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Abstract
The paper deals with the decentralized model pre-

dictive controller design. The Generalized Predictive
Control (GPC) design approach is considered to design
local controllers within the Equivalent Subsystems
Methodology (ESM). According to ESM, the original
multivariable plant is diagonalized by generating
so-called equivalent subsystems, for which local
controllers are tuned independently. Resulting local
controllers constituting a decentralized controller are
implemented on the real plant. The closed-loop stabil-
ity and performance under the decentralized controller
are guaranteed if local controllers provide stability and
required performance of equivalent subsystems. The
proposed approach has been verified on a case study -
decentralized GPC design for a two-input two-output
laboratory plant.
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1 Introduction
Complex systems with multiple inputs and multiple

outputs (MIMO) are usually controlled using multi-
loop or decentralized controllers. Compared to cen-
tralized control, decentralized control is characterized
by several important benefits such as hardware sim-
plicity, operation simplicity as well as design simplic-
ity and improved reliability; due to them, decentralized
control design techniques still remain popular among
control strategies. The Equivalent Subsystems Method
(ESM) [Kozáková, Veselý and Osuský, 2009; Rosi-
nová and Kozáková, 2012] is a Nyquist based fre-
quency domain technique for decentralized controller
design. According to it, interactions are taken into

account through a chosen characteristic locus of the
matrix of interactions used to modify frequency re-
sponses of decoupled subsystems; these modified fre-
quency responses are frequency models of equivalent
subsystems. Local controllers are designed for indi-
vidual equivalent subsystems independently using any
single-input single-output (SISO) method, frequency-
domain methods are preferred (Bode design, Ney-
mark D-partition and the recently developed Sine wave
method [Bucz, Kozáková and Veselý, 2012]). It has
been proved [Kozáková, Veselý and Osuský, 2009;
Rosinová and Kozáková, 2012] that if closed-loop sta-
bility of individual equivalent subsystems under the re-
spective local controllers is guaranteed then the full
closed-loop system is stable as well.
Implementation of the ESM for decentralized con-

troller (DC) design using local GPC controllers as pro-
posed in this paper provides new perspectives to further
development of the ESM-based approach. Generalized
Predictive Control e.g. [Camacho and Bordons, 2004;
Rossiter, 2004] is one of the most popular and success-
fully implemented Model Predictive Control (MPC)
algorithms. There are many papers on decentralized
MPC design and implementation. In [Richards and
How, 2004] a decentralized MPC algorithm is pre-
sented for systems consisting of multiple subsystems
with independent dynamics and disturbances but with
coupled constraints. A plug-and-play MPC based on
linear programming is proposed in [Riverso, Farina and
Ferrari-Trecate, 2013]. An extension of the GPC al-
gorithm to a multivariable case by designing several
SISO controllers and compensation for interactions is
presented in [Linkens and Mahfouf, 1992], in [Veselý
and Osuský, 2013] a frequency-domain robust model
predictive controller with hard input constraints is ad-
dressed. The paper by [Shah and Engell, 2010] presents
a systematic approach that relates MPC tuning to lin-
ear control theory; in particular a systematic tuning of



96 CYBERNETICS AND PHYSICS, VOL. 4, NO. 4

the prediction horizon and the cost function weights are
provided to achieve desired closed-loop pole and zero
locations for the unconstrained case. Results presented
in this paper can be extended for the MIMO case and
be applied in the decentralized GPC design proposed in
this paper as well.
In this paper, the GPC algorithm is applied within

the ESM framework. Obtained polynomial controller
structure [Landau, 1998] is useful for implementation
of local unconstrained GPCs. In case of considering
constraints on input and output variables, the optimiza-
tion problem has to be solved in each sampling instant.
The paper is organized as follows: Section 2 presents

the preliminaries and problem formulation. Novel ap-
proach to decentralized predictive control design is de-
veloped in Section 3. In Section 4, the case study illus-
trating effectiveness of the proposed approach is pro-
vided. Conclusions are given at the end of the paper.

