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Abstract
The paper proposes a new method for identifying pa-

rameters of discrete-time linear stochastic systems using
decentralized square-root information filtering (DSRIF).

The main contribution of the paper is the derivation
of a new identification criterion formulated in terms of
DSRIF outputs, such as square roots of information ma-
trices and corresponding estimates of information vec-
tors. An algorithm for its computation is also provided,
which uses J-orthogonal transformations at the commu-
nication and assimilation stage for updating filter quan-
tities.

The method is validated through a numerical exam-
ple of circular motion tracking with various configura-
tions of measurement models. Simulations show accu-
rate parameter identification, with improved precision as
the number of sensors increases, especially when using
sensors measuring the full state vector.

This work establishes a unified framework for decen-
tralized square-root information filtering and parameter
identification, suitable for real-life applications in fault-
tolerant control, environmental monitoring, and adaptive
signal processing.

Key words
discrete-time linear stochastic systems, parame-

ter identification, decentralized estimation, distributed
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1 Introduction
Modern industrial systems increasingly rely on multi-

sensor networks composed of spatially distributed nodes

capable of both sensing and local computation. These
systems are widely used in diverse applications such as
environmental monitoring, air traffic control, and multi-
target tracking. The integration of multiple sensors into
a communication network enables improved estimation
accuracy, robustness, and fault tolerance due to data re-
dundancy and decentralized processing capabilities.

A key architectural advantage of such systems is the
ability to implement distributed estimation algorithms,
where each node calculates local estimates and shares
information with its neighbors in order to achieve a com-
mon goal. This approach is particularly effective in
large-scale networks where centralized processing is ei-
ther infeasible or inefficient due to communication con-
straints and scalability issues.

The Kalman filter remains a cornerstone for state es-
timation in stochastic systems. However, its direct ap-
plication in multisensor networks presents several chal-
lenges, including high computational demands, commu-
nication overhead, and numerical instability due to ma-
chine roundoff errors. Moreover, the presence of non-
Gaussian noise, model inaccuracies, and unpredictable
system behavior further complicates the filtering pro-
cess. As a result, the development of robust and efficient
distributed filtering and parameter estimation algorithms
has become a central focus of research in recent years.

In this context, several decentralized filtering ap-
proaches have been proposed in the literature. A com-
parative analysis of such algorithms can be found in
[Hidayat et al., 2011], while a comprehensive overview
of distributed Kalman filtering techniques is provided
in [Mahmoud and Khalid, 2013]. For practical imple-
mentation, numerically stable variants of the Kalman
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filter—such as square-root and information-based for-
mulations—are preferred [Grewal and Andrews, 2015;
Tsyganova and Kulikova, 2018]. These implementations
are robust to numerical errors and offer advantages in
terms of software efficiency and stability. In particular,
the square-root filtering technique has been applied in
[Tsyganov and Tsyganova, 2019; Radtke et al., 2020;
Tsyganov and Tsyganova, 2021] to constructing decen-
tralized discrete-time filtering algorithms.

A promising direction in distributed estimation in-
volves the use of so called consensus-based optimiza-
tion techniques. For example, the paper [Sergeenko
et al., 2021] presents a distributed parameter estimation
method using a modified consensus-based SPSA (Si-
multaneous Perturbation Stochastic Approximation) al-
gorithm. This approach is particularly effective in envi-
ronments with unknown-but-bounded noise, where tra-
ditional statistical assumptions are not applicable.

Similarly, [Erofeeva et al., 2021] introduces a dis-
tributed multi-target tracking algorithm that combines
SPSA with iterative averaging to address optimization
in the presence of signals with uncertain statistical prop-
erties. This method is especially suitable for tracking
applications where measurement errors and target ma-
neuvers are unpredictable and lack a known probabilis-
tic model. Also, the authors of [Tarasova and Mo-
seiko, 2025] propose a decentralized method based on
the SPSA algorithm for adaptive prediction of task pro-
cessing times in dynamic environments. It enables ef-
ficient learning under limited observability and noisy
feedback, without requiring access to gradients or global
information.

Another important aspect of distributed estimation is
the joint estimation of system states and parameters, es-
pecially when the system dynamics are not fully known
or subject to change. In [Jacobs and DeLaurentis, 2018],
a novel methodology is proposed that integrates dis-
tributed Kalman filtering with recursive Gaussian pro-
cess regression for adaptive parameter estimation. This
framework allows the network to learn and adapt to
unknown or time-varying dynamics, while maintaining
consensus among the nodes.

