PHYSCON 2011, Lén, Spain, September, 5-September, 8 2011

POLE PLACEMENT OF LINEAR MULTI-VARIABLE
TIME-VARYING DISCRETE
NON-LEXICOGRAPHICALLY-FIXED SYSTEMS

Yasuhiko Mutoh Tomohiro Hara
Dept. of Engineering and Applied Sciences Dept. of Engineering and Applied Sciences
Sophia University Sophia University
Japan Japan
y_mutou@sophia.ac.jp tomohi-h@sophia.ac.jp
Abstract 2 Preliminaries

In this paper, a new design method of pole placement Condider the following linear time-varying mutltivari-
for linear time-varying multivariable discrete systems able discrete system.
is considered. Using the concept of relative degrees of
the system, we propose a simple design procedure to z(k+1) = A(k)z(k) + B(k)u(k) (1)
derive the pole placemetn state feedback gain without
transforr_ning the system into any ca_m_onicallform. .The wherex € R™ andu € R™ are the state variable and
method is also applicable to non-lexicigraphically fixed the input. A(k) € R™*™ and B(k) € R™™ are time-

systems. varying coefficient matrices. The state transition matrix
of the system (1) fronk = j to k = i, ®(4,5), is

Key words defined as follows.

Pole Placement, Time-Varying System, Multivariable

System, Discrete System D(1,5) = Al —1DAGE—2)---A(j) i>7 (2

1 Introduction Definition 1. Systen(1) is called "completely reach-

This paper concerns the pole placement control design@ble inn steps” if and only if, for anys, < R" there

method for linear time-varying discrete multivariable €Xists a bounded input(l) (I =k, - - ,k+n—1) such

systems. The method can be regarded as "a discretdhatz(k) = 0 andx(k +n) = z, for all k.

Ackermann-like algorithm”. The basic problem is t0 | emma 1. System(1) is completely reachable in

find a time-varying state feedback gain for linear time- gtens if and only if the rank of the reachability matrix
varying discrete systems, so that the closed l00p Sys-4efined below is, for all k.

tem is equivalent to some time-invariant system with
desired constant closed loop poles. For this purpose,
we focus on the relative degrees of the multi-variable
plant. It will be shown that the pole placement con-
troller can be derived simply by finding some partic- Where,

ular "output signal” such that the relative degree from

the input to this output is equal to the order of the sys- By(k) = B(k+n—1)

tem. Then, the feedback gain matrix can be calculated Bi(k)=®(k+nk+n—1)B(k+n—2)
directly from the system parameters without transform- .

ing the system into any standard form. An other prop- : 4)
erty of the time-varying system is that the reachability Bp_1(k) = ®(k +n,k + 1)B(k)

(controllability) indices might be variable. Such a sys-
tem is called a non-lexicographially-fixed system. For
continuous systems, N.Olgac et.al. [8] also discussed
this problem, and proposed one design method by aug-
menting the original system. Here, we use this idea for o 0
multivariable discrete systems, and propose the new de-UR(k) = [08()--- 00,
signh method of the pole placement state feedback. Q)

Ur(k) = [ Bo(k), Bi(k),- -+ ,Bp_1(k)]  (3)

Letbl(k) be thei-th column ofB;(k), then, the reach-
ability matrix Ur (k) can be written as

(B)| -~ b7 (k) - 0 (k)]

m



Note thath} (k) also satisfies (4), i.e.,

W) (k) = bi(k +n—1)
bi(k) = ®(k+n,k+n—1)bj(k+n—2)

: (6)
bt =@k +n,k+ 1)b;(k)

whereb; (k) is thei-th column of B(k). Suppose that
the system (1) is completely reachableigteps. Then,
the reachability indicegy;(i = 1,--- ,m), can be de-
fined such that

Zﬂi =n (7
=1
and then x n trancated reachability matrix
R(k) = [08(k), -, B> (k)] -+ |
b (), -, bl =t ] (8)

is non-singular. Itis assumed that > pe > -+ >
1 Without loss of generallity.

3 Pole Placement

In this section, we consider the pole placement con-

trol for linear time-varying multivariable discrete sys-

tems. The problem is to design a state feedback for the
system(1) so that the resulting closed-loop system be- 7;(k + ;)
comes equivalent to some linear time-invariant system

with arbitrarily stable poles. For this purpose, we first
define a new output signalk) € R™ by

C)

such that the relative degree frank) to n(k) is equal
to the system degree Here,

o )
k)= |0 | ewy = |7 (10)
nm(k) er;z(k)

Then, the problem is to fin@'(k) € R™*" that satis-
fies this condition.
Using suchn(k), the pole placement state feedback

control can be desined by a simpler procedure than con-

ventional methods.
Let ¢/’ (k) be thei-th row of C'(k). We definec!” (k)
by the following.