2 Preliminaries and Problem Formulation
Consider a continuous-time multivariable system

modelled by a discrete-time transfer function matrix
obtained using a suitably chosen sampling time Ts

y(t) = G(z)u(t) (1)

The discrete-time transfer function matrix G(z) ∈
Rm×m with z = esTs is interconnected with a de-
centralized controller R(z) ∈ Rm×m in the standard
feedback loop (Fig. 1). The variables w, u, y, d, e are
vectors of reference, control, output, disturbance and
control error of compatible dimensions. By analogy
with the continuous-time case, the discrete frequency
responses can be depicted either in the complex plane
(discrete Nyquist plot) or in logarithmic coordinates
(discrete Bode plots) considering z = esTs = ejωTs

by analogy with the continuous-time case.

G z( )
u y

R z( )
w e

d

Figure 1. Standard feedback loop configuration.

Assume, that G(z) can be split into diagonal and off-
diagonal parts (Fig. 2) describing respective models of
decoupled subsystems Gd(z) and interactions Gw(z)

G(z) = Gd(z) +Gw(z) (2)

where

Gd(z) = diag{Gi(z)}m×m, detGd(z) ̸= 0

Gw(z) = G(z)−Gd(z), ∀s ∈ D
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Figure 2. Standard feedback configuration under decentralized con-
troller.

Besides properly choosing the sampling time Ts with
respect to the plant dynamics it is necessary to keep in
mind that a discrete frequency response is periodic with
respect to the sampling frequency ωs = 2π/Ts. The
frequency distortion does not occur if the frequency re-
sponse is represented only for frequencies up to half
of the sampling frequency, i.e. ω ∈ ⟨0;ωs/2⟩; oth-
erwise higher frequencies would be wrapped to some
other frequency in the range. A proper choice of sam-
pling time is crucial for achievable bandwidth and fea-
sibility of the required phase margin [Lewis, 1992].
For the system (2) a diagonal controller

R(z) = diag{Ri(z)}m×m (3)

is to be designed to guarantee specified performance
of the full system. In the proposed approach the over-
all system is viewed as composed by several sub-
systems. The Equivalent Subsystems Method (ESM)
[Kozáková, 2012] which allows independent design of
local controllers for the equivalent subsystems gener-
ated based on the full system transfer function matrix
is used. In the following, the basics of the discrete-time
ESM version are revisited.

2.1 Equivalent Subsystem Method
Consider the following factorization of the return dif-

ference matrix F (z) = I + G(z)R(z) in terms of the
split system (2) and the decentralized controller (3) in
the form

F (z) = I +R(z)[Gd(z) +Gw(z)] =

= R(z)[R−1(z) +Gd(z) +Gw(z)]
(4)

Since R(z) and Gd(z) are diagonal matrices involving
information about closed-loop dynamics of individual
subsystems, we can include them into one diagonal ma-
trix H(z)

H(z) = R−1(z) +Gd(z) (5)
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where H(z) = diag{ηi(z)}mi=1. In addition, by a sim-
ple manipulations of (5) we obtain

I+R(z)[Gd(z)−H(z)] = I+R(z)Geq(z) = 0 (6)

where

Geq(z) = [Gd(z)−H(z)] =

= diag{Gdi(z)− ηi(z)}m×m =

= diag{Geq
i (z)}m×m

is the diagonal matrix of equivalent subsystems. On the
subsystem level, we obtain

1+Ri(z)[Gdi(z)−ηi(z)] = 1+Ri(z)G
eq
i (z) = 0 (7)

for i = 1, ...,m.
By appropriate choice of H(z) it is possible to af-

fect the dynamics of individual subsystems. Therefore,
the entries ηi(z) are chosen so as to appropriately take
into account interactions between subsystems given by
Gw(z). The problem of generating diagonal equivalent
subsystems models Geq(z) is then reduced to finding a
diagonal matrix H(z) = diag{ηk(z)}i=1,2,...,m.
Characteristic functions gi(z), i = 1, ...,m of matrix
Gw(z) are defined as follows

det[gi(z)I −Gw(z)] = 0, i = 1, 2, ...,m (8)

