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Abstract. This paper deals with the dynamics of a
single-degree-of-freedom unilateral ~ damage
oscillator. Using appropriate internal variables, the
hysteretic dynamic system can be written as a non-
smooth autonomous system. Free dynamics of such
a non-linear system are simply reduced to periodic
motion, eventually attractive trajectory and
divergence motion. The natural frequency of this
system depends on the stationary value of the
damage internal variable. Nevertheless, the
inelastic forced oscillator can exhibit very complex
phenomena. When the damage parameter remains
stationary, dynamics is similar to the one of an
elastic oscillator with unsymmetrical stiffness.
Dynamics appears to be controlled by the initial
perturbations. Moreover, chaotic motions may
appear in such a system, for severe damage values.
Chaos can be understood as a route to collapse.
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1. INTRODUCTION

Dynamics of inelastic systems (plastic or
damage systems) is a recent research field,
essentially because these systems are non-smooth
dynamical systems. Considering only single-
degree-of-freedom system, most studies are devoted
to plastic oscillator in the literature. Complex
periodic motions have been found using numerical
simulations of such plastic oscillator (Challamel,
2005; Challamel and Gilles, 2006). Limit cycles
have been highlighted for the free undamped
kinematic-hardening system (Pratap et al, 1994).
The same oscillator solicited by a periodical (but

not harmonic) pulsation shows very rich dynamical
phenomena, and sometimes chaotic motion (Pratap
and Holmes, 1995). Coupling of material and
geometrical non-linearities can also lead to chaotic
motion (Poddar et al, 1988). The contribution of
damage in the dynamics response can also be
predominant. Dynamics of concrete structures can
be studied with a single-degree-of-freedom inelastic
damage oscillator. The free dynamics of the
softening damage oscillator has shown stationary
periodic motion in a given perturbation domain
(Challamel and Pijaudier-Cabot, 2004) (see also
Challamel and Pijaudier-Cabot, 2006 for the
softening plastic oscillator). Dynamics of the forced
damage oscillator (without unilateral effect) is
studied by DeSimone et al (2001). Chaotic
phenomenon has been found in a fatigue-testing rig
involving crack closure effect (Foong et al, 2003).
The present study shows that dynamics of an
unilateral damage oscillator may be chaotic, for
severe damage values. Chaos can be understood as
a route to collapse.

2. EQUATIONS OF MOTION

Consider the single-degree-of-freedom inelastic
oscillator shown in Figure 1. A mass M is attached
to a damage spring. The inelastic system is
externally excited by a harmonic force.
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Figure 1 — The physical system
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This oscillator is characterised by the displacement

U, the displacement rate U and an additional
internal variable for the inelastic damage process,
namely the damage variable. This variable,
classically denoted by D, characterises the induced
microcracking of the oscillator in tension. It varies
between 0 (initial virgin state) and 1 (at failure).
The damage incrementally law is given on Figure 2.

Ky

Figure 2 — Damage incremental law for the inelastic
spring

A linear softening is assumed. This law depends
on three parameters: the initial stiffness K, the

tangent stiffness K, which rules the damage

evolution, and the maximum force F*. In the case
of softening process considered in the paper, the
tangent stiffness is negative. Concrete material has
essentially unsymmetrical behaviour in traction and
compression. For this reason, it is assumed that no
damage prevails in the compression zone and the
model is clearly unilateral (the reader is reported to
Mazars et al, 1990, or Challamel et al, 2005 for a
wide description of this phenomenon). The
materials parameters of the model may be easily
expressed in terms of characteristic displacements:
Uy is the maximum displacement of the initial

elastic domain, and U, is the displacement at
failure:
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The damage variable D can directly be
expressed as a function of the memory variable V",
defined by:

v(e)= max Ult) 2)

The relation between D and V' is given by:

K K, - K
poli Koo Ko Kr Uy \\
K, K, V
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It is easy to verify that the rate of damage is
necessarily positive, and then, the classical
thermodynamics inequality of such scalar damage
model is verified (Mazars and Pijaudier-Cabot,
1996).

