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Abstract 
  A numerical method is developed, which is 
suitable for determining dynamic response of finite 
element models of mechanical systems involving 
unilateral contact and friction. In classical structural 
dynamics approaches, such constraints are usually 
modeled by special contact elements. The 
characteristics of these elements must be selected in 
a delicate way, but even so the success of these 
methods can not be guaranteed. The present method 
is based on a proper combination of recent results 
from two classes of analytical and numerical 
methodologies. The first one includes the standard 
methods that determine dynamic response of 
models resulting by employing the finite element 
method to systems with smooth nonlinearities. The 
second class of methods includes specialized 
methodologies that simulate the response of simple 
dynamical systems with unilateral constraints. The 
validity of the method is illustrated with numerical 
results. 
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1 Introduction 
  Fast and accurate simulation of mechanical 
structures with complex geometry requires 
frequently application of the finite element method. 
These structures usually have supports and 
connecting elements, which involve a suitable 
combination of discrete springs and dampers. 
Typically, the finite elements that are used to model 
the action of the structural components have linear 
properties, while the action of the supports and the 
connecting elements is characterized by nonlinear 
properties. This category of systems has already 
been studied intensively in the past and a series of 
reliable numerical solution methods is available, 
when the nonlinearities involved are smooth [Bathe, 
1982; Hughes, 1987].  

On the other hand, some important phenomena may 
arise in typical mechanical structures, such as the 
establishment or loss of contact and the sticking or 
sliding that may take place between two contacting 
surfaces of a composite structure. Such models can 
be handled appropriately by employing set-valued 
force law theory [Brogliato, 1999; Glocker 2001; 
Leine and Nijmeijer, 2004]. However, with a few 
exceptions (e.g., [Simo and Laursen, 1992; 
Chetouane, Dubois, Vinches and Bohatier, 2005]), 
the results presented up to now in this scientific 
area, refer to relatively simple systems, with rigid 
components and a rather small number of degrees 
of freedom. 
  The main objective of the present study is to 
develop an appropriate direct integration scheme 
for investigating the dynamics of mechanical 
systems possessing a relatively large number of 
degrees of freedom and involving unilateral 
constraints. For such structures, the classical 
numerical integration methods do not work 
properly or fail to work at all. Currently, the main 
methods used to simulate the response of small 
scale non-smooth dynamical systems are based on 
either event-driven [ Natsiavas, 1993; Pfeiffer and 
Glocker, 1996] or time-stepping [Moreau and 
Panagiotopoulos 1988; Jean, 1999] approaches. In 
general, the former are not efficient when the 
number of unilateral constraints is large [Jean, 
1999]. For such cases, the most frequently applied 
methods are those employing time-stepping 
schemes. Among them, the midpoint rule proposed 
by Moreau is the most commonly employed scheme 
[Moreau and Panagiotopoulos, 1988]. However, 
when the number of the degrees of freedom is 
relatively large, more efficient numerical 
integration techniques are needed. In the present 
study, a new method is developed for studying 
dynamics of the class of mechanical models 
examined. This is achieved by combining a time-
stepping integration scheme with more classical 
schemes, which are applicable to systems with 
smooth nonlinearities. 



   

  The organization of this paper is as follows. The 
class of mechanical systems examined and the 
analysis applied are briefly presented in the 
following section. Then, typical numerical results 
are presented for three characteristic finite element 
models involving contacts and friction. These 
results illustrate the performance of the method 
developed as well as the effect of some important 
mechanical properties. The final section includes a 
synopsis of the conclusions and the highlights of the 
study. 
 
2 Method of Analysis 
  The equations of motion of the class of dynamical 
systems examined in the present study are 
represented by the following set of equations 
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The set of the generalized coordinates nq ℜ∈  is 

selected as minimal, so that the forces developed at 
all the bilateral constraints drop out from (1). 
Moreover, the terms M , C  and K  represent the 

nn×  mass, damping and stiffness matrix of the 

system, respectively. Likewise, the term ),( qqh &  

includes the nonlinear smooth forces, while the 

term )(),( tqtW λ  involves the non-smooth forces 

developed at the points where the unilateral 

constraints are imposed. Finally, the term )(tf  

includes the externally imposed forces. In general, 
the set of the equations of motion is accompanied 
by the initial conditions 
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Adopting the notation and the approach style 
introduced in references [Glocker, 2001] and 
[Leine and Nijmeijer, 2004], the vector of 
generalized velocities is defined according to 

    qu &= .        (3) 

This definition holds for almost all time t , since the 
set of the time intervals where the discontinuities 
occur has zero measure. Next, the equations of 
motion are complemented by constitutive laws 
describing the action along the normal and 
tangential direction at the contact points. More 
specifically, in order to treat the unilateral forces 
developed due to contact and friction within the 
same theoretical framework, the set-valued 
Signorini and Coulomb friction laws and the related 
normal cone formulations are selected, respectively, 
as explained briefly next. 