The system G(z) under the decentralized controller
R(z) is stable if

1. det[H(z) +Gw(z)] detR(z) ̸= 0

2. N [0, det(H(z) +Gw(z)) detR(z)] = nc

(9)

where nc is the number of unstable poles of open-loop
system, and z = expjωTs , ω ∈ ⟨0;ωs/2⟩.
Assuming diagR(z) ̸= 0, the overall system is at the

limit of instability if

det[H(z) +Gw(z)] = 0 (10)

Since H(z) = diag{ηi(z)}i=1,2,...,m we obtain m
characteristic functions ηi(z) which actually defines m
characteristic functions gi(z) of the matrix −[Gw(z)]

det[ηi(z)I +Gw(z)] = 0, i = 1, 2, ...,m (11)

Then, H(z) in (11) “compensates” interactions given
by Gw(z) if the matrix H(z) = diag{ηi(z)}I is cho-
sen such that diagonal entries of H(z) are identical and

equal to any of m characteristic functions of [Gw(z)],
i.e. if

H(z) = −gk(z)I (12)

where k ∈ {1, 2, ...,m} is fixed. It can be easily shown
that by substituting (12) into (10) results in

det[gk(z)−Gw(z)] =
m∏
i=1

[gk(z)− gi(z)] = 0 (13)

Considering (12) in (6), related diagonal matrix of
equivalent subsystems is obtained

Geq
k (z) = Gd(z) + gk(z)I = diag{Geq

ik(z)}m×m

(14)
Individual entries of Geq

k (z) are then generated as fol-
lows

Geq
ik(z) = Gdi(z) + gk(z) (15)

where i = 1, 2, ...,m, k ∈ {1, ...,m}. Hence, for H(z)
satisfying (12) we obtain the closed-loop characteristic
equation in the form of product of equivalent character-
istic equations

det[I +Geq
k (z)R(z)] =

m∏
i=1

[1 +Geq
ik(z)Ri(z)] (16)

for k ∈ {1, ...,m}.
Based on these results, stability of the overall closed-

loop system under a decentralized controller is guaran-
teed if and only if all equivalent closed-loop subsys-
tems are stable, i.e. if there exists gk(z) such that

1. det[ηk(z)I +Gw(z)] = 0, k ∈ {1, ...,m}
2. N [det(I +Geq

k (z)R(z))] = nc

(17)

and the equivalent characteristic equations
1 +Ri(z)

(
Gdi(z)− ηk(z)

)
, i = 1, ...,m,

for k ∈ {1, ...,m} are stable.
Decentralized controller design is performed by inde-

pendent design of local controllers for equivalent sub-
systems. In the sequel, local controllers will be de-
signed as predictive ones based on the GPC framework.

3 Decentralized Generalized Predictive Control
GPC incorporates all major features of the predictive

controllers in an unified framework and provides sev-
eral advantages such as ability to control non-minimum
phase and open-loop unstable processes and also plants
with unknown orders. In this section the whole control
design procedure is proposed involving identification
of generated equivalent subsystems, and local predic-
tive controllers design for individual equivalent subsys-
tems considering both unconstrained and constrained
input and output variables of the plant.
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3.1 Identification of Equivalent Subsystems
To apply a predictive control design discrete-time lin-

ear models of individual equivalent subsystems have to
be identified.
Equivalent subsystems are identified as polynomial

models. The best result has been obtained using
Output-Error (OE) models in the form

y(t) =
B(z)

F (z)
u(t) + e(t) (18)

To estimate the model, a cut curve fitting approach has
been used. It is based on least-squares method and pro-
vided by available software tools [Ljung, 2008]. Iden-
tified discrete-time transfer function models can be of
arbitrary order.
The diagonal transfer function matrix of the plant is

composed of identified equivalent subsystems obtained
in the form of discrete-time transfer function models

Geq(z) =


Geq

1 (z) 0 . . . 0
0 Geq

2 (z) . . . 0
...

...
...

