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Abstract 
At designing structures and devices interacting with 

the flow of gas or liquid, it is necessary to solve the 

problems associated with the investigation of the 

stability required for their functioning and operational 

reliability. The definition of stability of an elastic 

body, taken in the article, corresponds to the 

Lyapunov’s concept of stability of dynamical system. 

On the base of a proposed nonlinear mathematical 

model the dynamic stability of the elastic aileron 

taking into account the incident subsonic flow of gas 

or liquid (in an ideal model of a incompressible 

environment) is investigated. The model is described 

by coupled nonlinear system of differential equations 

for the unknown functions – the potential of the gas 

velocity and deformation of the elastic aileron. The 

sufficient conditions of the stability are obtained on 

the basis of the construction of functionals. The 

conditions impose restrictions on the free-stream 

velocity of the gas, the flexural stiffness of the elastic 

aileron, and other parameters of the mechanical 

system. The examples of construction of the stability 

regions for particular parameters of the mechanical 

system are presented. 
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1 Introduction 

   At the design and exploitation of structures, devices, 

mechanisms for various applications, interacting with 

the flow of gas or liquid, an important problem is to 

ensure the reliability of their functioning and longer 

life. Similar problems are common to many branches 

of engineering. In particular, such problems arise in 

missilery, aircraft construction, instrumentation, at 
designing antenna systems, high-surface structures, 

and so on. The essential value in the calculation of 

structures that interact with the gas flow has a stability 

study of the deformable elements, as the impact of the 

flow may lead to its loss. As examples of the loss of 

dynamic stability can be noted: the flutter of an 

aircraft wing; panel flutter of plates and shells flowing 

around, for example, the flutter of the skin of the 

aircraft or missiles; stall flutter turbine blades and 

screws; fluctuations wires, chimneys, suspension 

bridges and so on. 

  Thus, at designing of the structures and devices 

interacting with the gas flow, it is necessary to solve 

problems related to the investigation of stability 

required for their functioning and operational 

reliability. 

  The stability of elastic bodies interacting with the gas 

flow is devoted to many theoretical and experimental 

studies conducted in the last decade. Among the recent 

studies on the dynamics, stability and flutter of the 

part of the aircraft, including airfoils, it should be 

noted the research of the scientists [Naumova, Ershov, 

Ivanov, 2011; Van’ko, Marchevskii, Shcheglov, 2011; 

Ovchinnicov, Popov, Filimonov, 2013; Plyusnin, 

2014; Dimitrienko, Koryakov, Zakharov, Stroganov, 

2014; Balakrishnan, 2005; Qin Zhanming and 

Librescu Liviu, 2002; Yatasaki Masahide, Isogai Koji, 

Uchida Takefumi, Yukimura Itsuma, 2004; Wu Xiao-

sheng and Wu Jia-sheng, 2007; Haddadpour, 2003; 

Bendiksen and Seber, 2008, Florea, Hall, Dowell, 

2000]. 

  Most of the work is devoted to analytical and 

numerical investigations of aeroelastic oscillations the 

wing profile in a supersonic gas flow. For subsonic 

flow of the wing profile mainly used the numerical 

methods. 

  Among the works of the authors of this article on the 

dynamics and stability of elastic bodies interacting 

with the gas flow, note the monographs [Ankilov, 

Velmisov, 2000, 2009, 2013; Ankilov, Velmisov, 

Gorbokonenko, Pokladova, 2008; Velmisov, Kireev, 

2011; Velmisov, Molgachev, 2012]. 

  Taken in the work determination of stability of 

elastic body correspond to the Lyapunov concept of 

stability of dynamical systems. 



 

 

2 Mathematical model of wing with elastic aileron 
  Let on the plane, in which take place the joint 

oscillations of elastic aileron and subsonic flow of an 

ideal gas (liquid), the segment [ , ]a b  of the axis Ox  

corresponds to the wing, and segment [ , ]b c  – to the 

aileron (fig. 1). 
 

 
 

Figure 1. Wing profile. 
 

  In infinitely distant point the gas velocity is V and 

has a direction coinciding with the direction of the 

axis Ox. Assume that the deflection (strain) of the 

elastic aileron and the indignation homogeneous 

oncoming flow are small. 

  Enter designations:  2,2( , ) [ , ]u x t C b c R   and 

 4,2( , ) [ , ]w x t C b c R   – the deformations of an 

elastic aileron in the direction of axes of Ox and Oy 

respectively;  2,2,1( , , )x y t C R R R     – the 

velocity potential of the disturbed flow. 

