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AUTOMATIC SCALING IN 3D MAP BUILDING FOR SLAM
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Abstract—In this work we develop a novel approach
for indirectly estimation of the metric scale for dense
mapping of 3D environments. The scaling factor emerges
as a local estimation for providing in real time a metric
scale to the depth map. The approach is suitable for real-
time monocular SLAM applications. It employs a laser
arrangement fixed to the camera whose beams commonly
impinge on middle-distant 3D points that are tracked in the
frame sequence. The method employs a so-called wildcard
frame and a keyframe to estimate the scaling factor along
with the optimization of an energy functional to provide
good depth estimations at middle-distance. Purpose-built
experiments are led to illustrate the approach performance
in mapping and tracking and show its feasibility.
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I. INTRODUCTION

Direct methods for visual SLAM are employed ex-
tensively in Robotics and Computer Vision to take ad-
vantage of the whole image information in contrast to
indirect featured-based methods which focus on para-
metrized sets of 2D points found in the image [1], [2].

Direct methods include both direct dense, semidense
or sparse depth models for structure mapping of a scene
[2]. In particular, direct dense and semidense methods
emerge as a sound alternative to indirect SLAM, in areas
as diverse as aerial, ground, mobile robot navigation,
space, swarm and underwater applications.

One important family of direct methods deals with
monocular vision, consider, for instance, the two pioneer
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works in [3] and [4]. The main restrictive and still
unresolved issue that delays its massive employment in
robotics remains the scale drift. However, motivated by
the vast applications of monocular cameras, great efforts
are continuously routed in the scientific community to
confer dense and semidense methods more accuracy and
robustness with ground-truth data.

Moreover, chip technologies involving monocular vi-
sion imply an engaging tail wind to many applications in
SLAM that have to contend with other recent technolo-
gies like kinect sensors or more consolidated alternatives
like stereo or multistereo vision [5]. However, the main
yardstick to contrast them is the flexibility to adapt the
depth range of a given, wherein monocular vision has a
decisive and categorical advantage.

Metric information is the key issue in order for a robot
to navigate autonomously by unknown and haphazard
scenarios. Specially in monocular SLAM, the absolute
scale of the world cannot be directly observed. Even
when the relationship with the real world is unknown,
the map will result precise up to scale. However, the
real case is that the arising scale (even if initially it is
the scale of real world) drifts over time bringing about
an often slow but continuous warping of the map and a
deflected camera pathway.

State-of-the-art methods attempt to incorporate con-
strains derived from semantic and pattern recognition
like a tree, a car, a building or employing a sort of
feature dictionary or using a planar target of known
size to external scale reference in order to convey real
metric scale into the map. Actually, owing to the lack
of sufficient constrains among resulting local maps, the
underlying scale yields inconsistent. Novel proposals
with scale-aware formulation like in [4], [6], [7] bring a



palliative in favor of the autonomy, but definitively not a
solution for long-term SLAM with scarce reliable loop
closures or even more pressing in close-free paths.

Alternatively, monocular camera can be fused with an
IMU as scale provider [8]. Furthermore, ad-hoc sensors
are included like fused GPS-inertial navigation system
in semidense SLAM [9], [8], breakthrough technologies
like RGB-D sensors that employs time-of-flight cameras
(ToF) or structured light by projecting known patterns
with diffracting optical elements. With them, mapping
results generally much more reliable, albeit these tech-
nologies entail much higher cost, complexity and severe
limitations for outdoors environments or short depth
ranges.

In this work, we develop a novel approach for indi-
rectly estimation of the metric scale for dense mapping of
3D environments which is suitable for real-time SLAM
applications. By using ground-truth datasets it is shown
the effectiveness of the approach in SLAM and its
potential to extend it for any indirect or direct vision
method.

A. Objective description

While some direct methods suppose certain limits
of the environment depth for later mapping and track-
ing, other methods provide an ad-hoc mechanism to
tackle the scale-drift problem. For instance, LSD-SLAM,
suggests a explicitly scale-drift aware formulation that
allows the approach to operate on challenging sequences
including large variations in scene scale. By contrast,
DTAM assumes a fixed depth range which is defined
relying on a previous knowledge of land surveying along
with the camera altitude in its specified mission pathway.

From the viewpoint of the robotics metric, it is more
relevant to focus on short and middle distances of objects
to the camera in a manner that enables an autonomous
vehicle to react in time against obstacles and to schedule
a reference, at best energy-saving, pathway within the
scenario.

