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Abstract 
 
 The problem of recursive estimation for uncertain 
multisensor linear discrete-time systems is considered. 
A new suboptimal filtering algorithm is herein 
proposed. It is based on the fusion formula with 
scalar weights for an arbitrary number of local 
Kalman estimates. Each local Kalman estimate is 
fused by the minimum mean square error criterion. 
The filter gains and scalar weights do not depend on 
current observations; therefore the filter can easily be 
implemented in real-time. Examples demonstrate the 
efficiency and high-accuracy of the proposed filter. 
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1.  Introduction 

 Estimation of the state of a linear uncertain system 
with multisensor environment is considered. In 
structure adaptation many methods are available for 
the adaptation of such kind of systems [1-3]. In this 
paper we are interested in the Lainiotis-Kalman filter 
(LKF) that constitutes a partitioning of the original 
nonlinear filter into a bank of much simpler L local 
Kalman filters (KF’s), where each local filter uses its 
own system model matched with each possible 
parameter value [1], [4]. The fusion estimate of the 
state of LKF is given by a weighted sum of local 
KF’s. However, the optimal LKF’s weights depend 
on sensor observations and it is rather difficult to 
implement the LKF in real-time, given the dimension 
of state vector and the number of sensors is large.
 In [5], [6], it has been proposed to fuse the local 
KF’s by a weighted sum with matrix weights, which 
do not depend on sensor observations, and therefore 
can be pre-computed. However, usage of the matrix 
weights complicates the algorithm of filter design. In 
this paper we consider uncertain multisensor systems 

and propose to fuse the LKF’s by the use of scalar 
weights. The new filter can also help to minimize the 
computation time and produce real-time state 
estimation, especially for large number of sensors. 

The paper is organized as follows. In Section 2, we 
set up the estimation problem for multisensor linear 
systems with observation uncertainties. Section 3 
gives the optimal filter for the above system based on 
the LKF for all stacked sensors. In Section 4, we 
propose the suboptimal filter (SF), which represents a 
weighted sum of the local KF’s with scalar weights 
depending only on time instance. Each local KF is 
fused by the minimum mean-square criterion. Section 
5 tests the SF numerically. Conclusions are made in 
Section 6. 

2. Problem Setting 

Consider the following model of a multisensor 
system with observation uncertainties: 
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where, as usual, nℜ∈kx  is the state, 

( )kk Q0,N~v rℜ∈  is the normally distributed 
system noise. The system contains N  
sensors, im(i)

ky ℜ∈  is the observation vector of ith 
sensor, and ( )(i)

k
m(i)

k R0,N~w iℜ∈  is the normally 
distributed observation error. The system noise 

kv and observation errors (N)
k

(1)
k w,...,w  are mutually 

uncorrelated. The initial state 0x  is normal, 

( )000 P,xN~x . Since the estimated state kx has no 
superscript “i”, all the local filters (sensors) are 
working on the same state vector.  



  

 In a number of applications, there may be a 
nonzero probability that the observations contain 
noise only. Therefore we assume, that the unknown 
parameters N1,...,i,θ (i) =  are taken from the set 

{ }.1,0  The objective is to estimate kx . 
 In order to estimate the state of such system 
optimally, we can use the LKF [1], [4].  

3.  The Optimal Lainiotis-Kalman 
Filter 

 The LKF is based on the Bayesian approach in 
which the unknown parameter  (i)θ   is assumed to be 
random with prior known probabilities  
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 Let us collect all scalar parameters (N)(1) θ,...,θ  
into vector. Then we obtain the unknown parameter 
vector Nℜ∈Θ , which takes N2L =  values, i.e.,  
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With the above as preamble, we can rewrite the 
multisensor system model (1), (2) in the following  
form 
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 Given the parameter vector Θ  belongs to the 
discrete space (4), i.e., N

i 1,...,2i,ΘΘ == , the 

optimal mean-square state estimate opt
kx̂  represents 

the weighted sum of the local Kalman estimates   
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matched to the linear system (5), (6) at fixed  
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We have 
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where (i)
kx̂  represents  the local Kalman estimate 

determined by the standard KF equations [1], [7]: 
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and the weights   
 