  The proposed mathematical model is defined by the 

following equations and boundary conditions: the 

velocity potential satisfies the Laplace equation 
2= 0, ( , ) = \[ , ],xx yy x y G R a c         (1) 

linearized boundary conditions  

0

( ,0, ) = ( , , ) = ( ), ( , ),limy y
y

x t x y t Vf x x a b 




    (2) 

( ,0, ) = ( , ) ( , ), ( , )y x t w x t Vw x t x b c   ,     (3) 

condition of absence of perturbations at infinitely 

distant point 
2 2 2 2| | ( ) = 0x y t        .                 (4) 

  The equation of oscillations of elastic aileron have 

the form 
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    (5) 

  The indices x, y, t below denote partial derivatives 

with respect to x, y, t; the bar and the point – the 

partial derivatives with respect to x and t, respectively; 

  – density of gas; 
3 2/ (12(1 ))EJ Eh    – flexural 

stiffness of aileron; h – thickness of aileron; 
пM h  

– linear mass of aileron; 2/ (1 )F h   ; E, 
п  – 

elasticity modulus and the linear density of the 

aileron;   – Poisson coefficient; 
2 1,   – coefficients 

of internal and external damping; 
0  – stiffness 

coefficient of the base (compressing layer);   – time 

of the delay of base reaction; ( )f x
 – functions 

determining the shape of the upper (+) and lower (–) 

non-deformable parts of the profile. 

  Using the methods of the theory of functions of a 

complex variable [Ankilov and Velmisov, 2013], the 

aerohydrodynamic loading according to (1) – (4) is 

possible to express through the unknown functions of 

deformations (u, w) of the aileron: 

( ( ,0, ) ( ,0, )) ( ( ,0, ) ( ,0, ))t t x xx t x t V x t x t             

1 1 1 1

1

1 1 1

2

1 1 1 1

[ ( , ) ( , )] ( , )

( , )
[ ( , ) ( , )]

[ ( ) ( )] ( , ) , ( , ),

c

b

c

b

b

a

w x t Vw x t K x x dx
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
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(6) 

where 

1 1

1

1 1

( )( ) ( )( )
( , ) = 2 ,

( )( ) ( )( )
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K x x ln
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  We will notice that for any function 
1g( , )x x   

 1,1 [ , ] [ , ]C b c b c   the improper integrals 

1

1 1 1 1 1

( , )
g( , ) ( , ) , g( , ) ,

c c c c

a a a a

K x x
dx x x K x x dx dx x x dx

x



     

1 1 1g( , ) ( , )

c c

a a

dx x x G x x dx   are convergent. 

  Assume the wing profile is symmetric, i.e. 

( ) ( )f x f x    (this also takes place for the keel of 

the aircraft with an elastic rudder (fig. 2)). 
 

 
 

Figure 2. Profile of aircraft keel. 
 

  In this case, according to (5), (6) we will have the 

homogeneous system: 

 

 
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  The boundary conditions at the ends of the aileron in 

x b  and x c  have the form: 

2

( , ) 0, ( , ) ( , ), ( , ) 0,

( , ) 0, ( , ) 0, ( , ) 0.5 ( , ) 0,

w b t w b t w b t u b t

w c t w c t u c t w c t

   

      

      

  
 (8) 

that corresponds to the elastic fastening of the left end 

and free right end. Number   – coefficient of rigidity 

of the elastic connection between the wing and 

aileron. 

 

3 Investigation of stability of elastic aileron 

  We will obtain the sufficient conditions for the 

stability of solutions of integro-differential equations 

(7) with respect to perturbations of the initial 

conditions. 

  Introduce a functional 

 

1

2
2 2 2 2
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  Lets find the derivative of   by t. In view of 

equality ( , ) = ( , ) ( , ) ,

t

t

w x t w x t w x s ds





    for 

functions ( , )w x t  and ( , )u x t , that are solutions of the 

equations (7), the expression for ( )t  takes the form: 
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Integrating by parts, taking into account (8), obtain 
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Changing the order of integration, effect the 

integration by parts 
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where in the last equality the integration variables x  

and 
1x  are changed places, considering that 

1 1( , ) = ( , )K x x K x x . 