The objective in this paper is to develop a mechanism
for SLAM that aims the improvement of the achievable
precision of the SLAM by directly estimating a reliable
scaling factor.

II. SCALE ESTIMATION
A. Cost volume

One of the own characteristics of DTAM is the depth
cost volume, see [3]. Each selected keyframe is asso-
ciated with a sequence of ancillary frames which are
to some extent superposed with each other at the time
the camera moves on the scene. In other words, each

ancillary frame provides a slightly different point of view
of the scene with respect to the predecessors, whereby
it maintains a small baseline with each other.

The cost volume relates discrete depth hypotheses
for each pixel in the keyframe wherein the photometric
error between it and someone in every epipolar line
of the ancillary frames must be null (see Fig. 1). The
photo-consistency of pixels that satisfy the same hypoth-
esis represent essentially the same physical point. The
hypotheses are ultimately valid in noise-free situations
along with brightness constancy of the scene.

By contrast, in practical use, assumptions are to some
extent breached and one can at best expect to test the
hypotheses in mean employing to this effect the so-
called photometric error functions (PEFs) defined along
the epipolar line of every ancillary frame and for every
keyframe pixel. This averaging is in our opinion just the
property of DTAM that makes it robust in noisy footage.
Thereby, one can search for a minimum of the averaged
PEF corresponding to every pixel in the keyframe.

In general, an energy functional composed of a data
term containing all the per-pixel PEFs and a regular-
ization term that penalizes excessive depth scattering
is employed for the optimization. The optimal depth
function is found iteratively and is also suitably for
parallelism.

B. Modified cost volume

At this point let us introduce a kind of wildcard
frame (acronym WF) in the sequence of ancillary frames
(acronym AF) situated at best close by the keyframe
(acronym KF) as represented in Fig. 1.
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Figure 1 - Integration of the wildcard frame in the cost
volume with 2 laser points (cf. DTAM in [3])



This wildcard frame (WF) entails the scene almost
from the same viewpoint as the keyframe. Consider a
laser structure fixed to the camera like the illustrated
in Fig. 1. The beams are appropriately oriented to the
scene so that they impinge on physical points leaving
spots registered on the wildcard frame.

Pixels in the wildcard frame do not relate with any
depth hypothesis in the cost volume. They are rather a
perturbation of the frame that impairs the intensity of
the signalized pixels. However they will contribute with
valuable depth measurements.

Further down, we will elaborate on this structured
laser in greater details and the way it can beneficially
be applied.

C. Scene-depth properties

In the construction of the cost volume we assume
statistical consistency in the sense the more dense the
set of ancillary frames the better the quality of the mean
depth estimation. Moreover, it holds the fact that the
closer are the physical points to the camera the wider is
the parallax and the more accurate its depth estimation.

However, as physical points of the scene are ob-
served within different timeframes according to the pixel
position in the keyframe, the certainty of the photo-
consistency hypothesis may result different depending
not only on position but also on the permanence in
the footage. Certainly, there are physical points in the
horizon that remain visible longer than points that are
closer to the camera.

In summary, parallax and residence time may have
opposing influences over the hypothesis test of every
pixel of the keyframe.

Independently of the motion type, features of physical
points captured from the camera pathway roughly obey
the following table. As seen, parallax and residence time
of a physical point can define three depth regions.

Table 1: Classification of depth regions

Point Parallax | Residence | Uncertainty
proximity time (variance)
Distant | poor large high
Middle | good acceptable | small
Close by | excellent | small medium

Far distant points include almost static points at the
horizon with practically null parallax. On the contrary,
close-by points produce rapid movements of pixels with
tendency to blurriness and short permanence; therefore
the uncertainty is not negligible. Thereby it is expected
that normal distant points provide the most reliable
estimations of depth.

D. Scaling factor

Further reasoning lead us to draw out that if some
suitable estimated depth samples of middle-distant points
could be compared with some true reference measure
of the same point, scaling errors might be corrected to
resize the map, at least locally.

Indeed, the availability of depth measures of normal-
distant points help calculating the scaling factor as

(1)

where ¢ is the index for the laser beam, p, is the
measure, p,, .. is the depth estimation and s; is the
localized scaling factor estimation for the point (z;, ;).
In noise-free situations both for the measures and the
estimations, all values s; for the keyframe would have
to coincide.

