
ENOC-2008, Saint Petersburg, Russia, June, 30–July, 4 2008 

USING STRONG NONLINEARITY AND HIGH-FREQUENCY VIBRATIONS 
TO CONTROL EFFECTIVE MECHANICAL STIFFNESS 

 
 
 

Jon Juel Thomsen 
Department of Mechanical Engineering 

Technical University of Denmark 
Denmark 

jjt@mek.dtu.dk 
 
 

 
Abstract 

High-frequency excitation (HFE) can be used to change the 
effective stiffness of an elastic structure, and related quanti-
ties such as resonance frequencies, wave speed, buckling 
loads, and equilibrium states. There are basically two ways 
to do this: By using parametrical HFE (with or without non-
linearity), or by using external HFE along with strong 
nonlinearity. The first way has been examined for many 
different systems, and analytical predictions exist that has 
been repeatedly confirmed against numerical simulation and 
laboratory experiments. The current work contributes results 
on the other way: Combining the method of direct separation 
of motions with results of a modified multiple scales ap-
proach, valid also for strong or even essential nonlinearity, 
quantitative measures of the stiffening effect is predicted for 
a generic 1-dof system, and tested against numerical simula-
tion. 
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1 Introduction 
Some basic aspects are explored, related to the possi-

ble use of external high-frequency excitation (HFE) 
and strong nonlinearity for changing the low-
frequency (LF) properties of elastic structures. For a 
generic 1-dof model, simple analytical predictions for 
the effect are derived, and tested against numerical 
simulation results. 

HFE can change various aspects of the effective 
properties of structures (Blekhman, 2000), but here we 
focus on the important stiffening effect (Thomsen, 
2002), since a change in stiffness can change also es-
sential system properties such as equilibrium states 
and stability, resonance frequencies, and frequency 
response. 

There are at least two ways of changing effective 
stiffness by HFE: The first could be called parametric 
stiffening, since parametric HFE is used to change LF 
(or effective / average) properties; it works for linear 
and nonlinear systems (Blekhman, 2000; Jensen, 
2000; Sorokin and Grishina, 2004; Thomsen, 2002; 
Fidlin, 2005; Thomsen, 2003), and is responsible for 
the well-known stabilization of the upside-down equi-

librium of the Stephenson-Kapitza pendulum on a vi-
brating support (Stephenson, 1908; Kapitza, 1951). 
Parametric stiffening is well understood, and analyti-
cal predictions has been derived using different ap-
proximate methods (Direct Separation of Motions; 
Multiple Scales; Averaging), all leading to similar 
quantitative predictions, and agreeing with results of 
numerical simulation. The theoretical predictions are 
backed up by experimental evidence for various 
physical systems (Yabuno and Tsumoto, 2007; Jensen, 
Tcherniak and Thomsen, 2000; Thomsen, 2005; 
Thomsen, 2008) and references cited there. 

The other way to change effective stiffness by HFE 
could be called external stiffening, since the HFE ap-
pears external to the system, as inhomogeneous HF 
terms in the equation of motion. For this to work the 
excited system must be nonlinear. Blekhman (2000; 
2007) described the effect, and provided simple ana-
lytical results for calculating averaged motions and 
effective properties. There seems to be no published 
results testing the accuracy of these predictions against 
numerical simulation or laboratory experiments. 

For external stiffening, the change in effective stiff-
ness is predicted to be proportional to the squared HF 
displacement amplitude, and to the strength of the 
nonlinearity, but is independent of the HFE frequency. 
This contrasts to parametric stiffening, where the 
change in effective stiffness is proportional to the 
squared velocity amplitude of the HFE (and thus also 
to squared HFE frequency), and does not require 
nonlinearity (Thomsen, 2002). 

But the strong nonlinearity needed for external stiff-
ening imposes challenges: It may be difficult to real-
ize, in particular with little energy loss, it complicates 
theoretical predictions, and it opens for many kinds of 
complicated and perhaps unwanted responses, with a 
lack of practical predictability due multiple stable 
states, deterministic chaos, and limited power of ana-
lytical tools. Current investigations on using external 
stiffening by HFE for tuning LF properties of discrete 
and continuous elastic waveguides are affected by 
these problems (Blekhman, 2007; Lazarov, Snaeland 
and Thomsen, 2007; Thomsen and Blekhman, 2007), 
and originally motivated this present work. 

This work investigates the external stiffening effect 
in a simple setting, for a generic 1-dof model having 



 
essential features common with the much more com-
plicated systems mentioned above. The generic model 
allows for analytical predictions of strongly nonlinear 
LF responses, which can then be compared with re-
sults of numerical simulation and laboratory experi-
ments. 

Section 2 presents two example realizations of 
strongly nonlinear waveguides with HFE, and sug-
gests a simple generic model supposed to extract an 
essence of these and similar systems. Section 3 pre-
sents and discusses an equation for the averaged mo-
tions of the generic model, useful for predicting effec-
tive or LF properties. Sections 4 and 5 derives simple 
analytical approximations for the free decay LF re-
sponse (Section 4) and the LF forced frequency re-
sponse (Section 5), for arbitrarily weak or strong cubic 
nonlinearity and strong HFE, and compares predic-
tions to results of numerical simulation. Section 6 
briefly describes current status and plans for labora-
tory experiments testing the theoretical predictions.  