Distributed computations are also used in solving the
distributed non-convex resource allocation problem [Fu
et al., 2025]. The authors suggest a successive convex
approximation-based distributed dual gradient tracking
algorithm with a limited communication data rate over a
communication network.

Our paper aims to develop a new method for dis-
tributed identification of parameters in dynamic sys-
tems based on square-root information Kalman filtering.
By integrating decentralization mechanisms with robust
square-root filtering techniques, we intend to enhance
the performance of distributed estimation algorithms in
multisensor stochastic systems.

2 Mathematical model of a multisensor measure-
ment data processing system with parameter un-
certainty

Consider a mathematical model of a linear discrete-
time stochastic system:

xk = Fkxk−1 +Dkuk +Gkwk , (1)
zk = Hkxk + vk , k = 1, 2, . . . ,K (2)

where k is a discrete time instant, xk ∈ Rn is the state
vector to be estimated; uk ∈ Rq is the control input;
zk ∈ Rm is the compound vector of all available mea-
surements at the current time instant k. The noises {wk}
and {vk} are independent normally distributed random
sequences with zero means and positive definite covari-
ance matrices Qk and Rk, respectively. The initial value
of the state vector is x0 ∼ N (x̄0,Π0), which is indepen-
dent of {wk} and {vk}.

Considering the parameter identification problem for
the system (1), (2), suppose that all system matrices Fk,
Dk, Gk, Hk, covariance matrices Qk, Rk, Π0, and also
the initial value x0 can depend on an unknown system
model parameter θ ∈ Rp to be identified. It means that
Fk ≡ Fk(θ), Dk ≡ Dk(θ), etc. But for the sake of sim-
plicity, we will assume, but not specify, the dependence
of these quantities on θ.

Further, we assume that the measurement model (2)
is multisensory. The latter means that the measurement
matrix Hk and the error covariance matrix Rk can be
represented as

Hk = [HT
1,k|HT

2,k| . . . |HT
N,k]

T , (3)

and

Rk = blockdiag(R1,k, R2,k, . . . , RN,k). (4)

Thus, equation (2), taking into account (3) and (4), is a
global multisensory measurement model which also de-
pends on θ.

Consider a fully connected network of sensors consist-
ing of N nodes, in which each node i has the ability to
compute the estimates x̂i,k of the state vector xk and the
corresponding error covariance matrices Pi,k. The mea-
surements and estimates obtained at each node are called
local [Rao and Durrant-Whyte, 1991].

Suppose that the state equation (1) is the same in each
node, and local measurements are described by the fol-
lowing equation

zi,k = Hi,kxk + vi,k (5)

where vi,k ∼ N (0, Ri,k), i = 1, . . . , N . Equation (4)
implies that the measurement noises at nodes i and j are
uncorrelated.

Since the state vector xk is not directly observable,
discrete-time Kalman filtering algorithms are usually
used to estimate it. By now, there exist many different
modifications of the Kalman filter [Grewal and Andrews,
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2015; Tsyganova and Kulikova, 2018]. There are classes
of so called covariance algorithms in which at each step
the error covariance matrix Pk is updated (the conven-
tional Kalman filter belongs to this class). Also, there are
classes of information algorithms in which, instead of Pk

and xk, the values of the information matrix Yk ≜ P−1
k

and the information state vector estimate yk ≜ Ykxk are
computed at each step. Information algorithms, due to
their structure, are most preferred for decentralized pro-
cessing of measurement data [Rao and Durrant-Whyte,
1991]. Consider the information Kalman filtering al-
gorithm, which consists of two stages [Grewal and An-
drews, 2015]:

Algorithm 1. Information Kalman filter (IKF).
For k = 1, 2, . . . ,K

I. Time update

Ak = F−T
k Ŷk−1F

−1
k , (6)

Ck = GT
kAkGk +Q−1

k . (7)

Lk = AkGkC
−1
k , (8)

ỹk = [I − LkG
T
k ]F

−T
k

×
(
ŷk−1 + Ŷk−1F

−1
k Dkuk

)
, (9)

Ỹk = [I − LkG
T
k ]Ak, (10)

II. Measurement update

ŷk = ỹk +∆yk, ∆yk = HT
k R

−1
k zk, (11)

Ŷk = Ỹk +∆Yk, ∆Yk = HT
k R

−1
k Hk (12)

where ∆yk and ∆Yk are updates of the information vec-
tor ŷk and the information matrix Ŷk, correspondingly.
End For

Equations (6)–(10), together with (11), (12), are de-
rived from the conventional Kalman filter taking into ac-
count the definition of the information matrix and infor-
mation state estimates, as well as application of matrix
inversion lemmas.