D>0 4)

Three dynamics can be distinguished. These
three states correspond to a reversible state (or

elastic state) in the tension domain E* , areversible
state in the compression domain E~ and a

irreversible state D (necessarily in the tension
domain) associating to damage evolution.
Dynamics of the undamped system is then written
as:

E* :MU+K,(1-D(V))U = F, cosQt; D=0

E- :MU+KOU:F0 cosQt; D=0

15:MU+<KT(U—Uf)>=F0 cos Q¥ =U
®)

Each state is defined from a partition of the
phase space:

E* :(U>Oor(U=0andUZO) and
USO)or(UZOandU<V)0r(V<UY)]
l:?*:(U<Oor(U:0andUSO))
D:(U>0)and (U =V)and (v >U,)

—

(6)

One recognises in Eq. (5) and Eq. (6) a
piecewise linear oscillator (see for instance Shaw
and Holmes, 1983). The dimensionless phase
variables are defined by:

(u,it,v)z [%,%,UL}J V= mtaxu(t)
(7)

New temporal derivatives are written directly
with respect to the dimensionless time parameter:

4 *
T=— with t = |— ®)
t Ky
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The new dynamical system reads for
dimensionless variables:

E* ii+(1-D())u = f, coswr; D=0

E” citu=fy coswr; D=0

A Ky
D :ii+ (u 1)+1) = f, coswr; v =1
Ky
. F, «
with f :F and o = Qr ©)

The damage function depends on the new
memory dimensionless variable v :

D= 1+KT 1_Ml (10)
K, Ky v

The three states are now governed by:

(u>00r( Oandt'tZO))
and [(u <0)or (>0 and u <v)or (v<l)]
" :(u<0o0r(u=0and i <0))

D:(u>0)and(u v)and (v>1)
(In

For f, =0 (free vibrations), the dynamics

system is an autonomous system with a three-
dimensional phase space associated to the co-
ordinates  (u,1,v). The periodically forced

oscillator (fo ;tO) can be studied using an

extended four-dimensional phase space with co-
ordinates (u,a,v,r). Local solutions of Eq. (9) are

known explicitly for each state (see for instance
Challamel and Pijaudier-Cabot, 2007).

Piecing together these known solutions is not
directly possible however, since the times of flight
in each region (each state) cannot be found in
closed form in the general case. The time which
characterises the transition between each state, is
computed from a Newton-Raphson procedure. Note
that this solution is considerably more accurate than
the wusual numerical solutions of ordinary
differential equations, the only approximations
being made at the boundary of each state.

3. FREE VIBRATIONS

Dynamics of such a free inelastic system can be
reduced to periodical regime (waiting for a certain
time), attractive or divergent trajectories (see also
Challamel and Pijaudier-Cabot, 2004-2006). These

three cases are distinguished by the level of initial
perturbation in the neighbouring of the origin point.
For sufficient large perturbations, the motion
diverges. On the opposite, for sufficiently small
perturbations, the motion is described by both a
circular (in the compression domain) and a elliptic
(in the tension domain) periodic trajectory after a
damage phase. The intermediate trajectory,
represented on Figure 3, is an attractive trajectory.
It asymptotically converges towards a fixed point.
This attractive trajectory is structurally unstable. It
is in fact the limit of the perturbations domain
generating bounded evolutions and also the limit of
the domain associated to stability of the origin (in
the sense of Lyapunov). This domain is defined by:

U,
uy? +1iy> <—L for uy <vy <1 (12)
UY

Moreover, when the motion is periodic, the

damage reaches a stationary value denoted by D.
The global pulsation of this periodic motion can be
obtained in closed-form solution from:

2WI-D

— (13)
1++41-D
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Figure 3 — Dynamics of the free damage system;
U, /Uy =3