&7 (k) = ¢ (k)

VT () = T (ke + 1) A(k)

(11)

fori=1,---,m.

Lemma 2. The relative degree from(k) to n(k) isn
if and only if the following equations hold.

(e Dbi(k) = 1
AT+ 1)bi(k) =0, 1=0,1,--+,p; —2
l=0,1, S — 1
ATk + )b (k) = 0, { r=1,2-,m
(r#1i)
(12)

fori=1,---,m. Here,cl(»*“_l)(k+ 1)b(k) is equal to

1 for simplicity without loss of generality, since its only
requirement is to be a non-zero scalar.

(Proof) Using (1), (9) and (11):(k + 1), ni(k + 2),
.-+ can be calculated to obtain the following equations.

mik + 1) = 7 (k + 1) A(k)e(k)
+ e (k4 )by (k) (k)

+ T (k + 1)bi(k)ui (k)

T (k4 1) A(k) (k)
+ T (e + )by (k)i (k)
AT (k) (k) + ui (k) + Yi(i+1)i+1(k)

Here,

vij = ¢ (k4 1)b; (k) (14)
This implies the relative degree from(k) ton;(k) are
;. Then, the total relative degree framik) to n(k) is
n and the converse is also clear.

SuchC/(k) can be obtained by solving (12). Using (5),
(6) and (11), (12) can be rewritten as follows.

(R (k—n) =1

l:Oa]-a" a;u'i*]-
cz(k)bé(k—n):O, ,E:;é]w%a , M
1
(15)

These equations contain ordf/(k:) This makes it pos-
sible to deriveC'(k) directly from (12). Then, we have
the following Theorem.



Theorem 1. If the system is completely reachable in
n steps, there exists a new outpy(t) such that the
relative degree fromu(k) to (k) isn. And, suchC'(k)
can be calculated by the following equation.

C(k) =WR™ Y (k —n) (16)
where
W= diag(wlvw27 e 7wm)
w; =1[0---01] € RV 17

In the sequel, using thig(k), we will obtain the pole
placement state feedback gain.

As stated above, i€(k) satisfies (12), we have the
following equations.

ni(k) = &7 (k) (k)
mi(k+1) = et (k)z(k)
(18)
ni(k + pe) = " (k) (k) + ui (k)
fori = 1,---,m. Letq’(z) be the ideal characteris-

tic polynomial of the closed-loop system fram(k) to
b (k), ie.,

¢'(z) = 2" + afh_lz“i_l + -+ aﬁz + af) (29)

Here,z is the shift operator.
Multiplying n(k 4+ 1) by o;(1 = 0,1, ..., ;) and then
summing them up, the following equation is obtained.

¢'(2)ni(k) = DI (k)x(k) + A] (k)u(k) ~ (20)

where,o,, = 1, andD] (k) and\’ (k) are defined as

0T (k)
. o T (k)
D; (k) = [aa,al17~-~ NN 1] (21)
T (k)
)‘;F(k) = [07 <, 0,1, Yi(i+1)s " a’%m}
Let defineD (k) andA(k) by the following.
Di (k) AT (k)
DT (k) (k)
Dk)=1 . |, Ak)= (22)
Dy, (k) A (k)

Then, by applying the state feedback
(23)

to the system (1), the closed loop system fro®) to
n(k) becomes as follows.

q'(2)
n(k) =0 (24)

. qm, (Z)

This system is time-invariant and has the following
state representation.

wk+1) = A"w(k) (25)
The characteristic polynomial of* is
q9(z) =[] ¢'(») (26)
=1
and, the state variabley(k), is
[ omk) ] [ dT(k) ]
m(k +‘M1 -1 Cﬁu_iT(k)
w(k) = : = : (k)
nm(k) an (k)
a4 = D] Lt =17 (1)
= P(k)x(k) (27)

On the other hand, from (1) and (23), the closed loop
system becomes
r(k+1) = (A(k) — B(k)DT(k))x(k).  (28)
Thus, the system (28) is equivalent to the system (25),

under the transformation matriR(k). It is then obvi-
ous that the following equation holds.

P(k+1)(A(k) — B(k)DT (k))P~ (k) = A* (29)

This implies that the state feedback (23) makes the
closed loop system equivalent to the system (25)
that has an arbitrarily stable characteristic polynomial,
q(z)-

Note that the transformation matrix(k) and P~ (k)
must be bounded functions, in other wor@%) must
be a Lyapunov transformation, to ensure the stability of
the closed-loop system.