3 Decentralized measurement data processing
The key idea of decentralized measurement data pro-

cessing is the ability to express global updates of the in-
formation vector and the information matrix through lo-
cal [Hidayat et al., 2011; Rao and Durrant-Whyte, 1991]:

∆yk = HT
k R

−1
k zk

=

N∑
i=1

HT
i,kR

−1
i,kzi,k =

N∑
i=1

∆yi,k, (13)

∆Yk = HT
k R

−1
k Hk

=

N∑
i=1

HT
i,kR

−1
i,kHi,k =

N∑
i=1

∆Yi,k. (14)

Local updates are computed at each node and transmitted
to all other nodes.

Thus, the decentralized information filter contains
three following stages.

Algorithm 2. Decentralized information filter (DIF).
For k = 1, 2, . . . ,K

I. Local time update

ỹi,k = [I − LkG
T
k ]F

−T
k

×
(
ŷi,k−1 + Ŷi,k−1F

−1
k Dkuk

)
, (15)

Ỹi,k = [I − LkG
T
k ]Ak (16)

where Ak and Lk are computed according to (6)–(8).
II. Local measurement update

∆yi,k = HT
i,kR

−1
i,kzi,k, (17)

∆Yi,k = HT
i,kR

−1
i,kH

T
i,k. (18)

III. Communication and assimilation

Ŷi,k = Ỹi,k +

N∑
j=1

∆Yj,k, (19)

ŷi,k = ỹi,k +

N∑
j=1

∆yj,k. (20)

Here i = 1, . . . , N . At any discrete time instant k, each
estimate x̂i,k = Ŷ −1

i,k ŷi,k of the state vector xk is avail-
able at every node of the multisensor network consisting
of N nodes.
End For

As shown in [Rao and Durrant-Whyte, 1991], a decen-
tralized filter (15)–(20) is algebraically equivalent to the
centralized (conventional) Kalman filter with the mea-
surement model (2).

4 Decentralized square-root information filtering
The Square-Root Information Filter (SRIF) was first

proposed in [Dyer and McReynolds, 1969]. The authors
used matrix square roots, that is, the representation of the
information matrix Y in the form Y = STS where S is
the Cholesky factor (an upper triangular matrix). The
vector s = Sx is called the square root information state
vector [Grewal and Andrews, 2015, p. 357]. The SRIF
algorithm is widely used due to its improved computa-
tional properties compared to the standard implementa-
tion of the information filter.

A recent paper [Tsyganov and Tsyganova, 2021] pro-
posed a new method for decentralized processing of
measurement data using a square-root information filter.
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Suppose that at the stages of local time and measure-
ment update in the square-root information algorithm
local square-root information estimates s̃i,k, ŝi,k and
the matrix square roots S̃i,k, Ŝi,k are computed. Then
stages I (equations (15), (16)) and II (equations (17),
(18)) in the decentralized information filter for zero con-
trol input can be written as follows (i = 1, . . . , N ).

Algorithm 3. Decentralized square-root information fil-
ter (DSRIF).
For k = 1, 2, . . . ,K

I. Local time update

Q̃i

[
Q

−1/2
k 0 0

−Ŝi,k−1F
−1
k Gk Ŝi,k−1F

−1
k ŝi,k−1

]

=

[
(∗) (∗) (∗)
0 S̃i,k s̃i,k

]
where Q̃i is the matrix of orthogonal transformation to
upper triangular form for the block matrix on the left-
hand side of this equation, Q−1/2

k is the Cholesky square
root of covariance matrix Q−1

k , here and after (∗) de-
notes matrix blocks that are not of interest.

In the case of non-zero control input ut, it is necessary
to adjust the estimate s̃i,k as follows:

s̃i,k := s̃i,k + Ŝi,k−1Dkuk.