  First, if ),( qtg
N

 is a vector containing the 

normal relative distances at the Cni ,,1K=  

potential contact points of the system, while the 

vector )(tNλ  includes the corresponding normal 

forces, the condition for no interpenetration in the 

normal direction at the contact points can originally 
be expressed by the following complementarity 
relations 
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whose validity is meant to hold for each component 
separately. Alternatively, the above conditions, 
known as Signorini’s normal contact law, can be 
cast in the form of non-smooth potential functions 
and eventually as 
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where )( NCN
N λ  represents the normal cone of 

the convex set 
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at point Nλ . Finally, when some continuity 

conditions are satisfied, these laws can also be 
expressed in the velocity level [Leine and 
Nijmeijer, 2004;  Jean, 1999]. 
  Likewise, the law employed in the tangential 
direction of a contact point is the set-valued 
Coulomb friction law, which can eventually be put 
in the form 
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where the vector 
T
γ  includes the relative velocity 

at the contact points along the corresponding 

tangent plane, while )( TCT
N λ  is the normal cone 

of the convex set 

              
},,1

;|{

C

NiT
n

TT

ni

C
ii

C

K=

≤ℜ∈= λµλλ
     

at point Tλ . 

  The vectors including the normal and tangential 
velocities at the contact points are obtained in the 
form 
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respectively, where by considering the system 
kinematics it turns out that 
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  At present, the solution of the mathematical 
problem posed by expressions (1)-(5) is obtained 
numerically by applying an event-driven or a time-



   

stepping method [Brogliato, 1999; Glocker 2001; 
Leine and Nijmeijer, 2004]. In general, the 
response of systems involving many unilateral 
constraints is most frequently determined by 
employing a time-stepping scheme. Traditionally, 
the midpoint rule proposed by Moreau is the most 
commonly employed time-stepping scheme 
[Moreau and Panagiotopoulos 1988; Jean, 1999]. 
This method is able to capture events like contact-
detachment and sticking-sliding. However, when 
the number of the degrees of freedom is relatively 
large, faster and more reliable numerical 
techniques are needed. The finite difference or the 
Newmark integration schemes are two common 
examples of such techniques [Bathe, 1982; 
Hughes, 1987]. These methods are adequate to 
handle nonlinear smooth forces but they are not 
appropriate for systems involving set-valued 
forces. On the other hand, Moreau’s technique can 
not handle systems with nonlinear elements 
effectively, since direct application of this method 
requires frequently a relatively small time step. 
  In the sequel, it is assumed that the systems 
examined belong to the class of dynamical systems 
involving planar friction only. Moreover, a Linear 
Complementarity Problem (LCP) formulation is 
preferred over an Augmented Lagrangian 
approach. Then, the equations of motion (1) are 
first recast in the following equality of measures 
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Moreover, it is convenient to split the term of the 
constraint forces in the normal and tangential 
direction in the following form 

                      TTNN WWW λλλ += .            

Furthermore, in order to decompose the two-corner 
tangential contact law into two separate unilateral 
primitives, the following quantities 
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represent the vectors including the right and the 
left sliding velocities at the contact points, 
respectively [Leine and Nijmeijer, 2004]. 
Combination of the last two relations implies that 
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In a similar fashion, a decomposition of the 
impulsive friction saturations is performed, so that 

TNR Λ+Λ=Λ µ  and TNL Λ−Λ=Λ µ , 

with 

}{ idiag µµ =    and   ∫∆=Λ
t

dtλ . 

Then, combining a version of the Newmark-β 
method with Moreau’s time-stepping technique 
and excluding spatial friction, the integration 
process developed requires the solution of a linear 
complementarity problem formulation at the end of 

each time step. In particular, this LCP formulation 
exhibits the following structure 

 bxAy += ,       (6) 

where the matrix A  involves quantities related to 
the system dynamics and kinematics as well as 
characteristics of the numerical discretization 
scheme employed. Moreover, the vector quantities 
in (6) satisfy the following definitions and 
properties 
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Numerical solution of the last set of equations, 
yields the impulsive forces, needed for the 
subsequent determination of the response of the 
class of the mechanical systems examined. 
 
3 Numerical Results 
  The validity, accuracy and effectiveness of the 
method developed were illustrated by a large 
variety of examples. A selected set of such 
examples is presented next. 