...
0 0 0 Geq

m(z)

 (19)

where

Geq
i (z) =

Beq
i (z−1)

Aeq
i (z−1)

=
b0 + b1z

−1 + ...+ bnbz
−nb

1 + a1z−1 + ...+ anaz−na

(20)

for i = 1, ...,m.
Now, it is possible to design local SISO predictive

controllers for individual m equivalent subsystems. In
the following, the design procedure developed using
Generalized Predictive Control (GPC) methodology is
described.

3.2 Generalized Predictive Control
For the controlled process with m inputs and m out-

puts described by a diagonal transfer function ma-
trix comprising equivalent subsystems Geq

i (z), i =
1, ..,m, a set of m CARIMA models [Camacho and
Bordons, 2004; Levine, 1999] is utilized.

Aeq
i (z−1)yi(t) = Beq

i (z−1)z−dui(t− 1)+

+
Ceq

i (z−1)

∆
ξi(t), i = 1, ...,m

(21)

where

Aeq
i (z−1) = 1 + a1(i)z

−1 + ...+ ana(i)z
−na,

Beq
i (z−1) = b0(i) + b1(i)z

−1 + ...+ bnb(i)z
−nb,

Ceq
i (z−1) = 1 + c1(i)z

−1 + ...+ cnc(i)z
−nc

(22)

ui(t), yi(t) are the plant input and output, d is time
delay, ξi(t) represents the effect of disturbances, and
∆ = 1 − z−1. If ξ(t) is a zero-mean white noise, the
polynomials Ceq

i (z−1) representing a noise filter can
be set to Ci(z

−1) = 1.
To derive a prediction model, (21) can be rewritten as

follows:

Âeq
i (z−1)yi(t) = Beq

i (z−1)∆ui(t− d− 1) + ξi(t) (23)

where

Âeq
i (z−1) = ∆Aeq

i (z−1) (24)

Since only derivative of the control input ∆u(k) is
used, an integrator has to be introduced in the form

ui(t) =
1

1− z−1
∆ui(t) (25)

The parameter ξ(t) is a zero-mean, thus it can be ne-
glected. The respective cost function with the follow-
ing structure is defined

Ji(t) =

Ny,i∑
l=1

|ỹi(t+ l|t)− w̃i(t+ l|t)|2Πy,i
+

+

Nu,i∑
l=1

|∆ũi(t+ l − 1|t)|2Πu,i

(26)

where Πy,Πu denote appropriate symmetric positive
(semi)definite weighting matrices, and Ny, Nu denote
prediction and control horizons, respectively. The out-
put prediction model can be obtained in several ways
[Rossiter, 2004].
One of them is via a set of diophantine equations [Ca-

macho and Bordons, 2004] solved independently for
each subsystem

1 = Ei,l(z
−1)Âeq

i (z−1) + z−lFi,l(z
−1) (27)

Multiplying (23) with Ei,l(z
−1)z−l we obtain

Âeq
i (z−1)Ei,l(z

−1)yi(t+ l) =

= Beq
i (z−1)Ei,l(z

−1)∆ui(t+ l − d− 1)
(28)

Finally, substituting (27) into (28) the prediction for
yi is obtained in the form

ỹi(t+ l|t) = Gi,l(z
−1)∆ui(t+ l − d− 1)+

+ Fi,l(z
−1)yi(t)

(29)
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where

Gi,l(z
−1) = Ei,l(z

−1)Beq
i (z−1) =

= g0 + g1z
−1 + ...+ gngz

−ng
(30)

The polynomials Ei,l(z
−1) and Fi,l(z

−1) can be cal-
culated recursively as follows

Ei,l+1(z
−1) = Ei,l(z

−1) + f i
l,0z

−l

f i
l+1,j = f i

l,j+1 − f i
l,0ãi,j+1, j = 0, ..., na − 1

(31)

where ãj denotes the coefficient of the j + 1th term
in the polynomial Âeq

i (z−1). Since the control input
ui(t) influences the system output after l sampling pe-
riods, the values of horizons Ny,i, Nu,i can be defined
as Ny,i = Nu,i = Ni.
Thus, the equations for prediction steps are obtained

in the form:

ỹi(t+ d+ 1|t) = Gi,d+1(z
−1)∆ui(t)+

+ Fi,d+1(z
−1)yi(t)

ỹi(t+ d+ 2|t) = Gi,d+2(z
−1)∆ui(t)+

+ Fi,d+1(z
−1)yi(t)

...