( ) { } N
k0kki
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represent a posteriori probabilities of iΘ  given kY , 
in their turn defined by the recursive Bayesian 
formula [1], [6]. As already stated above, the LKF 
(7)-(11) is effective for solving problems of low 
dimensions, since it requires calculations of a large 
number of a posteriori probabilities 
( ) N

ki 1,...,2i,Yp =Θ   in real-time.  
In this paper we devise an alternative SF for the 

system (1), (2). This filter does not require 
calculations of a posteriori probabilities ( )ki Yp Θ  at 
each time instance .0k >  The obtained suboptimal 
filtering algorithm reduces the computational burden 
and on-line computational requirements considerably.  

 4. The Suboptimal Filter  

 Identical to the optimal LKF, the SF represents the 
state estimate as a weighted sum of the local KF’s 
(7), however, the weights depend only on time 



  

instances 0k > and are independent of current 
observations .yk Consequently, giving an opportunity 
to design the SF with minimal complexity, which can 
be easily implemented in real-time, especially in high 
dimension problems unlike optimal LKF. According 
to this idea, we have 
 

,1c,x̂cx̂
L

1i

(i)
k

L

1i

(i)
k

(i)
k

sub
k == ∑∑

==

 (12) 

 
where (N)

k
(1)
k c,,c K  are the scalar weights depending 

only on time instance k and determined by the mean-
square criterion 
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Theorem.  (i)  The weights (L)

k
(1)
k c,,c K   satisfy 

the linear algebraic equations 
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(ii)  The overall error covariance  
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 In (13), tr(A)  is the trace of a matrix A.  
 
 The proof of Theorem is given in Appendix A. 
 
Note that formulas (14)-(16) depend on the local 
error covariances (ii)

kP    determined by the Riccati 
equations (10), and the local cross-covariances  

ji,P (ij)
k ≠ , which satisfy  the following recursive 

equation: 
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where (i)
kK  stands for the local Kalman gains (10). 

 The derivation of (17) is given in Appendix B. 
 
 Thus, the local Kalman estimates and covariances 

(ii)
k

(i)
k P,x̂  (see (10)), the local cross-covariances 

ji,P(ij)
k ≠  (see (17)), and the fusion equations (14) 

completely establish the suboptimal filter. 
 
Remark 1. It is very easy to note that the local 
Kalman gains (i)

kK , the local error cross-covariances 
(ij)
kP , and the weights (i)

kc  can be pre-computed, as 
they do not depend on the present observations kY , 
but only on the noise statistics and system matrices, 
and on the values  iΘ  of the parameter Θ , which are 
the part of system model (1),(2), (4).  
 Therefore, once the observation schedule is 
settled, the real-time implementation of the SF 
requires only the computation of the local Kalman 
estimates (L)

k
(1)
k x̂,,x̂ K  and the final fusion 

suboptimal estimate sub
kx̂ .  

Remark 2. Since Θ  takes a finite number of values 
(3), (8), the local Kalman estimates (10) are separated 
for each value of L,1,i K= . Each local estimate (i)

kx̂  
is found independently of the other 
estimates ijL;1,...,j,x̂ (j)

k ≠= , and therefore they can 
be evaluated in parallel.  

5.  Examples 

Example 1. Consider the scalar linear system 
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where ( ) ( ).σ,xN~x,q0,N~vconst,a 2

00k=  
 The observation model contains three sensors: 
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where ( ) 1,2,3,i,r0,N~w i

(i)
k = and the unknown 

parameters 3,2,1i,θ (i) =  take only two values with 
equal prior probabilities, i.e.,  
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Formulas (19) and (20) represent an observation 
model which takes two modes, which are, 



  

1θ(i) = (signal-present) and 0θ(i) =  (signal-absent). 
Here the vector parameter [ ]T(3)(2)(1) θθθΘ =  takes 

8L =  values, iΘΘ = as given below:  
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The model parameters, noises statistics, and initial 
conditions are set to 
 

.3r,2r,1r
,2,10x,0.025q,7.0a

321

2
0

===
==== σ  (22) 

 
Here we compare two filters: the optimal LKF  
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and SF 
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Fig.1 Comparison of MSEs  for LKF and SF 

 
 
The system (18)-(20) is simulated for all values of  
the parameter (21). Figs. 1-3 present the time 
histories of the LKF and SF characteristics for the 
first case, 1Θ=Θ . Such time histories are perfect 
analogy for the other cases.  Fig.1 shows the overall 
mean-square errors (MSE’s) ( )( )2opt

kk
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different values of the vector parameter Θ , but 

among them only the value 1Θ=Θ   is the true value 
in  (19).  
 

