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Abstract
The article discusses a new scienti�c �eld

� cybernetical neuroscience � which studies
mathematical models adopted in computational
neuroscience using methods from cybernetics
(the science of control and communication in
living organisms, machines, and society). It also
examines the practical application of results
obtained from research on mathematical models.
Key tasks, methods, and results in cybernetical
neuroscience are outlined. As an example some
results in neurointerface control and machine
learning methods from the Institute for Problems
in Mechanical Engineering, Russian Academy of
Sciences (IPME RAS) are presented.
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1 Introduction
In recent years, neuroscience has seen growing

interest in research applying methods from
cybernetics � de�ned by its founder Norbert
Wiener in 1948 as �the science of control and
communication in the animal and the machine�
[Wiener, 1948]. Cybernetic methods rely on
constructing mathematical models and establishing
direct/feedback interactions between a research
subject (computer system) and object (e.g. the
brain of humans or animals).

The researches on applying cybernetic methods
to biological neural systems are forming a new
�eld within computational neuroscience, termed
cybernetical neuroscience [Fradkov, 2024]. Below,
key tasks, methods, and results in this �eld are
outlined.
�

2 Tasks and Methods of Cybernetical
Neuroscience.

The current research in cybernetical neuroscience
addresses the following tasks:
1. Finding conditions for special regimes in

neural ensemble models (e.g., synchronization,
desynchronization, spiking, bursting, solitons,
chimeras) that correspond to real brain behaviors.
2. Synthesizing external (control) stimuli to induce

the above regimes in neural ensembles.
3. Estimating states and parameters of neural

ensemble models from input/output measurements.
4. **Classifying brain states and human intents**

via adaptation and machine learning.
5. **Designing control algorithms or feedback

synthesis** to ensure desired properties in closed-
loop systems (interacting controller and plant).
Here, the term "plant"means the nervous

system or brain, while the "controller"may be
implemented within computer. Apparently physical
implementation requires **neurointerfaces**
(brain-computer interfaces). However, theoretical
work often represents both brain and controller as
mathematical models, enabling neuroscientists to
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explore novel control strategies before real-world
deployment.
**Methods** derive primarily from cybernetics

(control theory) and neuroscience:
- *Control-theoretic*: Nonlinear, adaptive,

optimal control; observers and �lters; Lyapunov
functions; sliding mode control; speed gradient and
passivity-based methods.
- *Experimental*: invasive (e.g., implanted

electrodes) and non-invasive techniques (EEG,
MEG, fMRI, etc.).

3 Models in Cybernetical Neuroscience.
Cybernetic models incorporate **inputs**

(control stimuli) and **outputs** (measurements).
A generalized state-space representation is:

dx/dt = F (x,w, t), y = h(x,w, t), (1)

where x(t) is n-dimensional state vector, w(t) is
m-dimensional input vector, y(t) is l-dimensional
output vector.

3.1 Key Models
1. **FitzHugh-Nagumo (FHN) Neuron Model**:

u̇ = u− u3

3
− v + Iext,

v̇ = ε(u− a− bv),

(2)

where u is membrane potential (measurable output
y), v is recovery variable, Iext is external current
(input).
2. **FHN Network Model**:

u̇i = ui − u3
i

3 − vi + Ii,ext
+Ci

∑N
j=1 Gijφ(ui(t)− uj(t− τi)),

v̇i = ε(ui − ai − bivi), i = 1, . . . , N,

(3)

incorporates delays (τi), connectivity matrix (Gij),
coupling strengths Ci and can model pathologies
(e.g., epilepsy). Inputs/outputs may be de�ned per
node or via EEG measurements.
3. **Hindmarsh-Rose (HR) Model**:

ṗ = q − ap3 + bp2 − n+ Iext,

q̇ = c− dp2 − q,

ṅ = r(s(p+ p0)− n),

(4)

where p = membrane potential (output), q, n
model ion dynamics, and Iext = input. Capable of
spiking/bursting dynamics and network extensions.
The models above exemplify cybernetical

neuroscience's framework for merging control
theory with neural dynamics. Further research
should include experimental validation and whole
brain network modeling inspired by successes of the

human connectome studies [Tzourio-Mazoyer et al.,
2002; con, 2023].
**Neural mass Model** The neural mass model

[Jansen and Rit, 1995] describes the dynamics of
a cortical column modeled by a population of
pyramidal cells receiving excitatory and inhibitory
feedback from local interneurons. Such a model can
be used to model spontaneous EEG and invoked
potentials in human brain. The model is described
by a set of six di�erential equations, in which three
blocks can be distinguished, describing excitatory
and inhibitory postsynaptic membrane potentials
(PSPs):