2 Two Example Systems, and a Generic Model 
Ways of realizing strong nonlinearity with little en-

ergy loss may involve, e.g. lightly pre-compressed 
elastic beads in Hertzian contact (Daraio, et al., 2005), 
inherently nonlinear elastic elements such as dia-
phragm springs, magnets in attractive configurations 
with compressive linear springs in-between, and trans-
versely loaded linear springs or strings on immovable 
supports. Here we exemplify models for the two latter 
types, and then reduce these into a common generic 
form for subsequent analysis. 

2.1 Magnetic Nonlinearity and Linear Axial Springs 
Carrella et al. (2008) suggested to use attracting 

magnets and repelling springs for a vibration isolating 
element having high-static-low-dynamic stiffness. 
Though close-to-linear behavior can and was achieved 
with such a setup, it is also possible to achieve strong 
or even essential nonlinearity with it. Here we con-
sider using repetitions of one such element into a chain 
of oscillators. 

In Figure 1, top, a one-dimensional waveguide is 
formed by a repeated sequence of point masses m, 
linear springs with stiffness ks, and magnets (perma-
nent or electro-) having static equilibrium separation ls 
and strength Km, with Km>0 (<0) for magnets mounted 
in a repulsive (attractive) configuration. The equation 
of motion Xj(t) for the jth mass can be written: 
 1, , 1 1, , 12 ( ) ( , , ),j s s j s j j j j j jmX k l f X l P X X t− + − ++ =�� �  (1) 

where overdots denote time derivatives, f is the non-
dimensional restoring force function, here representing 
spring and magnet forces due to a displacement Xj 
when Xj–1 = Xj+1 = 0, and P collects all forces on m other 
than those represented by the left-hand side, i.e. damp-
ing forces, spring and magnet forces occurring when 
the adjacent masses are not at rest, and external forces. 

The restoring function f can be calculated using the 
inverse-square law for magnetic attraction or repulsion 
between a pair of magnets, i.e. force = Km / (separation)2, 
where Km is proportional to permeability and pole 

strengths (for electromagnets proportional to electric 
current squared); this gives: 
 ( )2 2 31

2( ) 1 (1 ) ; 2 ,m s sf x x x K k lμ μ−= + − =  (2) 

where x = Xj/ls, |x| < 1, and μ represents the magnet-to-
spring strength, positive (negative) for repulsive (at-
tractive) magnet configurations. The Taylor-expansion 
about the static equilibrium x = 0 is: 
 3 5( ) ( ),f x x x O xκ γ= + +  (3) 
where κ represents linear stiffness, and γ the coeffi-
cient of the dominating nonlinearity: 
 1

21 , .κ μ γ μ= + =  (4) 

Figure 1, bottom, illustrates f for x∈[0;1], while the 
antisymmetric part f(–x) = –f(x) for x∈[–1;0] is omit-
ted. It appears that qualitatively different restoring 
force characteristics can be realized, though when κ ≤ 0 
only with negative cubical stiffness γ. In the present 
context also configurations of negative or vanishing 
stiffness are of interest, since even if κ  ≤  0, HFE may 
add enough positive effective stiffness to stabilize x=0. 

2.2 Axial and Transverse Linear Springs Combined 
Transverse spring elements for creating nonlinearity 

have been considered in various contexts related to 
vibration damping, canceling, or isolation using e.g. 
piano wire or rubber bands (Dohnal, Paradeiser and 
Ecker, 2006; Carrella, Brennan and Waters, 2007; 
Miranda and Thomsen, 1998; Kerschena, et al., 2007). 

The waveguide in Figure 2, top, has axial linear 
springs of stiffness ks, and nonlinearity is provided by 
linear springs with stiffness kt mounted transversely to 
the direction of axial motions of the pointmasses. The 
unloaded length of each transverse springs is lt0, while 
in the static equilibrium shown in the figure, with the 
springs orthogonal to the longitudinal axis, each spring 
is pre-stretched the distance Δlt0 > –lt0 to length lt = lt0 + 

Δlt0. The initial equilibrium stretch of axial springs is 
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Figure 1. Top: Example physical realization of strong elastic 
nonlinearity in a waveguide using magnets and linear springs. 
Bottom: Realizable types of force-displacement characteristics 
f(x), according to (2) (thick, solid line), and a 3rd-order Taylor 
expansion (3), with κ and γ characterizing linear and cubical stiff-
ness, respectively.



 
irrelevant in this formulation.  

In this case the equation of motion for the jth mass is: 
 0 0 1, , 1 1, , 12 ( ) ( , , ),j s t j t j j j j j jmX k l f X l P X X t− + − ++ =�� �  (5) 

where P is defined as for (1), while the nondimen-
sional restoring force becomes: 

 ( )( )( )1 22 2ˆ( ) 1 1 (1 ) ,tf x x k x δ
−

= + − + +  (6) 

where x = Xj/lt0, and δ = Δlt0/lt0 > –1 is the relative pre-
stretch (if Δlt0>0) or pre-compression (if Δlt0<0) of the 
transverse springs, and t̂ t sk k k=  is the transverse-to-
axial linear spring stiffness. The Taylor expansion is 
again (3), but now with linear stiffness and cubical 
coefficient, respectively, instead of (4): 
 ( )1 31

