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Abstract

Consider a system of differential equations, which in
the linear approximation describe the dynamics of a
body with an electric charge in the electrostatic field.
The problem of stability and stabilization is investi-
gated.
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1 Statement of the problem and the method of
Chetayev’s bundles
Consider a system of differential equations, which in
the linear approximation describes the dynamics of a
body with an electric charge in an electrostatic field [1]:

o —(=bx — HB + xa) =0,
8" —(=dy+ Ha' + xB8) =0, (1)
2 —(x—6a)=0,y" —(y—068)=0

The system has been described in terms of dimension-
less variables and parameters.It may also be applied for
describing the motion of a rigid body on a special sus-
pension [2] and for describing the motion of a movable
magnet located in the field of a immovable magnet [3].
The description of generalized coordinates «, 3, x, ¥,
design data §, x and stabilizing parameter H is
given in [1]. According to the problem’s conditions,
parameter x > 0, hence, the potential energy of system
(1) in zero has the maximum. Without gyroscopic
forces (H = 0) the potential system (1) is unstable
with respect to all the variables. Now investigate
the possibility of system’s stabilization with respect
to all the variables by introducing gyroscopic forces
(rotation) with respect to some part of the variables
[1]. These forces are defined by parameter H. In order
to find the values of H, for which system (1) is stable,
let us use known theorems of stability theory. The
following two approaches may be applied: the method
of Chetayev’s bundles [4] and the investigation of the

characteristic equation. System (1) assumes the four
first integrals [2]:

Vi =1/(20)(a?6% + %6 + 22(1 + 6% — x)
+y?(1+ 6% = x) = 2Hya' + (1 + x)(a')°
+B(=2yd + 2Hb2') + 2Hzy + (=1 +x)(¥)* +
a(=2z6 — 2HY') + 202’ a’ + 26y 3),
h=1/2(—2? — y? + 2zad + 2yB6 — o®x — B%x
+(@) () + @)+ (8,
Vo =1/2(Ho® + HB?) + yz' — ay' + o’ — aff,
Vs =1/(28)(Hx? + Hy* — H(2')? + B(—2Hyd
—262") — H(y')? + a(—2Hz5 + 26y)
+y((2 = 2x)2" — 26a") + x((—2 4 2x)y’ +263"))
Unfortunately, we do not manage to construct a sign-
definite bundle of two integrals. Let us now construct
the bundle of all the four integrals V' = h + u;V;. The

integral constructed is decomposed into the two forms
of four variables each one:

Wy = 1/2(a2(—x + Hpg + 0pia) + 22006 — o
—Hupg) + (=6 + po + 0% g — xpo + Hpz) /6
+(6 — iz + X2 — Hps)(y)* /6 + (—2am
+2ap3)8 + (8)° +yf <2a(u3 — Hyy)

~a(20pm — 2H iz + 2p5 — 2x113) /6 + 2412 ) )
Wy = %(52(—X +0pr + Hpyg) + 26(Hpuy — p3 )2’

Y2 (=6 + (1 + 0% = X)u1 + Hpz) /6



O+ (= D = Hisg)(@')* /0 + 2y (B0 = 1
~Hpss) + (~Hppr + 81z — (1 + X))’ /)

+2(Bpz — yps + )’ + (o/)2>

The quadratic forms Wy, W, are definite positive un-
der Sylvester conditions, which are identical to both of
the forms:

{f1(pa, p3) = (6 = pa + xpr — 6p3 — Hpz) /6 > 0,
falp, po, p3) = =62 + 261 + 6%y — 20X
—pf — H?ud + 2xpu + 0%xpd — XPpi — opd
0% + Oxpf — 6° 3 + 2Hops — HO? i piz+
Hopdps — p3 — Hp3 — 6% p3 + 2xp3 — X413
—0pa a3 + Oxpapid + Hopd + po (2Hopm — 263
+20x 3 — 20%p1p3) > 0, f3(pa, p2, pg) = —6*
+0%x + ( -0t + 52x),u‘1l — H6?%po + 623
+0%xpu3 — HS?pu3 + 8% + 3H3uz — 2H S u3
+2H? 5oz — 40° pgpus + 20X papis — 20X papis
—AHdp3 s + 2H x5 3 + 203 — 20xp3 s
—6%p3 — 3H26% 13 + xp3 + H2xp3 + 36%x 3
=213 + X3 — Hpop3 — HP popi3
+5H2 pppi3 + 2H xpop3 — Hx?popd + p3p3+
H?p3pi3 — 26° s pd — 2xpu3nd + X3 psp3
+HOp3 + H?0p3 — 3HOx i — 202413
—H25po i + 20xpapd + 6%pd — o3 (262
+H?5% — 2y — H?x — 28%x + 2x% + Hpo
—H6&%pus + Hxpa — Hops) + pi( — 62 — H?62
+26% + x + H2x — 2x2 — 6*x% + x® — Huo
—H3us + 2H xps + H%xpo — Hx?po + 13
+H? 3 + 30213 — 2xp5 — 8 xpis + X743
+Hépus + H36pus + H63 g — 3H X 13 — 26 o pis
—H?8puppuz — 46° popus + 20x paps + 6% 13
+6%xp3) + p1 (26% — 26x — 26%x + 26x?
+2H6pg + 3H3 g — AHSx 1o — 2043
2H?6p3 — 46% 3 + 20xp3 — 2H 613
—2H82 3 + H6?xug + 462 paps — 3H25? popus
+402 X pops + 3HE? p3ps — 46% 3+
20x 3 + H?Oxp3 — 20x° 3 — Hopap3
—Héxpap3 + Hézug) > 0}