  Similarly we find 
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Substituting these relations in (10), we obtain 
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Using the inequality 2 22ab a b  , we obtain 
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Since the 
1 1( , ) = ( , )K x x K x x , then, changing at first 

the order of integration, and then the variables 
1x  and 

x  by places, we will have: 
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For ( )I t  thus we obtain the following expression: 
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Similar transformations for ( )I t , we find an 

expression for ( )J t  
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Substituting (13) and (14) to the right side of (12), we 

will have 
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The boundary value problem for the equation 

( ) = ( ), [ , ]IV x x x b c    with the boundary 
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for any functions  u x  and  v x , which satisfy the 

considered boundary conditions and have on [ , ]b c  the 

continuous derivatives of the fourth order. For 

functions ( , )w x t  we write Rayleigh's inequality 

[Kollatc, 1968]: 
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  Thus, taking into account (17), the inequality (15) 
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  For an assessment (20) we will use the proved in 

[Ankilov and Velmisov, 2009] following theorem. 

  Theorem 1. Suppose that: 1) the function ( )f x  is 

continuous on the interval [ , ]x a c ; 2) the function 

1( , , )K x x c  is defined and continuous by x  and 
1x  in 

a region 
1[ , ], [ , ]x a c x a c   (except, perhaps, line 

1x x ) and integrable in this area; 3) the function 

1( , , )K x x c  is continuously differentiable with respect 

to c  and the equality ( , ) ( , )
K

x c c
c

  


 


 is 

verified; 4) for any ( , ],a c   , ( , )x a   the 

equality 
1( , , ) ( , , ) 0K x K x      is verified;  

5) 
1 1lim ( , , ) 0

c c

c a
a a

dx K x x c dx


  , then repeated (proper 

or improper) integral is nonnegative ( )

c c

a a

dx f x    

2

1 1 1( ) ( , , ) ( ) ( , ) 0.

c

a a

f x K x x c dx f x x dx d



  
 

   
 
   

  We introduce the notation 

0

0, [ , ];
( )

( , ), [ , ].

x a b
f x

w x t x b c


 


 

  The kernel 

1 1

1

1 1

( )( ) ( )( )
( , , ) ln ,

( )( ) ( )( )

x a c x x a c x
K x x c

x a c x x a c x

    


    
  

where as a parameter the c  is taken, satisfies the 

conditions of theorem 1: 

1)        1

1

( )( )

( ) ( )( ) ( )( )

x a x aK x a

c c a c x c x c a c x

  
  

     
 

1

1

1

( , ) ( , )
( )( )

x a
x c x c

c a c x
 


  

 
; 

2) 
1

1

1

( , , ) ln 0, ( , , ) ln 0,
c xc x

K c x c K x c c
c x c x


   

 
 

1, ( , )x x a c  ; 

3) as 
1( , , ) [0, )K x x c    in the field 

1[ , ], [ , ]x b c x b c  , and the function is integrable in 

this area, then by the mean value theorem exist 

numbers 
1 2 1 2, 0 , 1       such that  

1 1

1

1 1

2 1 1 22

2 1 1 2

( )( ) ( )( )
lim

( )( ) ( )( )

(1 ) (1 )
lim( ) 0.

(1 ) (1 )

c c

c a
a a

c a

x a c x x a c x
dx ln dx

x a c x x a c x

c a ln
   

   





    


    

  
  

  

 
 

Hence, by theorem 1, the improper integral is non-

negative 



 

 

1 1 1

2

( ) ( ) ( , , )

( )
0.

( )( )

c c

a a

c

a a

dx f x f x K x x c dx

x a f x
dx d

a x




 



 
  

   

 

 

 

Substituting the function ( )f x , obtain 

0 1 0 1 1( , ) ( , ) ( , ) 0.

c c

b b

dx w x t w x t K x x dx    

  Since the integral is non-negative for any value 

0t t , then  

1 1 1( , ) ( , ) ( , ) 0

c c

b b

dx w x t w x t K x x dx   .           (21) 

Similarly, 

1 1 1( , ) ( , ) ( , ) 0

c c

b b

dx w x t w x t K x x dx    .          (22) 

  The study of the functional is continued. Taking into 

account the expression (9) and inequalities (21), (22), 

the right and left sides of (20) are estimated as 

follows: 
2

2

2

1 1 1

( ) ( , )

( , ) ( , ) ( , ),

c c c

b b b

V
t EJw dx dx w x t

w x t K x x dx EJw b t







    

  

  
         (23) 

2

2 2 2 2

0 0 0 0 0

2

0 0 1 1 1

2

1
(0) ( )

2

( ,0) ( ,0) ( , )

( ,0),

c

b

c c

b b

M u w EJw EF u w

w dx dx w x w x K x x dx

EJw b








  
          

 


  







  (24) 

where the notations 
0 0= ( ,0), = ( ,0),w w x u u x   

0 0 0 0= ( ,0), = ( ,0), = ( ,0), = ( ,0)w w x u u x w w x w w x     

are introduced. 

