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Abstract

Central-force problems appear in various phenomena
in science. This paper aims to study the near-collision
solutions in Non-Newtonian central force.

Through a judicious change of variables we remove
the singularity presented in the cases in which the so-
lutions approach the origin. Through that, a fictitious
flow about the singularity is created which allows the
understanding of the near-collision dynamics.
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1 Introduction

Several systems in physics are described by a vector
field variant in time and or space. Let us take a particle
moving in a force field F.

Mathematically, F is a vector belonging to R™. In a
physical view, F ()? ) can represent the force exerted on
a particle located at X eR"

The Newton’s second law stablishes the link between
the physical and the mathematical concepts of force
field. It asserts that, at any instant, a particle inserted
in such force field moves in a such way that the force
vector F in a location X of the particle is equal to the
aceleration vector of the particle times his mass m, i.e.
F=mX".

This system of n secont order differential equations
may be writen as a system of 2n 1st-order differential
equations in R™ x R"™ such

X"'=V (1)
F(X) )

where V is the velocity of the particle.
The solution X(¢) C R™ of 2nd-order system
lies in a configuration space while the solution
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(X (t), X (t)) € R™ x R" lies in the phase space of the
system.

2 Central Force Systems

A force field F is said to be a central type if F(X) is
a vector field points away or toward to every X. Partic-
ulaly, if the vector F (X ) is a scalar multiple of X,

—

F(X)=MX)X 3)

where the coefficient )\()? ) depends on X.

A central force model is often used to describes sev-
eral phenomena in real world like a motion of an ob-
ject orbiting around a massive body according to the
Newton’s law of gravitation, or the interaction between
charged particles describer by the Coulomb law.

Since the force is conservative, F can be writen as a
gradient of a potential scalar function U ()Z' ), such that

F(X)=-VU(X) (4)

In the special case known as a Newtonian central force
system, the potential is of type

and the force varies with the inverse of the square dis-
tance.

3 Non-Newtonian central force problem

However, in some systems, such as those classi-
cal treated in [Buckingham, 1938], [Lennard-Jones,
1931], [Nicholson, 1989] and in many others related to
Schrdinger’s equation described in [Ikhdair and Sever,
2007], the scalar function varies in different ways from
Newtonian cases.



Our focus is to discuss the classical cases of a Non-
Newtonian central force problem. In those cases, the
potencial scalar function, which may represents an po-
tential gravitational energy, is given by

- 1
U(X) = ‘X|” )]
where v > 1.
In this case, the force
- v N
F=Zem ©

is not defined in X = 6; indeed the force becomes in-
finite as the moving particle approaches collision with
the massive body.

Although the solutions in X=0 may have not much
importance in the real systems, it is very interesting to
elucidate how solutions behave near to singularity. Our
objective here is to remove this singularity by a judi-
cious change of variables and time scalings.

Let us restrict our analysis to particles moving in plane
(X = (z,y) € R?), such that position can be writen in
polar coordinates (Fig. 1) as

(z,y) = (cos 8,sin §)
and the velocity has components

(z',y") = (r' cos @ — r@ sin 0,1’ sin 6 + r6’ cos 6).
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Figure 1. Reference system for Central force problem

The solutions belong to configuration space
C = R? — 0. Therefore, the phase space is denoted by
P = (R? - 0) x R%

This phase space can be seen as a colection of all
tangent vectors at each point X € C. Fora given
X e R2—0,let Ty = {(X,Y)|V € R%}. Ty is
the tangent plane on the configuration space at X,

Hence, P = (Jg ¢ Tx is the tangent space of the
phase space.