The procedures to obtain the state feedback gain is
summarized below.



Pole Placement Design Procedure where

STEP 1 Calculate the reachability matriXz (k — n) 1 1

and the reachability indices;. 01(k) = = sin(0.2(k—1)) — = cos(0.2(k—2)) —3
STEP 2 CalculateC'(k) = WR~!(k —n) for the new 2 2

output sigaly(k), using the trancated reachability

matrix R(k).
STEP 3 Determine the desired closed-loop character- 3 1
istic polynomials, i.e., da(k) = 5 sin(0.2(k—1))+§ c0s(0.2(k—2))+3
q'(z) = 2" +aj, 2"+ afz +af
fori=1,---,m. . - .
STEP 4 Using (21) and (22), calculate (k). STEP3 The desired stable characteristic polynomi-

Then the state feedback for the pole placement is als of the closed-loop system are chosen as

Ty — .24 1 1_ 2 _
w(k) = —A=1 (k) D7 (k) (k) q(z)=z"4+az+ 0oy =2"+0.4z—0.05

(39)
2 2
¢(z)=z4+a5=2+0.1 (36)
3.1 Example 1 =) 0
Consider the following system.
STEP4 From (21) and (24), we have
x(k + 1) = T —2
1] ———=
10 2 10 D(k) = B%Em , Ak) = [0 2h(’“>1+h(’“+1)]
105+ cos(0.2k) | z(k) + |sin(0.2k) 1| u(k) 2 @37)
00 1 1 0
(30)

where

This system is unstable and completely reachable in
n(= 3) steps. The pole placement state feedback is
calculated according to the following steps.

AT (k
D (k) = [-0.05 0.4 1] [c}T(k)} (38)

- L i’ (k)
STEP 1 The reachability matrix is or 1
o' (k
D3 (k) = [0.11] LiTgk;] (39)
Ur(k—3) =
. 1 0 3 0 5 0 and
sin(0.2(k —1)) 1 hi(k—1)0 ho(k—1) 0
1 o 1 0 1 0 " (k) =[5 0 —3]
(31) 10 2
cit(k)y=1[% 03] |10 hs(k)
00 1
where hy (k) = 6 + cos(0.2k) and ha(k) = 8 + 10 2 10 2
cos(0.2k). From this, the reachability indices are ob- AT (k) =[5 0 —3] [1 0 hs(k + 1)} 10 hg(m}
tained asu; = 2 andu, = 1. 00 1 00 1
The trancated reachability matri(k — 3) is T (k) = [61(k) 1 6a(K)]

10 2
e3T(k) = [01(k+1) 1 82(k +1)] [1 0 h3(k‘)j|
00 1

1 30
R(k—3) = {sin(O.Z(k: — 1)) ha(k — 1) 1] (32) whereha(k) = 5 + cos(0.26).

1 1 0

Thus, the pole placement state feedback:(s) =

_A-1 T
STEP2 Using (16), calculate the new output matrix AT (k) D™ (k) (k).

C (k) as follows. The simulation results are shown in Fig.1.

0o 3
0 4 ] (33) 4 Pole Placement of Non-Lexicographically-Fixed
1

51(k) 16, (i) Systems
L L In the previous section, the reachability indices are
_ |72 0 -3 supposed to be fixed. Such a system is called a
(34)
d1(k) 1 da(k) lexicographically-fixed system. However, since the



Pole Placement for Linear Time—Varying 1 H
Discrete MIMO Systems whereb,,; (k) is calculated as follows.

op [ ——— by, (k) =

StateValue(1) 1
StateValue(2) | bgi (k‘) =
StateValue(3) )

Ak 4+n— 1Dk —1)
[A2(k+n—1) Ai(k+n—1)]b), (k— 1)}

State Variables

b (k) =

Ak +n — 1) (k — 1))
; ; [A2(k+n—1) Ai(k+n—1)] by~ (k- 1)
12 14 (46)
Step
whereb,, andb,, are thei-th column of B, andB. (k)
Figure 1. Simulation Result of the Pole Placement Control respectively, for = 1,---,m. This implies that the

upper block ofR, (k) is the augmented trancated reach-
ability matrix of (1), R, (k), i.e.,
system has time-varying parameters, there is a possi-
bility that the reachability indices are also variable. In
this section, we consider the pole placement control
desing procedure for a non-lexicographically-fixed sys-

tems. Valasek et. al. proposed the pole placement de- The problem is then to findl; (k), A2 (k) and B, (k)
sign method for non-lexicographically-fixed multivari- such thatR, (k) is non-singular for allk. Since the
g .