ỹi(t+ d+Ni|t) = Gi,d+Ni(z
−1)∆ui(t+Ni − 1)+

+ Fi,d+Ni(z
−1)yi(t)

(32)

or in the vector form

ỹi(t) = Giũi(t) + G̃i(z
−1)∆ui(t+ l − 1)+

+ F̃i(z
−1)yi(t)

(33)

ỹi(t) =

 ỹi(t+ d+ 1|t)
...

ỹi(t+ d+Ni|t)


ũi(t) =

 ∆ui(t)
...

∆ui(t+Ni − 1)


(34)

F̃i =

 Fi,d+1(z
−1)

...
Fi,d+Ni

(z−1)



Gi =


g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gNi−1 gNi−2 · · · g0


(35)

G̃i(z
−1) =


(Gi,d+1(z

−1)− g0)z
(Gi,d+1(z

−1)− g0 − g1z
−1)z2

...
(Gi,d+1(z

−1)− g0 − g1z
−1 · · · − gNiz

Ni)zNi


(36)

The last two terms in (33) depend only on the previ-
ous values of the inputs and the outputs, therefore the
prediction equation can be rewritten as follows:

ỹi(t) = Giũi(t) + fi (37)

where fi denotes the free response and the rest with the
constant matrix Gi denotes the forced response.
Using (33) the cost function (26) can be simplified to

Ji(t) =
(
Giũi(t) + fi − w̃i(t)

)T

Πy,i

(
Giũi(t) + fi − w̃i(t)

)
+

+ ũT
i Πu,iũi =

1

2
ũT
i Hũi(t) + bTi ũi(t) + f0,i

(38)
where

Hi = 2
(
GT

i Πy,iGi +Πu,i

)
bTi = 2

(
fi − w̃i(t)

)T

Πy,iGi

f0,i =
(
fi − w̃i(t)

)T

Πy,i

(
fi − w̃i(t)

) (39)

3.3 Formulation of Unconstrained Control Law
Having computed the optimal prediction, it is now

possible to calculate future control inputs, which mini-
mizes the cost function (38) with respect to the known
set-point, chosen control and predictive horizons and
the weighting factors. Using some algebra [Camacho
and Bordons, 2004] we obtain a control law in the form

ui(t) =
(
GT

i Gi +Πu,iI
)−1

GT
i (w̃i(t)− fi) (40)

According to a receding horizon approach [Ma-
ciejowski, 2002], only the first element of the control
signal is applied at the plant input

∆ui(t) = Ki(w̃i(t)− fi) (41)

with K representing the first row of(
GT

i Gi +Πu,iI
)−1

GT
i . The above equation with

substituted (33) and (37) leads to

∆ui(t) =

Ny,i∑
l=1

ki,l(w̃i(t+ l)− fi(t+ l)) =

=

Ny,i∑
l=1

ki,lw̃i(t+ l)−
Ny,i∑
l=1

ki,lGi,l(z
−1)∆ui(t− 1)−

−
Ny,i∑
l=1

ki,lF̃i(z
−1)yi(t)

(42)
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If the reference trajectory is considered to be constant
over the prediction horizon, i.e. w(t + l) = w(t), (42)
can be rewritten as follows:

1− z−1

Ny,i∑
l=1

ki,lGi,l(z
−1)∆ui(t) =

=

Ny,i∑
l=1

ki,l(w̃i(t+ l)−
Ny,i∑
l=1

ki,lF̃i(z
−1)yi(t)

(43)

Comparing (43) with the pole-placement structure
[Landau, 1998] with the control law given as

Ri(z
−1)∆u(t) = Tiz

−1w(t)− Si(z
−1)y(t) (44)

the polynomials of GPC controller can be obtained in
the following form:

Ri(z
−1) = 1 + z−1

Ny,i∑
l=1

ki,lGi,l(z
−1) (45)

Si(z
−1) =

Ny,i∑
l=1

ki,lFi,l(z
−1) (46)

Ti(z
−1) =

Ny,i∑
l=1

ki,l (47)

The polynomial representation of the controller is used
according to Fig. 3 where the local predictive con-
trollers are described in the RST form [Landau, 1998].
In the unconstrained case when the control law and the

G1

u1( )k y1( )k
T1 1/ R1Δ

S1

w1( )k

um( )k ym( )k
Tm 1/ RmΔ

Sm

wm( )k

……

Gm

eq

eq

Figure 3. Polynomial structure of the decentralized controller for
MIMO system represented by equivalent subsystems.

controlled plant are linear, it is possible to derive the
closed-loop characteristic equation, find its poles, and
possibly to examine various frequency domain charac-
teristics.

3.4 Formulation of Constrained Control Law
When considering constraints on inputs ⟨ui, ui⟩, out-

puts ⟨y
i
, yi⟩ or input rates ⟨dui, dui⟩, it is no longer

possible to express the solution explicitly in an ana-
lytical form. Instead, an optimization procedure has
to be performed at each sampling period, solving a
constrained minimization problem defined by (38) and
constraints transformed so as to be related to ũ(t)

ui ≤ ũi(t) ≤ ui

dui ≤ Zidũi(t)− Liui(t− 1) ≤ dui

y
i
≤ Giũi(t) + fi ≤ yi

(48)

Since ũi(t) = Liui(t−1)+Zidũi(t) the above equa-
tions can be rewritten into the following form

Θiũi(t) ≤ ri (49)

where

Θi =


Ii
−Ii
Zi

−Zi

Gi

−Gi

 , ri =



ui

−ui

dui − Liui(t− 1)
−dui + Liui(t− 1)

yi − fi
−y

i
+ fi

 (50)

and

Zi =


1 0 0 . . . 0
1 1 0 . . . 0
...

...
. . .

...
1 1 1 . . . 1

 , Li =


1
1
...
1

 (51)

In order to find solution to this optimization problem,
usually a quadratic programming solver is used.
Formulation of the quadratic programming problem
for i = 1, ...,m subsystems is in the form

minimize
∆ui

1

2
∆uT

i Hi∆ui + bTi ∆ui

subject to Θiũi(t) ≤ ri

(52)

The final solution is a trajectory consisting from the
control input differences; according to the receding
horizon strategy just the first element is applied at the
plant input in each sampling period.

3.5 Controller Design Procedure
The proposed decentralized predictive control strategy

is based on designing local predictive controllers for m
individual equivalent subsystems. By finding m predic-
tive controllers that guarantee specified performance of
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equivalent closed-loops, closed-loop stability and per-
formance for the overall system is guaranteed.
The decentralized predictive control design proce-

dure consists of the following steps [Kozáková and
Krasňanský, 2015]:

1. Plant model discretization:

• Discretization of the continuous-time plant
G(s) ∈ Rm×m using an appropriately cho-
sen sampling time Ts.

• Specification of the sampling frequency and
of the feasible frequency range.

ωs = 2π/Ts, ω ∈ ⟨0;ωs/2⟩

2. Generating equivalent subsystems

• Partition of obtained discrete-time trans-
fer function matrix G(z) into the diagonal
Gd(z) and off-diagonal part Gw(z) accord-
ing to (2).

• Calculation and plotting of characteristic loci
gi(z), i = 1, ...,m of the matrix Gw(z) for
z = ejωTs , where ω ∈ ⟨0, ωs/2⟩.

• Choosing characteristic function gk(z) for a
fixed k ∈ {1, ...,m}.

• Generating and plotting discrete frequency
responses of independent equivalent subsys-
tems for selected gk(z)

Geq
ik(z) = Gdi(z) + gk(z), i = 1, ...,m,

for k ∈ {1, ...,m}.

3. Identification of linear models (of appropriate or-
der) of equivalent subsystems using the frequency
responses data (moduli and phases of equivalent
subsystems).