ẋ1 = x2,
ẋ2 = Aaσ(x3 − x5)− 2ax2 − a2x1,
ẋ3 = x4,
ẋ4 = Aa(u+ C2σ(C1x1))− 2ax4 − a2x3,
, ẋ5 = x6,
ẋ6 = BbC4σ(C3x1)− 2bx6 − b2x5,

(5)

where x = (x1, . . . , x6)
T ∈ R6 is the system state

vector, x1, x3, x5 ∈ R are the outputs of three blocks
of postsynaptic potentials, and y = x3 − x5 ∈
R is the output of the entire system. Parameters
A and B are proportional to the amplitude of
the PSP and are di�erent for the excitatory
and inhibitory cases. Parameters a and b are
inversely proportional to the duration of the PSP.
Parameters C1, C2, C3, C4 describe the coupling
forces during the interaction between pyramidal
cells and excitatory and inhibitory interneurons.
The function u = u(t) is the external input of the
system, representing the spontaneous background
activity. The sigmoid function

σ(v) =
2e0

1 + exp(r(v0 − v))

describes transformation of the average membrane
potential of a neuronal population into the average
density of action potential pulses.

4 Examples
As an example, consider tasks addressed in the

neurointerface-controlled wheelchair system under
development at IPMash RAS. The system consists
of the following interconnected blocks [Fradkov and
Babich, 2025]
- Classi�cation subsystem, incorporating a set

of algorithms for recognizing and classifying the
subject's intentions based on EEG signals;
- Control subsystem, translating the classi�er

output into control signals for electric drives that
execute wheelchair movements.
Currently, the system recognizes and executes four

actions: turn left, turn right, move forward, and
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stop. We will now detail the classi�er algorithms.
The system supports standard classi�cation
programs from the Scikit-learn library in Python:
SVM, KNN, RF, etc. Additionally, the following
original classi�cation algorithms are implemented:

ηi(x) = (−fi, x) + ai ≥ 0, i ∈ I. (6)

� Modi�ed Yakubovich-Bregman algorithm
(YBM). This algorithm is designed to separate two
�nite sets of points in the space Rn by a hyperplane.
The classi�cation problem is preliminarily reduced
by a standard transformation (re�ection from the
origin and increasing the dimension by 1) to the
problem of separating a set of points from the
origin by a hyperplane, which is equivalent to
the problem of �nding the intersection point of
half-spaces or solving a system of nonhomogeneous
linear inequalities:

ηi(x) ≥ 0, i ∈ I, (7)

where ηi(x) = (−fi, x)+ ai. It is assumed that half-
spaces of the form Ai = {x : (fi, x) ≤ ai} are given,
where fi ∈ H, ai ∈ R, and R =

⋂
i∈I Ai ̸= ∅. Let R

contain a point x∗ along with some neighborhood,
i.e., there exists ε∗ > 0 such that ηi(x

∗) ≥ ε∗ > 0 for
i = 1, 2, . . .. Since i(n) = i(xn), the index is chosen
for which mini∈I ηi(xn) is achieved. The sequence of
points {xn} is designed as follows:

xn+1 = xn, if ηi(n)(xn) ≥ 0;
xn+1 = xn − fi(n) · [ρn − βn · ηi(n)(xn) · ∥fi(n)∥−2],

if ηi(n)(xn) < 0,
(8)

where 0 < β ≤ βn ≤ 2, ρn > 0, ρn → 0,
∑∞

k=1 ρk =
∞. For βn = 1, the point is projected exactly onto
the boundary of the half-space, as in the classical
Bregman method. It is shown that algorithm (8) is a
�nitely convergent algorithm for solving inequalities
(7).
� �Implicit Strip� (ISTRIP) algorithm, the idea

of which was proposed in [Fradkov, 1990]. This
algorithm is also based on reducing the problem of
separating �nite sets to solving a system of the goal
(objective) inequalities. The algorithm for solving
inequalities

|FT
k θ − yk| < ∆, (9)

where θ is the vector of unknown parameters,
includes at each step the preliminary iteration:

θ̄k+1 = θk − FT
k θk−yk

(2γk)−1+||Fk||2Fk,

βk(θ̄k+1) = (FT
k θ̄k+1 − yk)

2(1 + 0.5γk||Fk||2)
(10)

and the main iteration:

θk+1 = PrΞ(θ̄k+1), if βk(θ̄k+1) > ε,
θk+1 = θk, if βk(θ̄k+1) < ε.