 

Fig. 2   Comparison of the weights (i)
kc~  and (i)

kc  

 From Fig.1 it can be seen that  opt
kP  and sub

kP  are 
very close, it follows from the fact that optimal and 
suboptimal weights corresponding to the true value 

1Θ Θ=  are very close to each other, i.e., (1)
k

(1)
k c~c ≈  

(see Figs.1 and 2). In Fig.3, the comparisons of the 
optimal and suboptimal estimates show us that 
performance of the SF is quite similar to the optimal 
one. This proves that SF is a good alternative for 
LKF. 
 

 
Fig.3  Optimal and suboptimal  estimates 

 
 

Example 2.   Consider the 2-dimensional system 
  

,0,1,2,...k,v
0
1

x
0.40.9
01

x kk1k =⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+

 (25) 



  

where  
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We are measuring the position k1,x  and velocity k2,x  
using two sensors, 
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where ( ) { } .1,2i,0,1θ,r0,N~w (i)(i)
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 In this case, the vector parameter [ ]T(2)(1) θθΘ =  
takes 4L =  values with equal prior probabilities, 
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We compare the optimal LKF and SF. The model 

parameters, noise statistics, and initial conditions are 

set to 
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Figs. 4-6 present the time histories of the filter 
characteristics for the true value of 1Θ=Θ . This time 
history is similar for the other values of .Θ   

 
Fig.4   Comparison of MSEs for position k1,x  

 
In Figs. 4 and 5, we show the overall optimal and 
suboptimal MSE’s for the position ( )( )2opt

k1,k1,
opt

k11, x̂xEP −=  
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Fig.5 Comparison of MSEs for k2,x  

 
From Figs. 4 and 5 we observe that the difference 
between the optimal MSE ( 1,2i,Popt

kii, = ) and 

suboptimal MSE ( 1,2i,Psub
kii, = ) is negligible. It is 

worth noting in Fig. 4 that the local MSE (44)
kP  

corresponding to 4Θ , the noise measurement, is very 

bad because the optimal and suboptimal weights (4)
kc~ , 

(4)
kc corresponding to 4Θ are very small (see Fig. 6). 

Fig. 4 also shows that in the steady state regime local 
MSE (11)

kP , corresponding to 1Θ=Θ   is very close to 

optimal MSE opt
kP .  

 

Fig.6    Comparison of the weights (i)
kc~  and (i)

kc  

6.  Conclusion 

 In this paper, we have designed a new SF for 

uncertain multisensor linear discrete-time systems. 

This filter represents a linear combination of the local 

KF’s with scalar weights depending only on time 



  

instance. Each local KF is fused by the minimum 

mean-square criterion. The proposed filter has a 

parallel structure and as a result of that is suitable for 

parallel processing.  Simulation results demonstrate 

the relative loss of accuracy of the SF as compared to 

the optimal KF. 
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Appendix A: Proof  

 Using (12), the criterion (13) can be rewritten as 
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Formula (A.1) gives the overall covariance (16). 
  
Next substituting ( )1)(L
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Differentiating each summand of the criterion  J   in 
(A.2) with respect to (1)

kc ,…, 1)-(L
kc  and then setting 

the result to zero, we obtain the linear algebraic 
equations (14) for the unknown weights (1)

kc ,…, (L)
kc . 

  
 This completes the proof of Theorem. 

Appendix B: Derivation of equation (17)  

 The derivation of equations (17) is based on the 
recursive equations for the state kx  and estimate (i)

kx̂ . 
Using equations (1), (2), and (10), we obtain 
recursive equations for the local error (i)
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According to the assumptions that the errors (i)

1kx~ − , 
and white noises 1-kv  and (i)

kw  are mutually 
uncorrelated, equation (B.1) yields recursive 
equations (17) for the cross-covariances 
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