  Using the obvious inequalities 2 22ab a b  , 
2 22 ( )ab a b    , symmetric and non-negative 

kernel 
1( , )K x x , boundary conditions (8), we obtain: 

2

1 1 1

2

1 1 0 0 1 1

( ,

( ,0) ( ,0) ( , ) ( ,0)

( , ) ( ,0) , = ( , ) .sup
)

c c c c

b b b b

c c

x b cb b

dx w x w x K x x dx dx w x

K x x dx K w x dx K K x x dx


 

 

   

 

 

Similarly, 

2

1 1 1 0( , ) ( , ) ( , ) ( , ) .

c c c

b b b

dx w x t w x t K x x dx K w x t dx      

  Taking into account these estimates, the inequalities 

(23) and (24) take the form 

2 2 20

0 0 0

2

2 2 2

0 0 0 0

(0)

1
( ,0).

2

c

b

K
M w Mu EJw

EF u w w dx EJw b





 

 
      

 

 
      

  


    (25) 

2

2 2 20( ) ( , ),

c

b

V K
t EJw w dx EJw b t






 
      

 
  (26) 

  Applying the Cauchy-Bunyakovski inequality, have 

 
22

2

2
( , ) ( , ) ( , ) ,

( )

c c

b b

w x t dx w x t w b t dx
c b

   
   (27) 

2 2( , ) ( ) ( , ) .

c

b

w x t с b w x t dx                      (28) 

  Using (27), from (26) we obtain 
2 2

20

2

2

2 2

2 ( )
( ) ( , )

( )

4 (2 ( ))
( , ) ( , ) ( , ) .

( ) ( )

c

b

EJ K V c b
t w x t

c b

EJ c b EJ
w x t w b t w b t dx

c b c b

 





  
  



 
    

  


(29) 

  According to the Sylvester criterion, the quadratic 

form with regard to ( , ), ( , )w x t w b t   is positive 

definiteness, if next condition is verified: 

2

0

2
.

( ) (2 ( ))

EJ
V

c b K c b



 


  
           (30) 

Then, according to (28), (29), we obtain 

 

2

2 2

0

3

( ) ( , )

2 ( ) (2 ( )) 4
.

( ) (2 ( ))

t w x t

EJ K V c b c b EJ

c b c b

   

 

  

    


  

(31) 

Thus, from (20), (25) and (31) we obtain the 

inequality 

 

3
2

2 2

0

2 2 20

0 0 0

2

2 2 2

0 0 0 0

( ) (2 ( ))
( , )

2 ( ) (2 ( )) 4

1
( ,0) ,

2

c

b

c b c b
w x t

EJ K V c b c b EJ

K
M w Mu EJw

EF u w w dx EJw b

 

   





 

  
 

    

  
      

 

 
           

  

from which follows the next theorem. 

  Theorem 2. Let the conditions (16), (19), (30). Then 

the solution ( , )w x t  of the system of equations (7) is 

stable with respect to perturbations of the initial data 

0 0 0 0 0 0, , , , ,w w w w u u   , if the function ( , )w x t  satisfies the 

boundary conditions (8). 

 

4 Example of mechanical system 

  We consider the example of a mechanical system. 

Assume that the wing is located in the air flow 

( 1  ), and the aileron is made from aluminum 

( 107 10E   , 8480n  ). Other parameters of the 

mechanical system: 0a  ; 3b  ; 4c  ; 0.31  ; 

0 4  ; 
1 0.4  ; 

2 0.4  ; 0.1   (all values are 

given in the SI system). 

  For inequality (30) the stability region (gray area) on 

the plane «aileron thickness h – flow velocity V» is 

constructed (fig. 3). 



 

 

 
Figure 3. The stability region in the plane (h, V). 

 

5 Conclusion 

  Based on the proposed mathematical model of flow 

around a wing with elastic aileron to subsonic flow of 

a liquid or gas (in the model of an ideal 

incompressible environment) obtain sufficient 

conditions of the dynamic stability of the aileron. The 

conditions impose restrictions on the velocity of the 

gas, the flexural stiffness of the elastic aileron and 

other parameters of the mechanical system. The case 

of elastic fastening one end and the free other end of 

the elastic aileron is considered. The region of stability 

on the plane of the two parameters (h, V) is built for 

specific examples of mechanical systems. 
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