2
ˆ ˆ1 1 (1 ) , (1 ) .t tk kκ δ γ δ− −= + − + = +  (7) 

Figure 2, bottom, shows qualitatively different re-
storing force characteristics for positive x, with the 
antisymmetric part for x < 0 omitted. Due to the restric-
tion δ > –1, a negative cubical coefficient γ cannot be 
achieved, while all other combinations of negative or 
positive or vanishing linear and cubical restoring force 
is possible. In particular an essentially nonlinear (κ/γ = 

0) or strongly nonlinear 2
max 1xκ γ �  restoring force 

with positive cubical coefficient can be obtained, 
since κ = 0 while γ ≠ 0 results when 1ˆ(1 )tkδ −= − + , i.e. 
with suitably precompressed transverse springs. Also, 
if the masses are magnetic, the features of the systems 
in Figure 1 and Figure 2 combine, and any combina-
tion of positive, negative, or vanishing linear and 
nonlinear stiffness coefficients can be realized. 

2.3 A Generic 1-DOF Model 
While Lazarov et al. (2007) and Thomsen & 

Blekhman (2007) considers the effective properties of 
HF-excited discrete multi-DOF and continuous sys-
tems, respectively, this present work aims at shedding 
more light on the basic effect of strong nonlinearity 

combined with HFE, detached from the extra com-
plexity associated with many degrees of freedom. 
Thus we model the dynamics of just one of the masses 
in Figure 1 or Figure 2, neglecting the interaction with 
adjacent masses by considering their motions explic-
itly given, e.g. as part of the functions P in (1) and (5). 
Motions are rescaled to be O(1), and time is rescaled 
such that the normalized linear stiffness coefficient, if 
present, has unit magnitude. As a generic representa-
tion of the functions P, we choose a combination of a 
linear dissipative term, and explicit LF and HF terms, 
the latter time-harmonic. This defines a generic model 
for a strongly nonlinear 1-dof oscillator with strong 
HFE:  

 ( )
{ }

2

0 0

2 ( ) ( ) ( )sin( ),
( ), (0), (0) ( , ), 0 1,

1,0, 1 , , 1, ( , , ) (1),

x x kx g x q t A t t
x x t x x x v

k x g A O

ζ γ
ζ

γ

+ + + = + Ω Ω
= = <

∈ − + ∈ Ω >> =

�� �
� �

\

 (8) 

where k gives the sign (or lack of presence) of the lin-
ear stiffness term, the function g is essentially non-
linear (i.e. g(0) = dg/dx|x=0 = 0) and its coefficient γ can 
be arbitrarily large, Ω is the HFE frequency and A(t) 
its (possibly slowly varying) displacement amplitude, 
and q(t) is the LF excitation (LFE). A characteristic of 
this system, compared to the other HFE systems men-
tioned in the introduction, is the presence of strong 
( 2

max 1k xγ � ) or essential (k/γ = 0) nonlinearity. 

3 Predicting Effective Properties and LF Re-
sponses for the Generic System 

3.1 Averaged System 
Aiming at predicting average / effective / LF system 

properties, i.e. as observed after low-pass filtering x(t) 
with a cut-off frequency less than Ω, we use the 
Method of Direct Separation of Motions (Blekhman, 
2000; Fidlin, 2005; Thomsen, 2005) to split the un-
known motions into slow and fast components z and 
ψ : 
 ( , ) ( ) ( , ), , 0,x x t z t t tτ ψ τ τ ψ= = + = Ω =  (9) 

where τ is the "fast time", considered a new independ-
ent variable along with the "slow time" t, angle brack-
ets denote fast-time average over one HFE period τ ∈ 

[0;2π] with t considered constant, and the constraint of 
the fast motions ψ having zero fast time average im-
plies that ( ),x z t=  so that "slow motions" z are de-
fined as the fast-time average of the full motions x. 

To determine the fast motions ψ, substitute (9) into 
(8), noting that ,d dt t τ= ∂ ∂ + Ω∂ ∂  and solve for 
ψ to lowest order in the small parameter Ω–1 to obtain 
the so-called inertial approximation: 
 1( , ) ( )sin ( ),t A t Oψ τ τ −= − + Ω  (10) 
Then average (8) (with (9) substituted), and obtain the 
equation for the slow motions z: 

 
( ) ( )0 0

2 ( ) ( ),

(0), (0) , (0) ,

z z kz g x q t

z z x v A

ζ γ ψ+ + + + =

= + Ω

�� �

�
 (11) 

which is exact if ψ is exact, or neglects small terms of 
order Ω–1 if (10) is used for ψ. 
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Figure 2. Top: Another realization of strong, elastic nonlinearity, 
here using transverse linear springs. Bottom: Realizable types of 
force-displacement characteristics f(x), according to (6) (thick, solid 
line), and a 3rd-order Taylor expansion (3) with κ and γ characteriz-
ing linear and cubical stiffness, respectively, as defined in Sect. 2.2



 
The results (9)-(11) have been reported by Blekhman 

(2000; 2007), using the same method. Also, Fidlin 
(2000) and (2005) (p.284), using a multiple scales 
method for the case of "very strong excitation", de-
rived averaged equations for a system which includes 
(8) as a special case; Using his general results for (8), 
one obtains also (9)-(11). 