The first example model is shown in Fig. 1a. It is 
an elastic shell, with a radius of 50mm and a 
thickness of 1mm, which is dropped from a height 
and bounces on a rigid ground. The geometry is 
descretized by shell finite elements, leading to a 
model with 7710 degrees of freedom. Originally, 
the study focused on the effect of material 
properties. In particular, the results of Figs. 1b and 
1c were obtained by selecting the elasticity 
modulus and density to correspond to a rubber or a 
steel shell, respectively. The continuous and 
dashed lines correspond to the vertical 
displacement of the lowest point and a neighboring 
point of the shell. Finally, Fig. 1d compares results 
obtained for a shell possessing material properties 
with intermediate values. The results indicate the 
convergence obtained for three different sizes of 
the time integration steps t∆ . Also, apart from the 
convergence achieved, qualitatively similar results 
were obtained in all cases examined, while no sign 
of numerical instability was detected. 

 

 



   

 
 

 
 

 
 
Figure 1.Elastic shell bouncing on rigid ground: (a) 
deformed geometry; (b) vertical displacement of a 
rubber shell; (c) vertical displacement of a steel 
shell and (d) effect of time step size on 
convergence. 
 
  The second example model, shown in Fig. 2a, has 
a much bigger original dimension. It represents a 
prototype vehicle structure used in earlier 

experimental studies [Giagopoulos and Natsiavas, 
2007]. Basically, it consists of a metallic frame 
supported on the ground by four suspension 
subsystems. The frame is modeled by finite 
elements with linear properties, while the 
suspension subsystems possess nonlinear stiffness 
and damping characteristics. Also, the wheels are 
allowed to separate from the ground. The model 
possesses a little more than 49,000 degrees of 
freedom and is subjected to base excitation. For 
instance, the road profile at the front left wheel is 
represented by the thick line in Fig. 2b. The thinner 
line in the same figure represents the vertical 
displacement of the corresponding wheel. 
Obviously, there exist extended time intervals 
where the tire is not in contact with the ground. On 
the other hand, Figs. 2c and 2d depict the vertical 
displacement and acceleration histories recorded at 
point A of the frame of the vehicle (shown in Fig. 
2a), during the same time interval. A smoother form 
of these histories is apparent, which is due to the 
vibration isolation action of the suspension 
subsystems. 
 
 

 
 
 

 



   

 

 
Figure 2. Prototype vehicle structure: (a) deformed 
geometry; (b) vertical displacement of the front left 
wheel (thin line) and road profile (thick line); (c) 
vertical displacement history and (d) vertical 
acceleration history, at point A on the frame of the 
vehicle. 
 
  The level of complexity is raised further in the last 
example, which involves point to surface contact 
combined with friction. Here, an elastic cubic block 
with an edge of 20mm, shown in Fig. 3a, is dropped 
from rest at a height and hits a plate with a 
thickness of 0.5 mm. The block is discretized by a 
number of solid finite elements, while the thin plate 
(whose corner points are fixed) is discretized by 
shell elements, leading to a model with 1861 
degrees of freedom. After half a second from start, 
a horizontal harmonic force is applied on the block, 
along the x-axis, activating friction phenomena 
during contact of the block with the ground. First, 
Fig. 3b displays results obtained for the vertical 
displacement of a node on the lowest surface of the 
block that comes in contact with the plate, together 
with the vertical displacement of a nearby point of 
the plate. Likewise, Figs. 3c and 3d depict the 
horizontal displacement and velocity of the same 
node of the block. The results demonstrate the 
appearance of stick intervals. In addition, they 
indicate that the system tends eventually to reach a 

periodic steady state motion. 

 

 

 

 
Figure 3.Elastic block hitting a thin flexible plate: 
(a) deformed geometry; (b) vertical displacement of 
a node on the lowest surface of the block (thick 
line) and vertical displacement of a nearby point of 
the plate (thin line); (c) horizontal displacement and 
(d) velocity of the same node of the block. 



   

 
4 Summary 
  Α computationally efficient methodology was 
developed for determining dynamic response of 
finite element models, arising in Structural 
Dynamics applications and involving unilateral 
contact and friction constraints. The basic idea was 
to combine classical methodologies employed for 
the direct integration of mechanical systems 
involving smooth nonlinearities with recent 
developments in the area of non-smooth dynamics. 
The accuracy and effectiveness of the methodology 
was demonstrated by presenting numerical results 
for three selected examples. The results presented 
illustrated that the methodology developed can help 
efforts directed towards predicting the influence of 
parameters on the response of large order nonlinear 
systems with unilateral constraints in a systematic 
way. 
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