(2)
If there exist p1, po, pg such that conditions (2) hold
for some values of parameters H, 9, y, then the first in-
tegral V' satisfies Lyapunov’s theorem on stability. Sys-
tems (1) is stable with respect to all the variables under
such values of parameters. It is hardly ever possible to
obtain an analytical solution of inequalities (2). It is
possible write down - likewise in [2] - some relations

obtained from the necessary conditions of solvability
for inequalities (2). It follows from f7 (1, p13) > O that

(14462 — 2y + x* — 4Héu3) > 0. When consider-
ing fo(u1, p2, p3) as a polynomial with respect to jo,
we obtain the necessary condition of satisfaction of the
second inequality (2): (— 62 (=04 1 — xp + 63 +
Hupus) (=0 + p1 + 621 — xpa + Hps — 6p3)) > 0.
Hence, since f1(u1, pu3) > 0, we have (5( -0+ p +
&%y — xp1 + Hps — 0p3)) > 0. Note the follow-
ing important property: the discriminant’s sign of the
4th degree polynomial f5(p1, pe, 1s) (2) with respect
to any p; is defined by the sign of the expression

D = 4H? + 8H* + 4H + 1652 + 60H?5?
+12H46% + 1286* + 48 H25* + 2TH*6*
+2566% — 16y — 48H?x — 32H*y — 19262y
—124H?%6%y — 36H*6%y — 5126
—144H?5%y + 64x2 + 88H2\? + 8H*\?
+35262x2 + 196 H25%x? + 1286%\?

—96x>3 — 48H?x3 — 19262x> — 4H?5%3
+64x* + 4H?x* 4+ 1652x* — 16x°.

3)

2 Investigation of the characteristic equation
Consider the characteristic equation of the linear
system (1):

qO)\8+)\6q1 +)\4Q2+)\QQS+Q4 = (4)
Gzt + 2P + 2P+ 23+ =0
where 2 = M2, qo = 1,1 = -2+ h —2x, 4 =
0% =20x+ x> g3 = h+20—2x+20x —2x*, 2 =
1—2h —20 +4x + X2

Unlike that in [1], we are choosing a different method
for our investigation of the system’s (1)characteristic
equation. System (1) is stable only when all the
roots A of equation (4) are various purely imaginary.
The polynomial of even degrees has various purely
imaginary roots if and only if [5] the Routh-Hurwitz
conditions hold for an auxiliary polynomial

A2y + nA 1 F2ngy (—1+ n))\—3+2nq1
FATEEG 4 (=24 ) ATy 4 AT g
+(=3+n)ATTFgg N0 g 4
FAG14n + A2 140+

The main diagonal minors of the matrix

490 3q1 292 g3 0 0 O
9 @1 2 9 g+ 0 0
4q0 3q1 2¢2 g3 0 O
0
0

o

0 9 @1 2 @ @
0 0 4q03q1 292 g3
0 0 9o 1 2 @3 @
0
0

OO OO oo

0 0 4q03qg1 2g2 g3 0
0 0 g ©1 92 @3



must be positive for the equation (4). The resulting
system of inequalities writes:

@ > 0,1 > 0,2 > 0,93 > 0,q40 >
0, 3¢ — 8qog2 > 0, (¢3q2 — 4q0q3 + 3qoqiqs >
0, (6363 — 49095 — 3q3qs + 14q0q1q2q3 — 18¢3q3 —
6g0qiqs + 16¢5q2q4 > 0, ¢ig3qs — 4qog3qs —
46345 +18¢0¢1 9243 — 274343+ 343 4294 — 12904143 41 —
790934394 + 48¢3q2q3q4 — 16q3q1q3 > 0, (¢iq3q3 —
490g393 — 46343 + 1840419245 — 27q3 43 — 4gi g3 qa +
16904594 + 18¢3 429394 — 8090 ¢1 434394 — 69043 g3 g4 +
144q3q24394 — 274143 + 144903 q243 — 128434543 —
192¢5q1q3q3 + 256q3¢3) = —D1 > 0,

where D; is the discriminant of equation (4) with
respect to z = A2 (according to the Lienard-Chipart
criterion, the 7th and the 9th inequalities may be
excluded). In terms of parameters of system (1) these
inequalities have the form:

{-2+G—-2x>0,1-2G—20+4x+ x> > 0,
G+20—2x+20x —2x2 >0, (0 — x)*> > 0,
4+ 4G + 3G? 4+ 160 — 8y — 12Gx + 4x2% > 0,
4y — 2G — 4G? — 2G3 — 40 — 18Go — 2G?%0
—1602 + 16Gx + 12G?*x + 240 + 14Gox — 8x*?
—18GX? + G?x2% — 4ox? + 4x>® — 4Gx® > 0,
G +2G? + G3 + 40 + 12Go + 2G?0 + 1602
—2Go? — 4y — 12Gx — 8G?x — 360
—20Gox — 6G2oy — 4802 + 16x? + 22G'x>
+2G?x? 4 600x? + 32Gox? — 24x3 — 12GX*®
—280x3 + 16x* + Gx* — 4x° > 0,
—G(6Go? + 12G%0? + 6G30? + 160° + 66Go?
+6G203 + 640* — 4Gox — 8G%ox — 4GP0
—320%x — 100Go2x — 44G?0%x — 16003
—30G03y 4 2Gx? + 4G%x? + 2G3 X2 + 2402
+70Gox? + 34G?0x? + 19202\ % + 112Go?\?
+13G?02%x? + 14403x? — 8x3 — 24G X3
—16G?x? — 1280x> — 114Gox? — 18G?0x?
—28802x% — T0Go?x3 + 32x* + 44Gx*
+4G?x* +1920x* 4+ 98Gox* + 6402 y*
—48Y® — 24Gx® — 960X° — 2Gox® + 32\°
+2GX5 + 80x° — 8X7) >0,
Dy = G?0?(4G + 8G? + 4G? + 160 + 60Go
+12G2%0 4 12802 + 48Go? + 27G?0? + 25603
—16x — 48Gx — 32G?x — 1920 — 124Gox
—36G%0x — 51202y — 144Go?x + 64>
+88Gx? + 8G?x? + 3520 X% + 196G o\ ?
+12802x2 — 963 — 48G x> — 19202 — 4Gox®
+64x* + 4Gx* + 160x* — 16x°) < 0}

&)

where o = §2, G = H?. Note, D in the latter inequal-
ity (5) coincides with D (3) with the accuracy up to the

positive multiplier. Hence, D < 0 when system (1) is
stable.

A numerical experiment allows one to define lower
boundaries for the constructive system’s parameters
52 > 4,x > 5. Upon assigning one of the construc-
tive parameters, one can determine possible values of
the other two parameters under which the system (1)
is stable. When 62 = 5, the domain of values of the
parameters x, H is very narrow. Fig.1 shows a 3-D
domain of values of the parameters in the vicinity of
the boundary values of §2, .

Figure 1. The domain (X, o, H 2) in the vicinity of the boundary
values of 52, X-

Under y = 10 the domain of parameters o, H? is
shown in Fig.2.

a2r

401

38

36

32F

0L . . . A
8 9 10 1 12
T

Figure 2. The domain (0, H2), x =10

The 3-D domain of parameters in the intervals of
62, x, distant from boundary values, is shown in Fig.3.

3 On asymptotic stability

We have to remind the reader of the fact that so far we
have been discussing stabilization of the linear system
in the critical case in the sense of Lyapunov. The



Figure 3. The domain (X, o, H2)

result cannot be extended onto a nonlinear system, for
which system (1) is the one of the first approximation.
Any attempts to stabilize system (1) up to asymptotic
stability by adding dissipative and accelerating forces
linear with respect to velocities failed. In [1], the
possibility of stabilization by adding linear dissipative
forces with matrix —B and linear nonconservative
forces with matrix —P

d; 0 0 O 0 p 00

_ | 0.da O O | -p 0 00
B = 0 0 d33 0 ’ P= 0 0 0 P2
0O 0 O d44, 0 —p200,

was investigated.

We have managed to show that stabilization is impos-
sible in case of incomplete dissipation (one of the ele-
ments d;; = 0) or when the element p; = 0.