The assumption A = O(1) in (8), along with (10), im-
plies the fast motions ψ are O(1), and thus not neces-
sarily small. This contrasts many other studies of HFE 
effects. For the present case, with only external HFE, 
an assumption of A and ψ being small would show 
changes in effective system properties only at ignor-
able higher order. 

3.2 Case of Interest: Polynomial Restoring Force 
Equation (11) holds for any nonlinear function g(x). 

In many relevant cases the physical restoring force can 
be adequately represented by a third order Taylor se-
ries, so that 3 2( ) .g x x xβ= + With this and (10) in-
serted, the averaged system (11) becomes: 

 

( ) ( )

2 3 2
0 0

2 2 23 1
0 02 2

0 0

2 ( ) ( ) ( ) ( ),

( ) ( ) , ( ) ( ) ,

(0), (0) , (0) .

z z t z z z q t g t

t k A t g t A t

z z x v A

ζ ω γ β
ω γ β
+ + + + = +

= + = −

= + Ω

�� �

�
 (12) 

This models a nonlinear oscillator very similar to the 
original one (8), though, with an additional explicit 
excitation term 0g  depending on slow time only, and 
an effective linear stiffness coefficient 2

0 ,ω  generally 
varying in slow time if the excitation amplitude A is 
not constant. So, the average effect of the external 
HFE is LF-parametric in character, with an additional 
external LF-component in the asymmetric case β ≠ 0.  

3.3 Effective Stiffness and Bias 
 If A is constant, it appears from (12), then 

2
0ω  is the 

effective static stiffness, which can be smaller or lar-
ger than the "true" (structural) stiffness k, and also 
change in sign, dependent on the sign of the nonlinear 
coefficient γ. Stronger nonlinearity provides a larger 
change in stiffness, and if the physical restoring force 
is essentially nonlinear (k/γ   = 0), then all effective lin-
ear stiffness comes from γA2, i.e. from nonlinearity 
combined with HFE. While γ is usually fixed by the 
physical configuration, the HFE amplitude Α can be 
readily changed, so that effective structural stiffness – 
according to (12) – can be controlled in (slow) time on 
demand. To quantify an example: A ±10% change in 
effective linear natural frequency 0ω  requires 
γ = Ο(0.1), supposing k  = 1 and recalling that A = O(1). 

If the physical restoring force is purely antisymmet-
ric wrt. x = 0, then β = 0, and to the order of approxima-
tion used with (12), the only average effect of HFE is 
to change the effective linear stiffness. But any asym-
metry in the physical restoring force (β≠0) will be 
reflected as an inhomogeneous term 0g  in (12), bias-
ing the average response away from z = 0. If A is 
(quasi-)constant, this term is also (quasi-)constant, and 
the effect of the HFE then appears similar to a (quasi-
)static external force. To first order, i.e. for a relatively 
weak bias effect, the equilibrium z = 0 (for β  = 0) is 
then displaced to 2

0 0z g ω= = 2(2 3 ).kAβ γ−− + This 

provides a means for controlling equilibrium position 
by (slow) variation of the HFE amplitude A. 

The coefficients 2
0 0and gω  do not depend on Ω, and 

thus the linear stiffening and biasing effect of external 
HFE with strong nonlinearity seems independent of 
the HFE frequency. This contrasts the case of para-
metric stiffening by HFE, where the change in linear 
stiffness is proportional to (ΩA)2 (and independent of 
nonlinearity) (Thomsen, 2002). But for both cases the 
results assumes Ω�1, and as Ω decreases from a large 
value, the accuracy and even qualitative correctness 
can be expected to drop. 

Next we consider the case of symmetric restoring 
force (β = 0), and solve the averaged equation (12) 
approximately for two important cases: "Free LF re-
sponse" (Section 4), and "LF near-resonant response" 
(Section 5). 

4 Free LF response: Frequency-Amplitude rela-
tion for g(x) = x3 

The analysis of the "free response" (i.e. with only 
HFE) is important because it provides the basic 
nonlinear relationship between LF oscillation fre-
quency and amplitude, and in particular how this 
changes with external HFE. Furthermore, the fre-
quency-amplitude curve forms the backbone of the 
corresponding nonlinear LF forced response (cf. Sec-
tion 5), i.e. the curves of stationary LF vibration am-
plitude versus LFE frequency, in the presence of ex-
ternal HFE.  

Thus we consider the response of the generic system 
(8) for a linear plus purely cubic restoring force when 
there is no damping and no slow external forcing, the 
unforced equilibrium is (marginally) stable, and the 
HFE has constant amplitude, i.e. β = ζ = q= A� =0, k ≥ 0; 
Then (9)-(10) and (12) gives: 
 1( ) ( ) sin( ) ( ),x t z t A t O −= − Ω + Ω  (13) 
 2 3 2 23

0 0 20, .z z z k Aω γ ω γ+ + = = +��  (14) 

where if γ<0 we require k = 1 and 2 2 3A γ< −  so that 
ω0

2
 > 0 and z = 0 is (marginally) stable to small distur-

bances. 