able continuous systems in [8]. Here, we apply this 5n of,, « 1 matrix R, (k) is n, there exists a matrix
method to the discrete system together with the the new p (k) such tghatR (k) is non-singular for alk. Let
€ g .

pole placement technique stated in the previous section.such a matrixi, (k) be denoted by

Assume that the system (1) is completely reachable in

n steps, and is non-lexicographically-fixed. It is also

assumed that the maximum value of each reachability e(k) =

index ; is known, i.e., (7 (k) - v =Y k)| - |70 (k) - i (K)]
(48)

RAmz[M@q (@7)

v = max p;(k) (i=1,---,m) (40)
k In addition to this, we choose: vectors,r;! (k), - - -,

Next, we extendu; to v; in R(k) to obtain R, (k) € rem (k), arbitrarily. Then, from the lower block of (48)

R™ " as follows. we have
Ry(k) = [b9(k), - 00 (k)] -+ [A2(k +n —1) Ai(k+n—1)] Ry(k — 1)
e b9, (R), bt (A1) = RS (k—1) (49)
Define the augmented system by whereRT (k) is defined by the following.

24(k + 1) = Ag(K)ay (k) + By(R)u(k)  (42) R:<k>:[ré(k)-~-r:;<k>|~--|ré,,b<k>---r::((@g)

wherez (k) € R"s and
Since R, (k) is chosen to be non-singular for &l

T As(k), Ai(k)] is obtained b
a0 = [ 40 G = [Z)] g R T obEnedy
Ag(k) As(k)] = R (k)R ' (k —n)  (51)
5. |50 (@4) [A:(8) (B

and,

Matrices A; (k), A2(k) and B.(k) should be chosen

such that the reachability indices of the augmented sys- Be(k) = [r0 (k) rQ (k), -+, r0 (k)] (52)

tem, (44), arey;, and they aréexicographically-fixed

Then, x n, trancated reachability matrix of (44) can  Thus, the augmenteléxicographically-fixedsystem

be written as is obtained. Then, the pole placement state feedback
for the originalnon-lexicographically-fixedystem can

Ry(k) = [b9 (k) --- b=t (k)[--- ) (k) --- bum~'(k)] be designed by applying the proposed method to this

(45) augmented system.



4.1 Example 2
Consider the followingnon-lexicographically-fixed
system.

0 01 1 0
A(k) = 1cos(o.zkz) oof.Bk)= |, 0 G
The reachability matriX/r (k — 3) is
1 0 %sin(0.2(kz —2)) 0 x

1
Ur(k—3) = 0 1 5cos(0.2(k —1)) 0 =

1 % %

(54)
This system is completely reachableri{= 3) steps.
However, the reachability indices should be regarded
asuy = 2, ugp = 10oru; =1, us = 2 depending on the
value ofsin(0.2k) andcos(0.2k). We can choose

1
Esin(0.2(k —-1)0 0

v =2, vg=2 (55)
Then,R,(k) becomes
1 —sin(0.2(k—2)) 0 O
Rg(k —3) = 0 —cos(0.2(k—1)) 1 0
—sin(0.2(k — 1)) 0 0 1
o T o, rl,
(56)
We choose! = r! =0 =0,rl, = 3sothat

Rg(k) is non-singular. From this, we have

[As(k) Ar(k)] =300 —%sin(0.2(l€ —2))| (67)

then, A, (k) and B, (k) for the augmented system are
as follows.

i 0 01 0
1
icos(O.Qk) 00 0
Ag (k) = 0 10 0
1
3 00 —§Sin(0.2(k‘ —2))
(58)
i 1 0
0 1
By(k)= |1 59
o(k) isin(O.Qk) 0 (>9)
L 0

Finaly, by the desing prodecure proposed in Section
2, the pole placement state feedback is obtained for the
augmented system. The simulation result is shown in
Fig.2.

Pole Placement of Non-Lexicographically—Fixec
Systems
20

— StateVariable:
— StateVariable:
—— StateVariable3{
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Figure 2. Simulation Result of the Pole Placement Control

5 Conclusions

In this paper, the Ackermann type of pole placement
controller was proposed for linear time-varying mul-
tivariable discrete systems. By using the notion of
the relative degree, the controller can be derived di-
rectly from the system parameters without transform-
ing the system into any standard form. Further, this
method was applied to the non-lexicographically-fixed
systems.
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