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1 Introduction

Regulatory molecular networks are collections of interacting molecules in a cell.
One particular kind, oscillatory networks, has been discovered in many path-
ways. Well-known examples are the circadian clock [1] and the cell cycle [2],
where the oscillatory nature of the process plays a central role. Abnormalities
of these processes lead to various diseases, from sleep disorders to cancer [3, 4].
For this reason, the regulatory oscillators attract significant attention among
biologists and biophysicists.

These natural regulatory networks are very complex and include many types
of molecules, from genes to small messengers. It is necessary to study the reg-
ulatory mechanisms by means of highly simplified models. These models are
particularly valuable because artificial regulatory networks can be engineered
experimentally [5, 6, 7, 8, 9, 10, 11]. The qualitative agreement between mod-
els and experiments is remarkable and validates the mathematical approach to
the analysis of regulatory networks. Our goal is revealing general principles of
cellular regulation by studying various artificial networks.
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We study an artificial oscillatory network called the repressilator [7], which
borrows the idea of a ring oscillator coming from engineering. The oscillatory
mechanism of the repressilator is based on connecting an odd number of inverters
(negative control elements) in a ring. Its genetic implementation uses three
proteins that cyclically repress the synthesis of one another by inhibition of
corresponding mRNA production.

A challenging area of the research is communication among cells in a pop-
ulation or organism. It has been proposed theoretically to design artificial in-
teraction among cellular oscillators using quorum sensing [12, 13]. Artificial
communication among cells containing regulatory oscillators can lead to vari-
ous effects from synchronization to suppression of oscillations [12, 13, 14, 15].
These collective dynamical effects further contrasted artificial regulatory oscil-
lators different by the design. A homogeneous population composed of repres-
silators, along with some other networks, was shown to display robust in-phase
synchronization [13, 12, 16]. The property was regarded as a characteristic of
the regulatory structure that they have in common. Accordingly, the coupling
structure was called phase-attractive as opposed to the phase-repulsive that
leads to the anti-phase synchronization [15]. In this paper, we question that
the in-phase synchrony is the only option in phase-attractive systems. We show
that changing timescales and transcription cooperativity may dramatically alter
synchronization properties and lead to other interesting dynamical effects in the
network.
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Figure 1: The minimal scheme of repressilator with autoinducer production [13].

2 Model

The idea for the oscillatory mechanism of the repressilator is based on connecting
an odd number of inverters (negative control elements) in a ring. Its genetic
implementation uses three proteins that cyclically repress the synthesis of one
another by inhibition of corresponding mRNA production (Fig. 1). A small
molecule, autoinducer (AI), carries out the coupling function which is based
on quorum sensing [12, 13]. The following system of dimensionless equations
describes the behavior of coupled repressilators [13]:

2



dai
dt = −ai + α

1+Cn
i

; dAi

dt = −β(Ai − ai)

dbi

dt = −bi + α
1+An

i
; dBi

dt = −β(Bi − bi)

dci
dt = −ci + α

1+Bn
i

+ κ Si

1+Si
; dCi

dt = −β(Ci − ci)

dSi

dt = −ks0Si + ks1Ai − η(Si −QS̄)

The uppercase letters Ai, Bi and Ci denote protein concentrations, while
lowercase ai, bi and ci are proportional to the concentrations of mRNA corre-
sponding to those proteins, Si denotes AI concentration, where i is a cell index.

S̄ =
1

N

N∑
i=1

Si, where N is the total number of cells; N = 2 in this work. All neg-

ative terms in the right-hand side represent degradation of the molecules. The
nonlinear function f(x) = α

1+xn reflects synthesis of the mRNAs from the DNA
controlled by regulatory elements called promoters. α defines transcription rate
in the absence of the repressor (x). α indirectly depends on several factors, such
as the abundance of the RNA polymerase and that of the repressilator plasmid
in the cell. Therefore, this parameter may take very different values and we
choose α as a bifurcation parameter, i.e. one to be varied. n is called Hill
coefficient or cooperativity and reflects multimerization of the protein required
to affect the promoter. Parameter Q reflects degree of the AI dilution in the
medium. It is proportional to population density Vcell

Vmedium
and can be varied from

0 (AI is strongly diluted) up to 1 (dense cell packing) [13]. The parameter β is
a ratio between the decay rates of proteins and mRNAs. The three proteins are
assumed to have identical kinetics, making the model symmetric.