We may introduce new variables (v,., vy )in the tangent
space as

— . (cosf —sinf
V=1 (sin9> + v ( cos ) )

where v, = 7’ and vy = r6’.
Differentiating once more, we have

=, cosd
Vi= | X|(+D) (sine)
v2\ [cosf v, —sin 6
- (U; B 76) <sin0> +( - —H)é) ( cosf >(8)

Rewrinting the system in terms of the new coordinates

(©))

Both the mechanical energy and angular momentum
are integrals of motion, given respectively by

1 1
E:§(Uf+v§)+r—y (10)

h=720'(& x ) (11)

4 Removing the singularity

In a similar way to what was done in [McGehee, 1974]
we “blow up” the singularity via the following change
of variables.

up = r* v, (12)
ug = r”/21)0 (13)

so that the system of equations becomes



. (14)

ul, = r(5+1) [% +ui + l/i|

up = r_(%+1)uru§ [% - 1]

If we multiply this equations by r(gﬂ) we will re-
move the singularity that exists when » — 0. In that
case, the solution curve of the systems remain the same
but are parameterized differently.

Strictly, we introduce a new time variable 7 such such
that

a_(5+1)
I r (15)

In this new timescale the system becomes

P =", (16)
6 = uy (17)
. vu; 2
Uy = 7+U9+V (18)
. v
tig = Uptig [5 _ 1] (19)

where the dot indicates differentiation with respect to
T.
As can be seen, when r is small, the variation of 7 with
respect to ¢ is close to zero. Therefore, the scaled time 7
moves slowly then ¢ near to the origin. In summary, the
change of variables removes the singularity and allows
to maintain the continuity of the solution.

5 Collision Solutions Analysis

In a precise manner, the singularity was replaced by
a new set (well defined) given by » = 0 and 6, with
u, and ug being arbitrary. Naturally, the set r = 0 is
an invariant set for the flow, provided that » = 0 when
r=20.

Since, in terms of new variables, the total energy rela-
tion is

1
5(vf +v3) +1=nhr" (20)

in 7 = 0 we have a subset A, called collision surface
and defined by

u? +uj = —2 1)

with 6 arbitrary, in which the solution behave informs
how the movement occurs in singularity’s neighbor-
hood.

This collision surface can be seen as a two-
dimentional torus (Fig. 2), formed by a circle in 6 di-
rection and another circle in the w,-ug plane.

Figure 2. Collision surface A

In this subspace, the system reduces to

0 = uy (22)
iy = ul [1 - %} (23)
Uy = UypUg [g — 1} 24)

This system can be analyzed as follow:

— For v < 2 (provided ug # 0) the coordinate
u, increases along any solution in A, as shown in
Figure 3 for v = 1.99 case.

— For v = 2, there is a bifurcation, in which w, has
no slope.

—For v > 2, the coordinate u,- decreases along any
solution in A (since ug # 0), as shown in Figure 4
for v = 2.01 case.
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Figure 3. Phase plane for v = 1.99
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Figure 4. Phase plane for v = 2.01

6 Final Remarks

This paper deals with an analytical way to remove the
singularity existing in near collsion solutions on Non-
Newtonian potentials. Through a suitable change of
variables, the system is parameterized and the previous
divergent solution was replaced by a “smooth solution”
when the system goes close to the singularity.

This type of artifice is extremely useful, especially
in computational treatment of scatteting problems, in
which the analysis of dynamics close to singularity
would produce an overflow, allowing analysis of con-
figuration and phase spaces, even when the particle ap-
proaches the origin.

Acknowledgements

The authors would like to thanks to CNPq (Process
435404/2016-4) and to Fapesp (grant 2015/50122-0
Sao Paulo Research Foundation) for the finacial sup-
port.

References

Buckingham, R. A. (1938). The Classical Equation of
State of Gaseous Helium, Neon and Argon Proceed-
ings of the Royal Society of London. Series A, Math-
ematical and Physical Sciences . 168 pp. 264-283
Wiley-Intersciences. New York.

Ikhdair, S. M. Sever, R. (2007). Exact solutions of the
radial Schrdinger equation for some physical poten-
tials Central European Journal of Physics. Vol 5. N.
4,516-527.

LennardJones, A. F. (1931). Cohesion Proceedings of
the Physical Society. Vol. 43, 461-482.

McGehee, R. (1974). Triple collision in the collinear
three body problem Invetiones Mathematicae. Vol.
27, p.191

Nicholson, A. F. (1962). Bound States and Scattering
in an -2 Potential Australian Journal of Physics. Vol.
15, p.174