II. Local measurement update

Q̂i

[
S̃i,k s̃i,k

R
−1/2
i,k Hi,k R

−1/2
i,k zi,k

]
=

[
Ŝi,k ŝi,k
0 ei,k

]
, (21)

where Q̂i is the matrix of orthogonal transformation to
the upper triangular form of the block matrix on the left-
hand side of this equation, R−1/2

i,k is the Cholesky square
root of covariance matrix R−1

i,k , and ei,k is the residual of
measurement zi,k.
End For

When constructing a decentralized square-root infor-
mation filter, the main difficulty arises during the formu-
lation of the communication and assimilation stage. In
order to implement this, the authors of [Roy et al., 1991]
proposed using matrix orthogonal transformations in
complex-valued arithmetic. However, this approach can
significantly complicate the software implementation of
the algorithm and slow down computational speed.

Unlike the approach supposed in [Roy et al., 1991], we
suggest using a J-orthogonal transformation of the form
Q̄A = R for the effective implementation of communi-
cation and assimilation stages. Here the transformation
matrix Q̄ is J-orthogonal, that is, Q̄TJQ̄ = J , J is a
signature matrix of the form J = (Ip ⊕ −Iq) (p ≥ 1,
q ≥ 1) [Higham, 2003].

This idea was first proposed in [Tsyganov and
Tsyganova, 2019], which presents the formulation of
the communication and assimilation stage in the decen-
tralized square root information filtering algorithm, and
later, in [Tsyganov and Tsyganova, 2021], a rigorous
theoretical justification for the developed algorithm was
given.

From (20) it follows that ∆Yi,k = Ŷi,k − Ỹi,k and
∆yi,k = ŷi,k − ỹi,k, i = 1, . . . , N . Since in the
SRIF Y = STS, s = Sx, and at the same time
y = STSx = ST s, then ∆Yi,k = ŜT

i,kŜi,k − S̃T
i,kS̃i,k

and ∆yi,k = ŜT
i,kŝi,k − S̃T

i,ks̃i,k.

Let us write down the communication and assimilation
stage (20) in terms of the SRIF (let ⟨·⟩i be the values
computed at the i-th iteration).

III. Communication and assimilation
A. Set ⟨Ŝk⟩0 = S̃k, ⟨ŝk⟩0 = s̃k.
B. For i = 1, 2, . . . , N do

Q̄i

⟨Ŝk⟩i−1 ⟨ŝk⟩i−1

Ŝi,k ŝi,k
S̃i,k s̃i,k

 =

⟨Ŝk⟩i ⟨ŝk⟩i
0 (∗)
0 (∗)

 (22)

where S̃i,k, Ŝi,k and s̃i,k, ŝi,k are the Cholesky square
roots of the information matrices and the information
square root state vector estimates, obtained at the i-th
node at the stages of local time and measurement update
using the square-root information filtering algorithm; Q̄i

is the matrix of J-orthogonal transformation from the
first column of the block matrix on the left-hand side
of (22) to the upper triangular form, with Q̄T

i JQ̄i = J
where J = (Ip ⊕−Iq) (p = 2n, q = n).

C. OBTAIN THE RESULT Ŝk = ⟨Ŝk⟩N , ŝk =
⟨ŝk⟩N .

A detailed proof of stage III can be found in [Tsyganov
and Tsyganova, 2021].

5 Construction of a new identification criterion
based on the decentralized square-root informa-
tion filter

Since we are considering a class of discrete-time lin-
ear stochastic systems with additive Gaussian noises, we
propose to construct a new parameter identification cri-
terion based on a negative log-likelihood function. This
function has the following structure:

J(θ, ZK
1 ) =

Km

2
ln(2π)

+
1

2

K∑
k=1

[
ln detBk + ∥νk∥2B−1

k

]
(23)

where the vector of residuals νk and its covariance ma-
trix Bk are calculated using the conventional Kalman al-
gorithm [Gibbs, 2011].



CYBERNETICS AND PHYSICS, VOL. 14, NO. 2, 2025 195

Our main goal is to develop a new identification
method based on a decentralized square-root informa-
tion filter. In order to achieve this, we need to be able to
calculate the value of ln detBk and the squared norm of
νk, using the output data from the DSRIF algorithm.

Let us formulate the main result obtained.

Theorem 1. The identification criterion (23) in terms of
a decentralized square-root information filter DSRIF has
the form

JDSRIF (θ, Z
K
1 ) =

Km

2
ln(2π)

+
1

2

K∑
k=1

[
2

(
N∑
i=1

ln detR
1/2
i,k + ln det S̃k − ln det Ŝk

)

+∥s̃k∥2 − ∥ŝk∥2 +
N∑
i=1

∥R−1/2
i,k zi,k∥2

]
(24)

where the right-hand side of (24) contains the values
available in the DSRIF at each step of its execution
(k = 1, . . . ,K).