4.1 Analytical Prediction 
Equation (14) for the averaged motions is an autono-

mous Duffing equation, whose oscillation frequency 
ω as a function of oscillation amplitude a can be ex-
pressed by a complete elliptic integral (Polyanin and 
Zaitsev, 2003). But this does not apply to more general 
forms of g, and therefore we prefer to use a series so-
lution in terms of elementary functions, given by Bur-
ton and Hamdan (1983). They used a nonlinear time 
transformation method, which will work under mild 
restrictions on g(x), and for the current choice of g = x3 
gives a frequency-amplitude relation ω(a) that can be 
written as (Burton and Hamdan, 1983):  
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2 23 2
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�
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where ω0

2 is defined in (14). 
In (15) the sequence D2j is quickly decreasing with j. 

Also, when γ ≥ 0 then 1
3 ,ε <�  and the series term for ω 

converges rapidly towards the exact elliptic integral 
solution, regardless of the strength γa2 of the nonlin-
earity; Even the first term (j = 0) may give an accept-
able approximation, i.e. 2 23

0 4 .aω ω γ≈ + Taylor-
expanding this for the special case of small γa2, one 
finds 23

0 08 ,aω ω γ ω≈ +  which is identical to what is 
obtained by the method of multiple scales for the 
weakly nonlinear Duffing oscillator (Thomsen, 2003). 

When γ < 0 then ω0
2

 > 0 requires k = 1 and A2
 < –2/3γ. 

Also, 1
3ε <�  (and quick convergence of ω in (15)) is 

not guarantied, but requires a2
 < –2/3γ – A2. 

4.2 Testing Against Numerical Simulation 
Figure 3 depicts the frequency-amplitude relation, 

a(ω) as predicted by (15), for cases ranging from lin-
ear (γ = 0) over weakly nonlinear to strongly nonlinear 
(γ = 50), and further details given in the legend. Each 
curve tells the frequency at which the system will os-
cillate freely, if released with a given amplitude. In the 
absence of HFE (dashed lines), increased nonlinearity 
just results in the well-known bend over of the re-
sponse curve towards higher frequencies (for γ > 0), 
with the low-amplitude root of all curves remaining at 
the linear natural frequency (here unity). In the pres-
ence of HFE (solid lines), these curves are shifted up-
ward in frequency, i.e. the system appears effectively 
stiffened, and this stiffening grows with the strength 
γ a2 of the nonlinearity. The HFE also appears to mil-
den nonlinearity: With HFE the system is effectively 
less nonlinear than without, as appears from the high-
amplitude part of the dashed curves being closer to 
straight lines (this actually signals strong nonlinearity, 
as 3

4 aω γ→  for a large nonlinearity γ a2; cf. (15)) 
than their corresponding curves in solid line; most 
pronounced for the curves corresponding to the 
strongest nonlinearity, γ = 10 and γ = 50. 

As appears (circle markers), the averaged response of 
numerical simulations (using the MATLAB ODE-
solver ODE45) of the full system (8) follows the ap-
proximate, analytical predictions (15) quite closely, 
even for the cases of strongest nonlinearity. The main 
factor affecting the goodness of fit is not the strength 

of the nonlinearity, but the magnitude of the excitation 
frequency Ω: If, for example, the value of Ω=100 used 
for the figure is doubled, the numerical simulation 
results for the strongest nonlinearity (γ = 50) fits even 
better. However, decreasing Ω to e.g. the value 50, the 
simulated response ends up at frequencies 10-20% 
from the predicted value. This and other observed 
cases of discrepancy may be explained, at least partly, 
by the HFE exciting a nonlinear resonance, i.e. the 
response ends up at a stable part of the underlying 
forced frequency response, rather than oscillating at its 
(nonlinear) natural frequency. The strong bend and 
reach of the free-response backbones in Figure 3 into 
frequencies much higher than the linear natural fre-
quency (here unity) illustrates, that the condition Ω�1 
is insufficient to ensure good accuracy of averaged 
predictions like (15); the main condition is that the 
HFE must not excite fast motions much larger than the 
assumed magnitude order, O(1). 

Figure 4 shows a typical numerically simulated free-
response (except for the HFE) time series for a moder-
ately strong nonlinearity γ = 10, mild damping, and 
otherwise the same conditions as for Figure 3. For the 
upper trace there is no HFE, and the damped nonlinear 
response x(t) decays with a visibly decreasing fre-
quency, which approaches the linear natural frequency 
of unity (i.e. oscillation period 2π) for small ampli-
tudes. The lower trace shows (in black line) x(t) for the 
case of HFE with A = 1 and Ω = 50, along with the fast-
time average <x(t)> (in white line). While the fast 
component of motion remains, as the HFE, it appears 
the averaged or slow motions decay, and while decay-
ing their frequency increases towards the value 4 (os-
cillation period π/2), which is also the value predicted 
using (15). Thus the system is effectively stiffened, i.e. 
it appears so if the full response x is averaged or low-
pass filtered. Then one can control the LF oscillation 
frequency of the system simply by changing the HFE 
amplitude A. 

