{∣∣x⊤
i p+ p̂i − preal

i

∣∣− δ, 0
})2

.

Let zi(p) := x⊤
i p+ p̂i − preal

i . The subgradient is

∇fi(p) =

{
2(|zi| − δ) · sign(zi)xi, if |zi| > δ,

0, otherwise.

Since fi is convex, for any p, p∗:

⟨p− p∗, ∇fi(p)⟩ ≥ 0,

and hence

⟨p− p∗, Ei[∇fi(p)]⟩ ≥ 0.

Assumption A1 is satisfied.

A2. Lipschitz Gradient
Let p1, p2 ∈ Rd. For z1 = zi(p1) and z2 = zi(p2):

∥∇fi(p1)−∇fi(p2)∥ ≤ 4∥xi∥2 · ∥p1 − p2∥.

Thus, fi has Lipschitz gradient with Mi = 4∥xi∥2,
and M = maxi Mi.

A3. Bounded Gradient Norm
Let zi = x⊤

i pk + p̂i − preal
i . Then:

∥∇fi(pk)∥2 ≤

{
4(|zi| − δ)2 · ∥xi∥2, |zi| > δ,

0, otherwise.

Since |zi| ≤ ∥xi∥ · ∥pk∥+ |p̂i − preal
i |, we obtain:

∥∇fi(pk)∥2 ≤ 4∥xi∥2
(
∥xi∥ · ∥pk∥+ |p̂i − preal

i | − δ
)2

.

Let

g22 := max
i

4∥xi∥2
(
∥xi∥ · ∥pk∥+ |p̂i − preal

i | − δ
)2

.

Then E∥∇fi(pk)∥2 ≤ g22 , and A3 is satisfied.

A4. Bounded Step Size Drift
From the SPSA-consensus update:

p
(c)
k+1 = p

(c)
k − α

ĝ
(c)
k + γ

∑
j∈Nc

bcj(p
(j)
k − p

(c)
k )


we analyse the magnitude of the update using the stan-
dard SPSA gradient approximation.

ĝ
(c)
k =

F (c)(p+)− F (c)(p−)

2θk
·∆(c)

k + η
(c)
k ,

|F (p+)− F (p−)| ≤ 2Lθk
√
d,

|η(c)k | ≤ 2ξmax

θk

√
d.

(8)

Using these bounds 8, we obtain the following estimate
on the update step:

∥p(c)k+1 − p
(c)
k ∥ ≤ α

((
L+

ξmax

θk

)
d+ γR

)
,

R = max
j∈Nc

∥p(j)k − p
(c)
k ∥.

(9)

Bounded for fixed α, so A4 holds.

A5. Communication Matrix
Let Bk = [bijk ] be the symmetric stochastic matrix for

controller graph. Assume:

biik = 1−
∑
j ̸=i

bijk ,
∑
j

bijk = 1,

and the expected graph is connected with λ2(I −
E[Bk]) > 0. Then Bk satisfies symmetry, boundedness,
and connectivity. A5 is satisfied.