Proof. We need to prove that

ln detBk = 2

(
N∑
i=1

ln detR
1/2
i,k +ln det S̃k−ln det Ŝk

)
(25)

and

∥νk∥2B−1
k

= ∥s̃k∥2 − ∥ŝk∥2 +
N∑
i=1

∥R−1/2
i,k zi,k∥2. (26)

Let us use one of the results from the theory of square-
root discrete filtering to consider the measurement up-
date stage of a square-root covariance filter [Tsyganova
and Kulikova, 2018, p. 11]:

Q
[
SRk

HkSPk

0 SPk

]
=

[
SRe,k

0
K̄f,k SPk|k

]
. (27)

Here SRk
is the Cholesky square root of the measure-

ment errors covariance matrix Rk, matrices SPk|k , SPk

are the Cholesky square roots of the estimation error co-
variance matrices at the stages of time update and mea-
surement update, respectively; SRe,k

is the Cholesky
square root of the measurement residual covariance ma-
trix, K̄f,k = PkH

T
k S

−1
Re,k

.
Since (27) uses the Cholesky decomposition in the

form P = SPS
T
P , we can write the following relations

between matrices, taking into account the notation intro-
duced:

SRk
≜ R

T/2
k , SPk|k ≜ S̃−T

k ,

SPk
≜ Ŝ−T

k , SRe,k
≜ ST

Bk
.

(28)

Let us rewrite (27) taking into account (28):

Q

[
R

T/2
k HkŜ

−T
k

0 Ŝ−T
k

]
=

[
ST
Bk

0

K̄f,k S̃−T
k

]
. (29)

Considering that Q is an orthogonal matrix, we can
write the correct equality[

R
1/2
k 0

Ŝ−1
k HT

k Ŝ−1
k

]
· QTQ ·

[
R

T/2
k HkŜ

−T
k

0 Ŝ−T
k

]

=

[
SBk

K̄T
f,k

0 S̃−1
k

]
·
[
ST
Bk

0

K̄f,k S̃−T
k

]
. (30)

Taking into account the properties of the determinant
of orthogonal and block triangular matrices, from (30)
we obtain

detR
1/2
k det Ŝ−1

k detR
T/2
k det Ŝ−T

k

= detSBk
det S̃−1

k detST
Bk

det S̃−T
k . (31)

Thus,

detBk =

(
detR

1/2
k det Ŝ−1

k

det S̃−1
k

)2

. (32)

Considering that for any square non-singular matrix
detA−1 = 1

detA , equation (32) can be rewritten as

detBk =

(
detR

1/2
k det S̃k

det Ŝk

)2

. (33)

Taking into account (33) and the well-known proper-
ties of logarithms, we arrive at

ln detBk = 2
(
ln detR

1/2
k + ln det S̃k − ln det Ŝk

)
.

(34)
Since matrix Rk has a block diagonal structure (4), we

can represent ln detR1/2
k as

ln detR
1/2
k =

N∑
i=1

ln detR
1/2
i,k . (35)

Substituting (35) into (34), we obtain (25). Thus, expres-
sion (25) is proved.

Now let us prove (26). Consider expression (21) in
general form:

Q̂

[
S̃k s̃k

R
−1/2
k Hk R

−1/2
k zk

]
=

[
Ŝk ŝk
0 ek

]
, (36)

Considering that Q̂ is an orthogonal matrix and
Q̂T Q̂ = I , we can write the correct equality[

S̃T
k HT

k R
−T/2
k

s̃Tk zTk R
−T/2
k

][
S̃k s̃k

R
−1/2
k Hk R

−1/2
k zk

]

=

[
ŜT
k 0

ŝTk eTk

] [
Ŝk ŝk
0 ek

]
, (37)
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from where

s̃Tk s̃k + zTk R
−T/2
k R

−1/2
k zk = ŝTk ŝk + eTk ek. (38)

The resulting equality (38) can be written as

∥ek∥2 = ∥s̃k∥2 − ∥ŝk∥2 + ∥R−1/2
k zk∥2. (39)

Next, we use the previously proven fact [Bierman
et al., 1990] that ∥νk∥2B−1

k

= ∥ek∥2.
Thus,

∥νk∥2B−1
k

= ∥s̃k∥2 − ∥ŝk∥2 + ∥R−1/2
k zk∥2. (40)

Taking into account the block diagonal structure (4) of
the matrix Rk,

∥R−1/2
k zk∥2 =

N∑
i=1

∥R−1/2
i,k zi,k∥2. (41)

Substituting (41) into (40), we arrive at (26).
So, the theorem 1 has been fully proved.