5 LF Harmonic forcing: LF Frequency response-
force for g(x) = x3 

Next we consider the possible LF or averaged re-
sponse of the generic system (8) in the presence of 
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Figure 3. Frequency-amplitude relation a(ω) for free oscillations of 
the nonlinear oscillator (8) with g(x) = x3, k = 1, q = ζ = 0, Ω = 100, and 
A = 1 (solid line) or A = 0 (dashed). Lines: As predicted by the ap-
proximate expression (15) (using 2 terms in the series, but the plot-
ted results appear identical when using ≥1 terms). Circles: Numerical 
simulation of (8), averaged over periods 2π/Ω of the high-frequency 
excitation. Cases shown: Linear (γ  = 0), and weakly (γ = 1), moder-
ately (γ = 10), and strongly nonlinear (γ = 50). 
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Figure 4. Numerically simulated time response of the nonlinear 
oscillator (8) with g(x) = x3, k = 1, γ = 10, q = v0 = 0, ζ = 0.05, Ω = 50, 
x0=1.2. Upper time trace: Response x(t) in the absence of HFE 
(A=0); Lower trace: Response x(t) in the presence of HFE (A = 1), 
and its running fast-time average <x> = z (in white line). 



 
arbitrarily weak or strong cubical nonlinearity, weak 
damping, arbitrarily strong or weak harmonic LFE, 
and stationary HFE. Thus β = A� = 0, k ≥ 0, q(t) = 

q0sin(Ω0t), γ ∈ \, 0 < ζ � 1, and (9)-(10), (12) gives: 
 1( ) ( ) sin( ) ( ),x t z t A t O −= − Ω + Ω  (16) 
 2 3

0 0 02 sin( ),z z z z q tζ ω γ+ + + = Ω�� �  (17) 
 2 23

0 2 ,k Aω γ= +  (18) 

where Ω0 =O(ω0) is the frequency of the LFE and q0 its 
constant amplitude, ω0 � Ω is the effective linear natu-
ral frequency, and if γ<0, we require k = 1 and 

2 2 3A γ< −  so that ω0
2

 > 0 and z = 0 is (marginally) 
stable to small disturbances. 

5.1 Analytical prediction 
Burton & Rahman (1986), using a modified version 

of the method of multiple scales, derived approximate 
analytical expressions for the stationary frequency 
response of a Duffing oscillator with arbitrarily weak 
or strong nonlinearity. Their results are readily appli-
cable to the averaged system (17), after transforming 
into a new time variable 0

ˆ .t tω=  Then Eq. (27) in 
Burton & Rahman (1986) gives the following station-
ary solution, in terms of our present parameters: 

 ( )
0 0 0

21
0 0 0 0 08

( ) sin( )

sin 3( ) ( ),

z t a t
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ε φ ε
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+ Ω + +� �
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where 0ε� is the expansion parameter: 
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and the stationary amplitude a0 of the fundamental 
harmonic in (19) is given as solutions of the following 
algebraic frequency response equation (corresponding 
to Eq. (26) in Burton & Rahman (1986)): 

 2 2 2 2 23
0 0 0 0 0 04 ( ) (2 ) .a q aω γ ζΩ = + ± − Ω  (21) 

The solutions a0 to (21) correspond to stable solutions 
(19) of (17), unless a value for Ω0 gives three possible 
solutions for a0; then the solution corresponding to the 
middle amplitude is unstable. The backbone of the 
frequency response is obtained by letting q0 = ζ =0 in 
(21), i.e. 2 2 23

0 0 04 ,aω γΩ = +  which is identical to the 
(strongly dominating) first term of the series expan-
sion (15) for the free response ω = ω(a). 

In the weakly nonlinear case one has γ a0
2/ω0

2→0 and 
2 21

0 0 04 ,aε γ ω→�  and (19) reduces to the well-known 
perturbation solution for a weakly nonlinear Duffing 
oscillator excited near primary resonance (e.g. Burton 
& Rahman (1986); Thomsen (2003)).  

However, it follows from (20) that as the strength 
γa0

2 of the nonlinearity grows from zero (linear case) 
to infinity (essentially nonlinear case), then 0ε� grows 
monotonically from zero to 1/3; even with an essential 
nonlinearity (ω0

2=0 or γa0
2/ω0

2→∞) the value of 0ε�  is 
limited to 1/3. Hence the approximation (19), in terms 
of an expansion in 0,ε� does not break down even for 
strong nonlinearity; in fact it follows from (19)-(20), 
that following a resonance curve from the low-
amplitude linear part 0( 0)ε ≈� to the high-amplitude 
and/or strongly nonlinear part 0( 1 / 3),ε →�  the ampli-

tude of the 3rd harmonic changes from close to zero to 
at most 1/24 of the fundamental harmonic. 

The reason for the lack of breakdown of the ap-
proximation for strong nonlinearity lies in the manner 
Burton & Rahman (1986) modifies the standard ver-
sion of the multiple scales perturbation method to give 
(19)-(21): With the standard multiple scales approach 
one uses an expansion parameter ε which is propor-
tional to the strength of the nonlinearity, and a detun-
ing parameter εσ to express the nearness of the excita-
tion frequency to the linear natural frequency, i.e. to 
the linear frequency response backbone. Both ε and εσ 
should be small, and this is naturally not fulfilled at 
strongly nonlinear resonance. Burton & Rahman 
(1986) instead uses an expansion parameter 0ε� which 
occurs naturally in a series expansion for the nonlinear 
backbone (i.e. free response) curve; cf. the similar 
definitions of 0and ε ε� � in (15) and (20), and then use a 
detuning parameter 0ε σ� � to express the nearness of the 
stationary response to the nonlinear backbone. This 
means that both the expansion parameter and the de-
tuning remains small at every level of nonlinearity, 
and thus that (19)-(21) adequately approximates all 
stationary responses that are not to far from the ap-
proximation to the the nonlinear backbone. 