4. FORCED VIBRATIONS

Numerical simulations show that two types of
behaviour may be observed for such system,
namely the shakedown phenomenon (damage

shakedown means that D =0 after a critical time),

and the collapse characterised by a divergent
evolution (in such a case, failure is reached and D
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is equal to unity). The theoretical analysis consists
in treating the bounded dynamics (in case of
damage shakedown) as an equivalent -elastic
oscillator after a critical time. In this case, the
extended four-dimensional phase space with co-
ordinates (u,d,v,r) can be reduced to a three-
dimensional phase space with co-ordinates (u,,7).
The new oscillator is an elastic oscillator with
different stiffness in tension and compression.
Results of Shaw and Holmes (1983), Thompson et
al (1983) or Mahfouz and Badrakhan (1990) can be
used for the dynamics of the oscillator studied in
the three-dimensional phase space. The vector field
defined by Eq. (5) is easily seen to be 27/w
periodic in 7. The Poincaré section is useful to
investigate properties of the dynamics system. The
value of v, (or in an equivalent way, the initial

damage value D) has been varied, in order to

investigate  the damage effect.  Periodic,
quasiperiodic, chaotic and divergence behaviours
have been observed (Figure 4).
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Figure 4 — Dynamics of the forced damage system;
Uy /Uy =335 fp=005; =02 ;u,=0;

Quasiperiodic motions have been found for
sufficiently weak damage system (v, >1 or

D, # 0) (see Figure 5).

1

Figure 5 — Quasiperiodic motion; phase portrait;
vy =2.70 or D, =0.944

The quasiperiodic nature of the motion is
checked in the Poincaré map of Figure 6.

-0.5

Figure 6 — Quasiperiodic motion; Poincaré map;
Vo =2.70 or D, =0.944

On simulation of Figure 7 (v, =2.65 or
D, =0.934), the damage shakedown does not
succeed and failure is reached after several cycles
(D=1).

Figure 7 — Divergence motion; Phase portrait;
vy =2.650r Dy =0.934

For v,=271 (D, =D=0.946), chaotic
vibrations can be seen in Figure 8, and a “strange
attractor” is more specifically highlighted in the
Poincaré map of Figure 9 (even if the system is
undamped). Chaotic vibrations have been also
observed for higher damage values
(vo €[2.71;2.78] or D, €[0.946;0.960]) or smaller

damage values (vy € [2.26;2.32] or
D, €[0.836:0.853]; v, €[2.55:2.58] or
D, €[0.912;0.919]). These intermittent

characteristic damage parameters are close to /, that
is close to the failure value. The “strange attractor”
possesses symmetry property in the Poincaré map,
with respect to the u-axis.
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Figure 8 — « Chaotic » motion; Phase portrait;
vo =2.71 or D, =0.946

Figure 9 — « Chaotic » motion; Poincaré map;
vo =2.71 or D, =0.946

Mahfouz and Badrakhan (1990) also show that
chaos can appear for large stiffness ratio. The
asymptotic case is the obstacle case, where the
stiffness ratio vanishing (case treated by Thompson
et al, 1983 for instance). The main phenomena
exhibited in this paper, may be also observed for a
weakly damped system, whose damping ratio is
denoted by ¢ (Figure 10).

0.5

0.5

Figure 10 — « Chaotic » motion; Poincaré map;
vo =2.77 or D, =0.958; £ =0.01

It is worth mentioning that the strange attractor
associated to the damaged system is very analogous
to the Hénon’s attractor (see for instance
Thompson, 1982). The bifurcation diagram can be
presented in Figure 11.
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Figure 11 — Bifurcation diagram in the (D, u)
space — Damped system - ¢ = 0.01

For the simulations considered, chaos has been
found for large damage values: chaos can be
considered as a route to collapse.

5. CONCLUSIONS

e This paper deals with the stability of a single-
degree-of-freedom damage softening
oscillator. For seismic design applications, a
critical energy has been introduced (induced
by seismic solicitation for instance) that the
oscillator can support in order to remain
stable.

e Periodic, quasi-periodic, chaotic, divergence
motions have been numerically observed for
the forced damage oscillator. Damage
shakedown is firmly controlled by initial
conditions. In this case, the stationary
behavior of such inelastic oscillator is the
same that for an elastic oscillator with
different stiffness in tension and in
compression. One of the specificity of the
inelastic system considered in the paper is that
chaotic behavior is strongly governed by the
perturbations considered.

e These surprising results probably mean that
the dynamics collapse of concrete structures
can be controlled by chaotic phenomenon.
This complex behavior is firmly linked to the
breaking of symmetry of the constitutive law
including unilateral effect. It is quite
surprising at this stage that breaking of
strength symmetry does not lead to the same
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conclusion for an elastoplastic oscillator,
where only periodic evolutions have been
found (Challamel et al, 2007).
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