The constructed criterion (24) can be used to solve the
problem of parameter identification for the system (1),
(2) in the case where the input signal uk is known or
equal zero. In the case of an unknown input signal, the
criterion proposed in [Tsyganova and Tsyganov, 2023]
can be used to solve the parameter identification prob-
lem.

6 Algorithm for calculating the new identification
criterion based on a decentralized square-root in-
formation filter

In this section, we propose an algorithm for calculat-
ing the identification criterion (24). To do this, we mod-
ify the DSRIF algorithm, extending its functionality with
the ability to calculate the values of the identification cri-
terion JDSRIF (θ, Z

K
1 , i) in each ith node of the multi-

sensor network.
First, let us denote

J
(1)
i,k =

N∑
i=1

(
ln detR

1/2
i,k +

1

2
∥zi,k∥2R−1

i,k

)
, (42)

J
(2)
i,k = ln det S̃k +

1

2
∥s̃k∥2, (43)

J
(3)
i,k = ln det Ŝk +

1

2
∥ŝk∥2, (44)

and then rewrite (24) in a more convenient form

JDSRIF (θ, Z
K
1 ) =

Km

2
ln(2π)

+

K∑
k=1

[
J
(1)
i,k + J

(2)
i,k − J

(3)
i,k

]
. (45)

The result is presented by algorithm 4.

Algorithm 4. Calculating the value of the identification
criterion JDSRIF (θ, Z

K
1 , i) in the ith node

Initialization
JDSRIF (θ, Z

K
1 , i) = Km

2 ln(2π)
For k = 1, 2, . . . ,K

I. Local time update

Q̃i

[
Q

−1/2
k 0 0

−Ŝi,k−1F
−1
k Gk Ŝi,k−1F

−1
k ŝi,k−1

]

=

[
(∗) (∗) (∗)
0 S̃i,k s̃i,k

]

J
(2)
i,k = ln det S̃i,k + 1

2∥s̃i,k∥
2

II. Local measurement update

Q̂i

[
S̃i,k s̃i,k

R
−1/2
i,k Hi,k R

−1/2
i,k zi,k

]
=

[
Ŝi,k ŝi,k
0 ei,k

]
III. Communication and assimilation

⟨Ŝk⟩0 = S̃i,k, ⟨ŝk⟩0 = s̃i,k, J (1)
i,k = 0

For j = 1, 2, . . . , N

Q̄i

⟨Ŝk⟩j−1 ⟨ŝk⟩j−1

Ŝj,k ŝj,k
S̃j,k s̃j,k

 =

⟨Ŝk⟩j ⟨ŝk⟩j
0 (∗)
0 (∗)


J
(1)
i,k := J

(1)
i,k + ln detR

1/2
j,k + 1

2∥zj,k∥
2
R−1

j,k

End For
Ŝi,k = ⟨Ŝk⟩N , ŝi,k = ⟨ŝk⟩N .
J
(3)
i,k = ln det Ŝi,k + 1

2∥ŝi,k∥
2

JDSRIF (θ, Z
K
1 , i) := JDSRIF (θ, Z

K
1 , i) + J

(1)
i,k +

J
(2)
i,k − J

(3)
i,k

End For

At stage III of algorithm 4, S̃j,k and Ŝjk are square
roots of information matrices; vectors s̃j,k and ŝj,k are
corresponding state estimates obtained in the jth node
at stages of local time update and local measurement up-
date; Q̄i is the matrix of J-orthogonal transformation that
brings the first column of block matrix on the left side of
(22) into upper triangular form.

7 Numerical example
Consider a model of circular clockwise motion of an

object moving on a plane, described by the following
equation:

xk = Fxk−1 +Duk +Gwk (46)
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Figure 1. Trajectory and noisy measurements.

Figure 2. Identification criterion.

Table 1. Identification results.