(11)

� Modi�ed Kozinets algorithm (AKM) for �soft�
separation of �nite sets. The algorithm seeks a
vector θ∗ such that

min pi(θ∗) = max
θ

min
i
(pi(θ)), (12)

where pi(θ) = yi(θ
TFi).

� Fuzzy version of the k nearest neighbors method
(fuzzy almost k nearest neighbors, FAkNN)
[Fradkov and Babich, 2025];
� The implemented classi�cation algorithms also

include a novel method based on generating new
features from parameter estimates of the FitzHugh-
Nagumo (FHN) model for a neural node. During
operation, the algorithm builds a sequence of
parameter estimates for the FHN model based on
EEG signal measurements from a single lead for
signals recorded during the intention to turn left and
the intention to turn right.
The procedure of signal recording and

estimation is repeated M > 1 times for each
measurement window (frame) of length N for
frames corresponding to the intention to turn left,
and M > 1 times for each measurement window
(frame) of length N for frames corresponding to the
intention to turn right. The resulting 2M points
in the parameter estimate space are treated as
points of two classes to be separated. For the test
set of parameter estimates, one can use either one
of the original algorithms (YBM, ISTRIP, AKM
or FAkNN) or one of the library algorithms: SVM,
KNN, RF, etc.

5 Results of Cybernetical Neuroscience: 1. Model
Investigations

5.1 Regulation, Tracking, Synchronization, Chaos
Control

Results in the �eld of cybernetic neuroscience
fall into two classes: those concerning control of
processes in neuron and neuronal network models,
and those concerning control based on real data.
We �rst enumerate results on controlling neuron

and neuronal network models. These results
have theoretical signi�cance, demonstrating the
fundamental possibility of controlling neuronal
processes under the assumptions that the models
adequately describe real processes, output variables
are measurable, and input variables are adjustable.
The control problem, besides the model of the
plant, includes the description of the control
objective. Objectives may include typical cybernetic
requirements such as driving the process toward a
given state or trajectory (regulation or tracking).
Tasks may also include synchronizing processes in
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di�erent parts of systems, inducing oscillations,
their chaotization, etc. The �rst results on
controlling neuron and neuronal network models
were obtained in the 1990s and pertained to chaos
control and synchronization. The work [Carroll,
1995] proposed an impulse control algorithm for
synchronizing two FHN models based on simulation
and analogies between neuronal and electrical
processes. In the work [Dragoi and Grosu, 1998]
an algorithm for controlling a chain of FHN
neurons with the goal of bringing (synchronizing)
the oscillations of each neuron closer to those of a
�reference� neuron is proposed.
Stability of the synchronization process was

established in a region of initial conditions based
on linear approximation. In the work [Plotnikov
et al., 2016b] synchronization algorithms for a
heterogeneous network of di�usively coupled FHN
neuron models with hierarchical architecture, based
on the speed gradient method are proposed.
Synchronization conditions were obtained based
on the Lyapunov function method. Similar results
were obtained for adaptive control algorithms that
do not require exact knowledge of neuron model
parameters [Plotnikov et al., 2016a], for networks of
arbitrary structure [Plotnikov and Fradkov, 2019b]
and networks with delays in connections, as well as
for the desynchronization problem [Plotnikov and
Fradkov, 2019a], which is important for treating
a number of mental diseases such as Parkinson's
disease, tremor, etc.
The Lyapunov function method and the speed

gradient method were also successfully applied to
the design and analysis of control algorithms for
synchronization and chaos control in Hindmarsh-
Rose models and their networks [Plotnikov,
2021; Semenov et al., 2022] and , for controlling
oscillations in neural mass models, and for adaptive
control of Landau-Stuart oscillator networks
[Selivanov et al., 2012; Lehnert et al., 2014].

5.2 State and Parameter Estimation of Models
The problem of estimating the state and

parameters of neural ensemble models is important
for ensemble control based on measurable data.
Moreover, knowledge of network parameters and
state is essential for better understanding its
behavior and properties. There are quite a few works
on estimating parameters of a single neuron model,
with the majority employing stochastic approaches
[Jensen et al., 2012; Che et al., 2012; Doruk and
Aboshar, 2019]. There are works [Dong and Wang,
2015; Rudi et al., 2022] that use arti�cial neural
networks for estimating FHN model parameters.
The work [Rybalko and Fradkov, 2023] proposed
and justi�ed an algorithm for estimating the state
and parameters of a pair of FHN neurons based on
the speed gradient method and �ltering. The speed

gradient method was also applied to estimating
parameters of the Hindmarsh-Rose neuron model
[Fradkov et al., 2022; Kovalchukov and Fradkov,
2022] and a neural mass model [Plotnikov, 2024].
Other approaches to estimating neuron model
parameters are presented in [Postoyan et al., 2012;
Zhao et al., 2016; Dong et al., 2019; Wang et al.,
2019].