To illustrate the frequency responses we solve (21) 
for the squared LFE frequency Ω0

2 and obtain: 
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which for the case of weak damping gives: 
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( ), for 0< 1.
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We then define the predicted LF stationary vibration 
amplitude a as the sum of the two lowest harmonic 
amplitudes, i.e. by (19): 
 1

0 08(1 ) .a aε= + �  (24) 

Equations (19)-(24) allows for qualitative and quanti-
tative prediction of some essential features of external 
HFE.  

Figure 5 shows two typical frequency responses 
a(Ω0) as predicted by (24) and (22) (or (23); there is 
no discernible difference for the parameters used), 
with solid (dashed) line denoting stable (unstable) so-
lutions, and with parameters as given in the legend. 
For Figure (a) there is no HFE, and the strength of the 
nonlinearity at resonance is large enough (γa0

2=O(10)) 
to produce a pronouncedly bent resonance peak, with 
a backbone that emanates from the linear natural fre-
quency at unity, and becomes almost a straight line for 
the highest amplitudes. 

For Figure 5(b) HFE has been added, at a frequency 
Ω one hundred times the linear, unforced natural fre-
quency ω0. As a consequence, it appears, the effective 
LF frequency response moves towards higher frequen-
cies, and becomes "less nonlinear": The backbone for 
the LF resonance curve now emanates from a fre-
quency ω0 four times higher than the linear unforced 
natural frequency, reflecting the average stiffening 
effect of the HFE, and the resonance spike has less 



 
overhang and is more curved, reflecting that the in-
crease in effective linear stiffness makes nonlinearity 
less pronounced. 

5.2 Testing Against Numerical Simulation 
In Figure 5, circle markers show the averaged re-

sponse of numerical simulations (see technical details 
at the end of this section) of the full system (8); as 
appears these agree very well with the approximate 
analytical predictions. Again, as in Section 4.2, the 
main factor affecting the goodness of fit is not the 
strength of the nonlinearity, but the magnitude of the 
excitation frequency Ω, which should be large com-
pared to the resonance frequency. 

In Figure 6, the upper plot shows part of a stationary 
time series x(t) as obtained by numerical simulation 
with LFE frequency Ω0 = 4, and other parameters as for 
Figure 5. The response x(t) has the same frequency as 
the input, and a low amplitude of 0.067, as predicted 
also theoretically (cf. the value of a in Figure 5(a) for 
Ω0 = 4). The lower time trace in Figure 6 shows (in 
black line) x(t) when HFE is added (Ω = 100). The out-
put oscillates at both the HFE and LFE frequencies, 
and since the HFE input amplitude is large (A = 1), the 
HFE output amplitude is also large. More interest-
ingly, the HF- averaged output ( )x t  (white line), 
which oscillates at the LFE frequency, also has a high 
value amplitude, of 0.55, as predicted also theoreti-
cally (cf. the value of a in Figure 5(b) for Ω0 = 4). This 
illustrates how HFE and strong nonlinearity can sub-
stantially change the LF resonance properties of the 
system: Without HFE, the LFE at Ω0 = 4 is somewhat 
above resonance for the particular system, while with 
HFE the same LFE is effectively resonant.  

Figure 7 shows a pair of LF frequency responses 
similar to Figure 5, i.e. without and with HFE, but for 

the case of essential nonlinearity (k = 0). This causes 
the backbone of the system without HFE (Fig. (a)) to 
be a straight but non-vertical line 4

0 03( ,a γ= Ω cf. 
(22) with ω0

2
 = ζ = q = 0), i.e. there is no "preferred" or 

natural oscillation frequency which is independent of 
oscillation amplitude. In Figure (b) HFE has been 
added, and this makes the (averaged) system behave 
close to linearly at low amplitudes: There is an effec-
tive natural frequency 3

0 2 3.87ω γ= =  (cf. (18)), 
from which the backbone emanates vertically, while 
only at higher amplitudes the hardening nonlinearity 
bends the response curve towards higher frequencies. 
This exemplifies how HFE might be used to effec-
tively tune the LF properties of systems: With an es-
sential structural nonlinearity, all effective linearity 
comes from the HFE, so that the natural frequency can 
be adjusted over a wide range of frequencies down to 
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Figure 5. LF frequency response a(Ω0) for LF and HF forced oscil-
lations of the nonlinear oscillator (8) with g(x) = x3, k = 1, γ = 10, q(t) = 

q0sin(Ω0t), q0 = 1, ζ = 0.05, Ω = 100, (x0,v0) = (0.01,0) (typically; see 
text), and (a) without HFE (A = 0); (b) with HFE (A = 1). Solid / 
dashed line: Stable / unstable solution according to the theoretical 
prediction (24) with (22); Circles: Numerical simulation of (8), 
averaged over periods 2π/Ω of the high-frequency excitation. 
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Figure 6. Numerically simulated time response of the nonlinear 
oscillator (8). Upper time trace: Response x(t) in the absence of 
HFE, but LF excitation at Ω0 = 4; Lower trace: Response x(t) when 
HFE is added, and its running fast-time average <x> = z (in white 
line). Parameters as for Figure 5. 
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Figure 7. LF frequency response as Figure 5, but with essential 
nonlinearity (k = 0; other parameters unchanged). (a) without HFE (A 

= 0); (b) with HFE (A = 1).



 
zero. For Figure (b) very good agreement between 
analytical predictions (lines) and numerical simula-
tion(circles) is noted. For Figure (a) most of the nu-
merical simulation points fall closely on the predicted 
curve, while there are some outliers that need more 
consideration to be explained than is possible here.  