4. Independent design and tuning of m local
SISO GPC controllers with specified perfor-
mance requirements for each equivalent subsystem
Geq

i , i = 1, ...,m using GPC design methodology
according to Section 3.2.

5. Assessment of achieved performance in individual
equivalent closed-loops, and of the overall system
respectively. Equivalent closed-loop characteristic
equations are easily obtained by substituting the
analytic solutions (44) into (23).

4 Case Study
A laboratory plant consisting of two interconnected

DC motors (a MIMO plant with two inputs and two
outputs) has been used to demonstrate practical appli-
cation of the proposed control design technique. Sys-
tem inputs u1, u2 are armature voltages, measured out-
puts y1, y2 are the angular velocities of DC motors con-
verted to voltages. It is possible to adjust the load of
each motor in the range of the input voltage. Mea-
surement of these signals have been preformed using

the data acquisition card Advantech PCI 1711. Inter-
connection of the DC motors brings about interactions
among plant subsystems. Functional block diagram of
the system is in Fig. 4.

The main objective is to control the angular velocities

u1( )k

u2( )k

y1( )k

y2( )k

DC motor 1DC motor 1

DC motor 1DC motor 2

1/x

1/x

Figure 4. Schematic of interconnected DC motors system.

of individual DC motors to track a time-varying refer-
ence signal. Mathematical model of the plant was iden-
tified experimentally from step responses measured in
the operating point specified by u1 = u2 = 3.5V , and
the loads uL1 = 4V, uL2 = 3V .
Discrete-time transfer function model obtained using

sampling time Ts = 0.1s is in the form:

G(z−1) =

G11(z
−1) G12(z

−1)

G21(z
−1) G22(z

−1)

 (53)

where

G11(z
−1) =

−0.006647z−1 + 0.01394z−2

1− 1.855z−1 + 0.861z−2

G12(z
−1) =

−0.0001223z−1 + 0.0002967z−2

1− 1.971z−1 + 0.9717z−2

G21(z
−1) =

−0.0001501z−1 + 0.0003441z−2

1− 1.972z−1 + 0.9725z−2

G22(z
−1) =

−0.006151z−1 + 0.01607z−2

1− 1.821z−1 + 0.8292z−2

To generate equivalent subsystems, characteristic loci
gk(z), k = 1, 2 of the off-diagonal transfer function
matrix Gw(z) have been calculated; g1(z) was chosen
to generate equivalent subsystems according to (15).
Subsequently, discrete-time linear models have been

obtained by identification from the frequency response
data using fourth-order Output-Error models.

Geq(z−1) =

Geq
1 (z−1) 0

0 Geq
2 (z−1)

 (54)
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where

Geq
i (z−1) =

Beq
i

Aeq
i

, i = 1, 2

and

Beq
1 (z−1) = −0.006782z−1 + 0.02761z−2−

− 0.03465z−3 + 0.01382z−4

Beq
2 (z−1) = −0.006287z−1 + 0.02876z−2−

− 0.03835z−3 + 0.01589z−4

Aeq
1 (z−1) = 1− 3.826z−1 + 5.49z−2−

− 3.5z−3 + 0.8369z−4

Aeq
2 (z−1) = 1− 3.793z−1 + 5.392z−2−

− 3.405z−3 + 0.806z−4

Bode diagrams of generated equivalent subsystems
and their polynomial models are compared in Fig. 5.
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Figure 5. Bode plots of calculated equivalent subsystems (circle-
marked line) and identified OE models (dotted line).