Sensors Mean RMSE MAPE

[1] 3.0039 0.0496 1.3055

[1, 1] 3.0005 0.0428 1.1430

[2] 3.0013 0.0463 1.2307

[2, 2] 3.0008 0.0380 0.9985

[3] 2.9989 0.0370 0.9905

[3, 3] 3.0014 0.0296 0.8046

[1, 2, 3] 3.0002 0.0323 0.8565

where

F =

[
Φ 0
0 Φ

]
, Φ =

[
cosωτ ω−1 sinωτ

−ω sinωτ cosωτ

]
,

D =


(x1,0 + ω−1x4,0)(1− cosωτ)

(ωx1,0 + x4,0) sinωτ
(x3,0 − ω−1x2,0)(1− cosωτ)

(ωx3,0 − x2,0) sinωτ

 , G =


0 0
1 0
0 0
0 1

 ,

xk =
[
x1, x2, x3, x4

]T
k

is the state vector, τ is the sam-
pling interval, ω = |v0|/r > 0, r is the given radius,

v0 =

[
x2,0

x4,0

]
is the velocity vector at the initial point

with coordinates (x1,0, x3,0), uk−1 ≡ 1, wk ∼ N (0, Q)
(see, for example, [Semushin et al., 2017]).

Let τ = 0.1, x0 =
[
1, 2, 1, 2

]T
, Q = 0.001I2, θ = r

and the true value of the parameter θ⋆ = 3. Consider the
following sensors:

zi,k = Hi,kxk + vi,k, i = 1, 2, 3 (47)

where

H1,k =
[
1 0 0 0

]
, R1,k = 0.1;

H2,k =

[
1 0 0 0
0 0 1 0

]
, R2,k =

[
0.1 0
0 0.1

]
;

H3,k =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R3,k =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 .

The modeling of the object’s motion and the identi-
fication process was performed in MATLAB. Figure 1
shows the graphs of the object’s trajectory and noisy
measurements, and Figure 2 shows the graph of the iden-
tification criterion for the second sensor and K = 40.

The minimization of the identification criterion was
performed using the standard function fmincon, for
which the objective function of calculating the identifi-
cation criterion was implemented, as well as a number
of auxiliary functions. The search for the estimate of
the parameter θ was performed on the interval [0.1, 10]
using the results of 40 measurements, with the middle
of the interval selected as the initial approximation. Ta-
ble 1 shows the mean value of the found estimates of
the parameter θ, the root mean square error (RMSE) and
the mean absolute percentage error (MAPE) for different
sets of sensors based on the results of 500 experiments.

The results of numerical experiments show that the un-
known parameter is identified correctly both for mea-
surement models with one sensor and for measurement
models with several sensors. For multisensor measure-
ment models, the results are identical across all network
nodes. When the number of sensors increases, the accu-
racy of unknown parameter identification also increases.
The measurement models that include sensors for mea-
suring all components of the state vector demonstrate
high accuracy of identification results.

8 Conclusion
The paper proposes a new method for constructing pa-

rameter identification algorithms based on decentralized
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square-root information filtering. The method is pre-
sented in the form of Algorithm 4 which has the ability to
calculate the values of an identification criterion simulta-
neously at each node in a multisensor network. Numer-
ical optimization methods are also used to minimize the
criterion (24) and find estimates of the unknown param-
eter θ. The principal theoretical result is Theorem 1 on
a new identification criterion in terms of a decentralized
square-root information filtering.

The novelty of the proposed method is that a decentral-
ized square-root information algorithm for distributed
Kalman filtering has been chosen for its implementation.
The difference between this algorithm and previously
proposed distributed or parallel square-root computing
schemes is that the stage of communication and assim-
ilation is based on the J-orthogonal transformation of a
block data array. As a result, the square root of the in-
formation vector estimate and the corresponding square
root of the information matrix are calculated using the
values received from each node in the multisensor net-
work.

The proposed algorithm has the ability for decentral-
ized calculation of an identification criterion. It can be
used in decentralized computational schemes for esti-
mating a state vector of a dynamic system based on mul-
tisensor measurement data, under conditions of prior un-
certainty about the parameters of a mathematical model
of the system.

It should be noted that to ensure the correct minimiza-
tion of the identification criterion, the key point of the
presented algorithm is a consistent exploration of the
search space by all nodes of the network, which requires
a fully connected network to obtain identical values of
the identification criterion in each node. Adaptation of
the proposed approach to partially connected networks
is the subject of future research.
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