As this is not the case and added the fact that the
scaling factor is not regular on the keyframe self, a sim-
ple averaging of all of them is quite desirable. However,
certain conditions for the candidate points (z;,y;) have
to be attached in order to ensure the quality of every s;.
This will be addressed subsequently.

Si = Pr / pxi,yi

E. Point-depth measurement

The correct scaling of the estimated map relies on
external measures of depths along with their depth
estimates.

The distance measurement in this work is indirectly
obtained as the separation of a pixel spot to the frame
center point.
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Figure 2 - Top view of the camera-laser configuration
with two laser for point-based depth measurement

By way of example consider the Fig. 2 which depicts
a two-laser configuration. The beams impact in a 3D



surface of the scene in two physical points with com-
monly different depths p; and p,, producing spots at
proportional distances z; and z, in pixels.

The laser beams are configured on the horizontal plane
containing the focal center, in which it is expected to find
good reference candidates.

On sees the greater the opening angle 3 between
beams with respect to the viewing angle « (the so-
called H-FOV degree), the better is the sensitivity of the
measurement, albeit the smaller ensues the depth span.
However, the practical construction imposes restrictions
whereby the lengths [ and lo are the main design para-
meters.

FE Candidates for depth references

The reliability of the averaged scaling factor rests,
above all, on how good the depth estimations p,, . are
for the selected points. It is expected that such favorable
points are represented in the middle of the frame around
the x axis.

Thereby, for the sake of enhancing the accuracy of the
estimated scale, it is advisable to append some conditions
for reference candidates before accomplishing (1). These
are

1) the spot position on the frame corresponds to a
physical point of middle distance.

2) the averaged PEF regarding a particular spot posi-
tion in the keyframe must have a sharp minimum on the
respective epipolar line.

3) the spot should be desirably far from the keyframe
center but also far from the side.

At first glance, these conditions seem to be reasonably
achievable.

G. Laser calibration

The calibration demands a precise coupling between
the intrinsic parameters of the camera and the beam con-
figuration geometry. The intrinsic parameters considered
for the calibration are focal length f, image center point
offset (g, yo), scaling factors k, and k,, skew parameter
v = 0, video format w x h (widthxheight, for instance
360 x 240) and the H-FOV angle «. Nonlinear camera
parameters are not considered here because the footage
is previously corrected from these aberrations.

In this work we have constructed a 2-laser configura-
tion like in Fig. 2 because is simple to implement and
calibrate.

The calibration is carried out by simply directing the
beams to a frontal wall. They have an initial open angle
[ and a separation a of the beam source points.

For the utmost points in the frame, ie., z, = x; =
w/2, with w being the frame width in pixels, the interval
[l2,1/ cos /2] defines the measure range.

Using the set of intrinsic and geometric parameters
one obtains

_ a/2 ) 2
Zl_tanﬁ/Z—xi/f and p,=/Zf + X (2)
X, = x}l and  z; = ay/ky, 3)

wherein (X, Z;) are the coordinates of the physical
point which is impinged on with a laser beam, x; is the
coordinate = of the spot in the focal plane. Thereupon,
solving for p; one gets

B a/2 - x%
P R g2 —a/fk \ T PR

Similarly as for p; one can deduce an equation for the
right-side measure p,.

The accuracy is much higher for short and middle
distances which is the situation of mayor obliquity
between light ray and laser beam.

The detection of spots can seamlessly be refined until
reaching a degree of accuracy around subpixel.
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H. Laser spot tracking

In principle, between two keyframes there is only one
wildcard, preferentially close by the keyframe. However,
the shot of the lasers has to be perfectly synchronized
with the keyframe and this implies additional electronic
and fine adjustment.

We prefer to circumvent this extra hardware by keep-
ing the lasers always powered up and designing a mech-
anism that is able to draw out the impressed spots in the
sequence of KF and related AFs. In so doing, first one
should have to search for the spot in the KF and track
it on the subsequent AFs.

Secondly, taking into account that the spots have
disrupted the brightness information of impressed pixels,
some reconstruction technique has to be applied to
retrieve the actual intensity values.

With respect to the recovery of the true intensity
values of impressed pixels , we can proceed as following:

1) One select the wildcard as the upcoming frame after
the keyframe. Only this can afford measures z; and x,

2) One tracks spots as well in KF and AFs beginning
around the places x; and x,.. Once the spots are identify,
one replaces the intensity of them by the averaged
intensities of their neighbors

3) One carries out the optimization on the cost volume
as done originally.