Local MPC controllers in the polynomial form (44)
were designed using the above GPC design procedure
with the following parameters: Ny = 7, Nu = 7,
weights Πy1 = 0.57,Πy2 = 1.58 and sampling time
T = 0.1.
Resulting RST controller polynomials for the equiva-

lent subsystem Geq
1 (z−1):

R1(z
−1) = 1− 0.9992z−1 − 0.0007846z−2

S1(z
−1) = 3.477− 11.33z−1 + 14.15z−2

− 7.993z−3 + 1.718z−4

T1(z
−1) = 0.0191

Controller polynomials for the equivalent subsystem
Geq

2 (z−1):

R2(z
−1) = 1− 0.9991z−1 − 0.0008891z−2

S2(z
−1) = 2.638− 8.405z−1 + 10.32z−2

− 5.754z−3 + 1.222z−4

T2(z
−1) = 0.0252

For a comparison consider now different design pa-
rameters: Ny = 7, Nu = 7,Πy1 = 0.85,Πy2 = 3.50.
The resulting RST controller polynomials for equiva-

lent subsystem Geq
1 (z−1) are:

R1(z
−1) = 1− 0.9995z−1 − 0.000512z−2

S1(z
−1) = 2.3326− 7.6011z−1 + 9.4908z−2

− 5.3617z−3 + 1.1522z−4

T1(z
−1) = 0.0128

Controller polynomials for the equivalent subsystem
Geq

2 (z−1):

R2(z
−1) = 1− 0.9996z−1 − 0.000422z−2

S2(z
−1) = 1.1914− 3.7961z−1 + 4.6635z−2

− 2.5991z−3 + 0.5518z−4

T2(z
−1) = 0.0114

Closed-loop stability has been examined from the
closed-loop equivalent characteristic polynomials as
well as from closed-loop poles of the full system un-
der the decentralized controller.
For the weights Πy1 = 0.57, Πy2 = 1.58 the closed-

loop pole with a maximum modulus of the full sys-
tem is ∥p∥ = 0.9861. For the individual equiva-
lent subsystems, maximal moduli are ∥peq1 ∥ = 0.9882
and ∥peq2 ∥ = 0.9872. Considering selected weights
Πy1 = 0.85, Πy2 = 3.50 the maximum closed-loop
pole moduli are ∥p∥ = 0.9861, ∥peq1 ∥ = 0.9886 and
∥peq2 ∥ = 0.9886.

4.1 Experimental Results
Experimental results on the real plant under the de-

signed decentralized controller are shown in Fig. 6 and
Fig. 7.
Obtained theoretical and experimental results prove

that the local GPC controllers independently designed
for each equivalent subsystem which constitute the re-
sulting decentralized controller guarantee the closed-
loop stability.
Considering constraints on input and output vari-

ables, the design procedure has been performed simi-
larly but considering on-line computation of the con-
trol laws according to Section 3.4. The design param-
eters have been set as follows: Nu = Ny = 7, Πy1 =
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Figure 6. Measured time responses of the system outputs for differ-
ent values of weighting parameters.
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Figure 7. Measured time responses of the control inputs for differ-
ent values of weighting parameters.

9, Πy2 = 15 and the constraints umin = [0, 0]T ,
umax = [3.7, 3.4]T , ∆umin = [0, 0]T , ∆umax =
[0.025, 0.025]T , ymin = [0, 0]T , ymax = [4.5, 5]T .
The simulation results depicted in Fig. 8 demonstrate
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Figure 8. Closed-loop responses of constrained plant in-
puts/outputs (solid red/blue lines).

good performance of the proposed control design. In
this case, closed-loop stability can be guaranteed via
choosing a reasonably long prediction horizon.

5 Conclusion
In this paper a novel approach to the decentralized

GPC controller design within the ESM design frame-
work has been proposed. The main advantage of this
approach is a diagonalization of the original plant by
generating a diagonal matrix of equivalent subsystems.
Thus, local predictive controllers of individual equiv-
alent subsystems can be designed and tuned indepen-
dently; stability and achieved performance of equiv-
alent closed-loops are guaranteed for the full system.
Important points in the design procedure are model
identification from frequency responses of equivalent
subsystems.
Stability can easily be analyzed based on the polyno-

mial control structure of the unconstrained GPC con-
trol algorithm. Considering constraints on system vari-
ables, optimization has to be performed at each sam-
pling instant. In this case, stability is guaranteed via
choosing a reasonably long prediction horizon.
The proposed decentralized GPC design approach was

verified on a real laboratory plant. Presented theoreti-
cal and experimental results have proved effectiveness
of the proposed control design strategy.
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