6 Results of Cybernetic Neurobiology: 2. Real Data
Investigations

6.1 Brain State Classification and Diagnosis
Classi�cation of states of neural ensembles,

including whole-brain states, is an important
application area for cybernetic methods. Here,
pattern recognition methods and machine learning
methods, often attributed to the �eld of arti�cial
intelligence, are used. The classi�cation task is as
follows. Given measurement results of the state
of a �nite set of N neurobiological objects, each
belonging to one of M classes, it is required to
construct a set of decision rules that, based on
measured data, determine the class of a new object
to be classi�ed. Such tasks are typical for medical
diagnostics, where cybernetic pattern recognition
methods have long been applied. In neurophysiology
and psychiatry, recognition and machine learning
methods are actively used, see [Mueller et al.,
2010; Lebedev et al., 2014; Boyko et al., 2022;
Zubrikhina et al., 2022; Yoon et al., 2022; Shanarova
et al., 2023]. Both well-known statistical methods
(discriminant analysis, principal component analysis
(PCA), independent component analysis (ICA),
random forests) and deterministic machine learning
methods are employed. Works are emerging that
apply approaches new to neuroscience, for example,
the method of targeted inequalities [Lipkovich,
2022].

6.2 Control Based on Neurofeedback
Neurofeedback (NFB) (or biofeedback (BFB))

is the most e�ective approach for interaction
between the human brain and an external control
device and one of the most promising cybernetic
approach in neurobiology and neurophysiology.
NFB is based on the idea of conditioned re�exes
and reinforcement of spontaneous behavior deemed
desirable. This re�ects brain plasticity � the
brain's ability to change under the in�uence of
learning. During a BFB experiment, the subject
is presented with information about the state and
desired changes in certain physiological parameters.
The basic principle of cybernetics � feedback
(re�ecting information about activity outcomes) �
serves as a "mirror"in which otherwise consciously
inaccessible physiological parameters can be seen,
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allowing regulation of parameters of the brain's
electrical activity. NFB implementation requires
a neurointerface � a device enabling real-time
information exchange between the brain and a
computer. Typically, a noninvasive neurointerface
uses electroencephalography (EEG) data, re�ecting
changes in the electric �eld potential on the
surface of the subject's head (scalp). Some current
EEG parameters (or their combination) [Kropotov,
2009] are presented to the subject in the form
of, for example, a visual stimulus (bar height
on a screen, screen brightness) with the task of
changing these parameters in a desired direction.
In this paradigm, the subject, focusing on the
NFB signal, tries to memorize the connection
between the parameter and their state. The EEG
parameters and electrode locations forming the
NFB protocol are chosen depending on the task
[Kamiya, 1968]. The problem of forming the
neurofeedback signal is very complex, as there are
currently no clear rules for stimulus presentation
that must be followed to help the subject cope
with the task most e�ciently (e.g., in terms of time
spent). In most cases, the NFB signal is generated
proportionally to the deviation of the subject's EEG
parameters from normative values. The measured
deviation is translated into the NFB signal based
on experimentally derived rules [Holten, 2009;
Kropotov, 2009] that work "on average"for most
subjects. It seems advisable to develop adaptive
methods for calculating the feedback signal that
adjust rule parameters for a speci�c subject. The
rules for calculating quantitative EEG parameters,
which are then used to form the NFB signal, depend
on a large number of parameters, such as the length
of the data processing time window or the delay in
presenting the control action. Individual selection
of these parameter values can also enhance the
e�ciency of NFB training [Kropotov, 2009]. One
promising direction for NFB development is the use
of adaptive mathematical models of brain activity,
proposed in [Ovod et al., 2012; Plotnikov et al.,
2019].

7 Conclusion
The application of cybernetics and control

theory methods to problems in neurobiology and
neurophysiology holds great promise, and the
number of publications in this direction is rapidly
growing. Summarizing publications and reviews
have appeared [Wilson and Moehlis, 2022; Howlett
and Paulus, 2024]. This work attempts to structure
and systematize this �eld and presents some ongoing
research at IPME RAS.
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