The final approach is summarized further down.



ITI. SCALING-FACTOR APPROACH

The approach for adaptive setting of the scaling factor
is outlined in Fig. 3. The procedure includes steps of the
approach described insightfully in the previous sections
(see blocks at bottom of the figure) concatenated with
the cost volume and energy functional optimization of
DTAM (blocks at top of the figure).

Ideally, the estimated scaling factors should be keep
constant for every keyframe. By contrast in ground truth,
the estimated values change permanently on a par with
the map quality along with the presence of outliers in
the laser measurement.
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Figure 3 - Estimation of a scale-corrected depth map

Thereby one can construct a metric global map up to
drift distortion as

SoMo ™ 51 M1 ™ S My L 5 M, (%)

where 7 stays for point cloud merging, 5; is the mean
value of the estimated scales for the keyframe K;, M is
the initial map patch and M, is a subsequent nonscaled
3D-view map patch corresponding to K.

IV. CASE STUDIES

In order to test the feasibility and performance of our
approach we have documented some important tests. The
camera pathway consists of a hike through a wooded
area. In this particular environment the surface consists
partially of grass which produces noisy depth estimations
and measures due to a slotted-surface effect.

Two landmarks are put ad-hoc into the scene as
yardstick for scale verification after the experiments have
concluded. They are separated exactly 0.48m each other
and will appear at the beginning and end of the footage.

We employ a 2-red-laser arrangement in terms of
Fig. 2, each one with a power of 50mW and an
opening angle § = 57.6° between beams, laser sep-
aration a = 36cm. The settings for a camera Go-
pro are: wide H-FOV degree a = 170°, focal length
f = 15mm, scaling factors k, = 0.579pix/mm and
ky, = 1.0411pixz/mm, resolution= 848 x 480, principal

point offset (zg,y0) = (419.19,211.65). The settings
aimed to have well depth estimations in the interval
[0.5m, 4m)].

Fig. 4 depicts the impact of the estimated maps on
the determination of metric distances between physical
points, as for instance the distance between the reference
landmarks. The estimations are in general noisy, however
in the case of the scaled map the errors are comparatively
much more small and stable over time. On the contrary,
the errors achieved with the unscaled map seem to
increase unboundedly.
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Figure 4 - Error in the estimation of the reference
distance at the start and revisiting stretches

Fig. 5 shows the evolution of the estimated scaling
factor over time. It is seen that the estimation is very
changing and intermittent and occurs when the set of
conditions for reference candidates are satisfied.
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Figure 5 - Evolution of the scaling factor over time

Fig. 6 illustrates the achieved quality in the map
estimation through the regularized and the data-term-
based depth maps. The slotted-surface effect is partially
appreciated in the white and black specks corresponding
to close by points on the grass.
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Figure 6 - Scene of a wooded environment

Fig.7 portrays the effect of scale drift in 3D-view of
the same scene reconstructed by the scaled and unscaled
map at the final stretch of the pathway. The landmarks
are tracked in the frames based on the depth information
provided from both cases. Clearly, the proportions of the
object containing the landmarks are despair according to
the case, wherein the unscaled map enlarges the objects
significantly in relation to the real wold.

Unscaled 3D-View Scaled 3D-View

1 metric unit

1 metric unit

o~

Landmark 1

Landmark 2

Figure 7 - Scale drift in the unscaled mapping after a
long time respecting the real metric unit in the axes

V. CONCLUSIONS

A scaling factor is a necessary information in SLAM
robotics for navigation in metric spaces. This approach
presents a method for estimating the world scale in real
time associated with a depth estimator in real time, in
this work we uses DTAM for depth mapping.

An arrangement of laser beams is fixed to the camera
and directed to horizontal zone of the frame where it
is supposed the best estimations are located, precisely
at medium distances. The impact of laser beams on the
scene is detected by tracking the spot on the horizontal
line which give reference measure of depth.

The corresponding depth estimations are processed
to find suitable candidates to establish a local scaling
factor. A set of design parameters of camera and laser
arrangement enables the scaling-factor estimator to suit
to a desired depth field.

Purpose-built experiments show that a good perfor-
mance for real scaling a scenery outdoors.
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