The system and the scheme on Fig. 1 present a highly simplified model of the
oscillatory network. In particular, intermediate reaction steps such as binding
of an effector to a promoter are assumed to be very fast and, therefore, are not
explicitly shown in the model. The system has been shown to oscillate both in
experiments and in simulations for big enough α [7, 17, 18].

3 Results

We study an example of two interacting repressilators. We show that increas-
ing the cooperativity of transcription repression (Hill coefficient) and changing
the reaction time-scales dramatically alter synchronization properties. The net-
work demonstrates in- and anti-phase oscillatory regimes and can be birhythmic,
choosing between those two types of synchronization, in a wide range of param-
eters. In some region of parametric space there are whole cascades of complex
anti-phase oscillatory solutions, which coexist with in-phase regime. Thus, the
type of synchronization is not characteristic for the network structure. How-
ever, we conclude that the specific scenario of emergence and stabilization of
synchronous solutions is much more characteristic.

In particular, anti-phase oscillations emerge at elevated cooperativity values.
We choose the maximal synthesis rate for the mRNA as the main control pa-
rameter for our analysis. We calculate bifurcation diagrams with respect to this
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Figure 2: The network switches from in- to anti-phase synchrony when the tran-
scription cooperativity n is elevated. (a) n = 2, the in-phase limit cycle is stable;
(b) n = 2.6, the in-phase cycle loses stability at higher values of α, the anti-phase
one becomes stable as α increases. Solid (dashed) lines and solid (empty) circles
denote stable (unstable) steady state and periodic solution, respectively. HB —
Hopf, PF — pitchfork and PD — period doubling bifurcations. Parameters are:
β = 1.0, κ = 25.0, ks0 = 1.0, ks1 = 0.01, η = 2.0, Q = 1.0 [13].

parameter and study how regimes found in these diagrams depend on other pa-
rameters. At the initial cooperativity value of 2.0, the in-phase synchronization
remains stable and anti-phase remains unstable at any synthesis rate (Fig. 2(a)).
When the cooperativity is elevated only to 2.6, the anti-phase solution becomes
stable at a sufficiently high synthesis rate. In contrast, the in-phase solution loses
its stability at these elevated cooperativity and high synthesis rate (Fig. 2(b)).

Additionally, fast mRNA kinetics provides birhythmicity in a wide range of
the synthesis rate (Fig. 3). Initially, the time-scales of the protein and mRNA
kinetics were identical (β = 1.0). We make mRNA kinetics much faster than
protein, which is a more natural case (β = 0.1). The sequence in which the
oscillatory solutions emerge from Hopf bifurcations changes — the anti-phase
emerges first. As a result, the anti-phase solution emerges stable, and the in-
phase emerges unstable. In the birhythmic parameter regime, both solutions
must be stable. Three bifurcations always precede the birhythmic parameter
regime when the synthesis rate increases. The in-phase solution becomes stable
as a result of a repelling invariant torus emanating from the limit cycle. The

4



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000

Max A1

α

PF2

 1.2

 1.4

 1.6

 1.8

 4.2  4.3  4.4  4.5  4.6  4.7  4.8
M

a
x
 A

1

α

HBant

HBin

PF1

TR1

TR2

Figure 3: A reduction in the timescale β provides birhythmicity in a wide range
of α. At β = 0.1 and n = 2.6, in-phase and anti-phase rhythms are stable at both
moderate and high α. PF1 gives rise to inhomogeneous anti-phase solutions —
stable (blue crosses) and unstable (red squares), which are separated by a torus
bifurcation (TR2). PF2 gives rise only to an unstable inhomogeneous anti-phase
solution (green triangles). Other parameters and notations are the same as in
Fig. 2.

other two bifurcations are unexpected: The anti-phase limit cycle first loses its
stability, and then regains it. Both transitions are pitchfork bifurcations of limit
cycles. The second bifurcation cancels the effect of the first one on the stability
of the anti-phase solution. Thus, both in-phase and anti-phase solutions are
stable in a very wide range of the synthesis rate (Fig. 3).

Our work presents a novel scenario of emerging birhythmicity and switching
between the in- and anti-phase solutions in regulatory oscillators. Since the
types of synchronization coexist in one network, they are not characteristic for
the network structure. However, the bifurcation scenario may be much more
characteristic. This may help to address a central question in the analysis of
regulatory networks — how to connect structural characteristics to dynamical
and functional properties of a network.
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