The above numerical results were generated using 
MATLAB's ODE-solver ODE45 to simulate (8) for 
times long enough for stationarity in the solution x(t) 
to evolve. Then the running average ( )x t  of the post-
transient part of x(t) was computed, using the HFE 
period 2π/Ω as the averaging window size, and the 
amplitude of ( )x t  was calculated. Initial conditions 
(x0,v0) were as given in the figure legend, except for 
some of the values of Ω0 where two solutions for a0 
are predicted; in these cases the default initial condi-
tions typically gave stationary solutions on the low-
amplitude part of the resonance curve, while solutions 
on the upper overhanging part of the curve was 
reached by using, as initial conditions, an arbitrary 
pair ( ( ), ( ))x t x t� for a stationary solution already ob-
tained on the upper part, but for a slightly different 
value of Ω0 (this is similar to performing a very slow 
sweep in LFE frequency in a lab.-experiment). 

6 Experimental testing 
At the time of writing an experimental setup for test-

ing the theoretical predictions of sections 4 and 5 is 
almost ready; testing will begin soon, and the results 
reported separately.  

The experimental device consists of a vertical rigid 
bar, simply supported by a roller bearing in one end, 
and supported in the other by a length of piano or gui-
tar string with adjustable pre-tension, i.e. essentially a 
single cell of Figure 2, with ks = 0 and kt = EA/lt0, where 
EA is longitudinal string stiffness. With zero string 
pre-tension the restoring force for the rigid bar is es-
sentially cubic, while structural linearity can be added 
by tensioning the string. Controlled and measurable 
HFE and LFE is provided by a vibration shaker, which 
connects to the bar via a stinger and a force transducer. 
The output response is measured by an accelerometer 
mounted on the bar or a laser displacement sensor. 

To test the predictions of Section 4, HFE will be ap-
plied to the bar. When stationarity has been estab-
lished, the bar will be tapped using an instrumented 
hammer, and the free decay LF response recorded and 
processed (e.g. averaged over the HF period); this 
should give results comparable to Figure 3 and 
Figure 4. 

The predictions of Section 5 will be tested by using 
classical LF up-down sweeps at a very low sweep rate, 
allowing stationarity to be established before re-
cording the stationary LF and HF amplitudes; this 
should give results comparable to Figure 5, Figure 6, 
and Figure 7. 

7 Conclusions 
Simple analytical predictions for the nonlinear LF 

frequency-amplitude relations of a generic system with 
external HFE and arbitrarily weak or strong nonlinear-
ity has been presented. Substantial changes in effec-

tive (LF) stiffness and frequency response are pre-
dicted. In particular, with a cubical hardening nonlin-
earity the effective linear natural frequency shifts to 
higher frequencies, and the nonlinear features of the 
LF resonance curve becomes less pronounced. It 
should be stressed that these changes in effective be-
havior is a consequence solely of changing the exter-
nal HFE, i.e. by "turning a knob", while the real 
physical system properties (inertia, restoring force, and 
damping) are unchanged. 

The approximate analytical method involves two 
steps: The first is a separation of full motions into LF 
and HF components, of which the latter here is only 
interesting by their effect on LF motions. The next 
step is to attack the resulting strongly nonlinear equa-
tion for the LF motions using a modified method of 
multiple scales that can handle arbitrarily weak or 
strong polynomial nonlinearity. The result of the com-
bined procedure is approximate analytical expressions 
for both HF and LF components of motions, along 
with expressions for the LF frequency response curves 
and backbones. 

For the cases tested, the agreement between analyti-
cal predictions and results of numerical simulation is 
generally very good, as long as the underlying as-
sumptions are fulfilled, that is: The HFE frequency 
should be much larger than the LF resonance frequen-
cies of the system (i.e. linear resonance as well as pri-
mary and possible secondary nonlinear resonances), 
and the stationary LF motions should be periodic and,  
if strongly nonlinear, then be close to the (nonlinear) 
backbone for the unforced and undamped system. 

It should be recalled that the good agreement men-
tioned above not necessarily implies good "practical" 
predictability for real systems: With strong nonlinear-
ity involved, several stationary solutions may coexist 
and be stable for a given set of parameters, and the one 
actually reached depends on initial conditions. This 
not only means that e.g. two different stable periodic 
motions may exist for the same LFE frequency (as 
demonstrated in Section 5), but also that other stable 
motions may exist that will not be revealed by the 
above procedure, e.g., chaotic motions or possible 
motions with a frequency-amplitude combination far 
from the backbone of primary LFE resonance. The 
latter include super- and subharmonic resonance, and 
(for multi-DOF systems) internal resonance. 

Laboratory experiments are currently being initiated 
to test the predictions of the present work. Also, sev-
eral theoretical issues seems relevant to pursue, such 
as consideration to transient LF response (e.g. to im-
pulse input), softening nonlinearity (γ < 0), initially 
unstable structural equilibrium (k < 0), multi-DOF sys-
tems, and secondary nonlinear resonances (su-
per/subharmonic and internal resonance). 
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