Let d11 = d22 = dl, d33 = d44 = d2, likewise in
[1]. The characteristic equation of system (1) with the
addition of dissipative and conservative forces has the
form:

A8 4+ Aaq + Mag + Nas + May + Nas

+)\2(16 + Aay +ag =0, (6)

where a; = 2(dy + d2), as = (72+H2 —2x +
d? + 4dydy + d3),

as = ( - 4d1 — 2Xd1 - 2d2 + 2H2d2 — 4Xd2 +
2d%d2+2d1d§+2Hp1), ay = (1—2H2—252+4x+
X2 —2d? — 4dydy — 4xdydy + H?d3 — 2xd3 + d3d3 +
4Hdopy —l—p% —|—p%>, a5 = (2d1 - 252d1 + 4dxdy —
2H2d2 — 252d2 + 4Xd2 + 2X2d2 — Qd%dg — 2Xd1d% —
4Hpy+2Hd3p, +2dop? +2d1p3), ag = (H*+26%—
2x + 262 — 2x2 +d? — 26%dydy + dxdyds + X3 d3 —
AHdopy —2p7 + d5pT + Hp3 — 2xp3 + dip3), a7 =
(252d1 — 2xdi + 28%xdy — 2x3%dy + 2Hp; —
2dop? + 2H%py — 2xd1p3 + 2Hp1p3), as =
54— 202 + X2 + 3 + 28%p1p2 + X203 + PPDE.

In [1], this characteristic equation was investigated by
the method of D-decomposition under the assumption

thatd; < 1, do < 1, p1 < 1, po K 1.

Let us conduct the investigation without an assumption
that parameters of the stabilizing forces are small. The
system with equation (6) is asymptotically stable when
the Lienard-Chipart conditions hold:

a; >O(i=1,...,8), Az >0, As >0, A7 >0,

(7)

where the Hurwitz determinant is

Az = ajasaz — a3 — alay + aas,

A5 = ajagazaysas — a§a4a5 — a%ai% - alagag +

a2a3a§—|—2a1a4a§—ag—a1a2a§a6—|—a§a6+afa3a4a6+

2a%a2a5a673a1a3a5a6fa?a§+a1a§a3a7—a2a§a7f

a%a2a4a7 —aiasasa7 + 2azasar + 2a%a6a7 — a1a$ —

a%agagag + alagag + a‘;’a4ag — a%ag)ag,

A7 = (a1a2a3a4a5a6a7 — a§a4a5a6a7 -
CL%CLZCL{;CLGCW — am%agaﬁw + a2a3a§a6a7 +
2a1a4a§a6a7 — a§a6a7 — alagaga%m + aga%m +
a%a3a4a§a7 + Qa%a2a5a§a7 — 3a1a3a5a%a7 —
a?agm — a1a2a3a§a$ + a%aia% + a%aia% +
a1a§a4a5a$ — a2a3a4a5a$ — 2a1aia5a$ + a;;a%a? +
2a1a%a3a6a$ — 2a2a§a6a% — 3a%a2a4a6a$ +

a1a3a4a6a§ — a1a2a5a6a$ + 3a3a5a6a$ + Sa,faga? —

alagag + a%a;;a? + 3a1a2a4a§ — 2a3a4a§ — a2a5a§ —
3a1a6a§ + a‘% — a1a2a3a4a§a8 + a§a4a§a8 +
a%aiagag + alagagag — agagagag — 2a1a4a§ag +
agag + a1a2a§a5a6ag — a§a5a6a8 — a%a3a4a5a6a8 —
2a%a2a§a6a8 + 3a1a3a§a6a8 + a‘;’ag)a%ag +
2a1a2a§a4a7a8 — 2a§a4a7a8 — 2@%&3@2@7@8 —
3ajadazasarag + 3a2a§a5a7a8 +

a%a2a4a5a7a8 + 4ajasagasarag + alagagamg —
4a3aga7a8 — a%agagagamg + alagagamg +
3a‘;’a4a6a7a8 — 5a%a5a6a7a8 + Sa%agagag —
5a1a2a3a$a8 + 2a§a$a8 — 3a%a4a$a8 + 4a1a5a$a8 —

arazaia? + ajal + aidlasa? + 3alazazasal —

dara3asa — 2a3asasa? + 2a3a2al — alazagal —
3ajazara? + 4a2azaral + a‘llag).

Note, under the values of a; (6), the expression for Az
is factorized.

Let di = do = d and po = 0. Having solved the
system of inequalities (7) with respect to d and p;
(0 = 3,x = 10, H = 6.23), we obtain the domain of
values of parameters for the asymptotic stability for the
system with potential, gyroscopic, non-potential and
dissipative forces (Fig.4), (Fig.5).  For the purpose
reaching asymptotic stability of the levitron it is neces-
sary to choose parameter d of dissipative forces within
the interval of 0 < d < 0.319366, and parameter p;
of nonconservative forces — depending on the config-
uration of the domain — varies within the interval of
0 < p1 < 0.950483. Let d = 0.1. Hence the sys-
tem of inequalities (7) gives the following solution d =
0.1, —0.0178833 < p2 < 0.0181985, 0.260134 <
p1 < 0.384563.

All the computations have been executed with the aid
of the computer algebra system MATHEMATICA.

The work supported by INTAS-SB RAS grant number
06-1000013-9019
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Figure 4. The domain (d, pl)
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