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Abstract
In this paper, a new design method of pole placement

for linear time-varying multivariable discrete systems
is considered. Using the concept of relative degrees of
the system, we propose a simple design procedure to
derive the pole placemetn state feedback gain without
transforming the system into any canonical form. The
method is also applicable to non-lexicigraphically fixed
systems.
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1 Introduction
This paper concerns the pole placement control design

method for linear time-varying discrete multivariable
systems. The method can be regarded as ”a discrete
Ackermann-like algorithm”. The basic problem is to
find a time-varying state feedback gain for linear time-
varying discrete systems, so that the closed loop sys-
tem is equivalent to some time-invariant system with
desired constant closed loop poles. For this purpose,
we focus on the relative degrees of the multi-variable
plant. It will be shown that the pole placement con-
troller can be derived simply by finding some partic-
ular ”output signal” such that the relative degree from
the input to this output is equal to the order of the sys-
tem. Then, the feedback gain matrix can be calculated
directly from the system parameters without transform-
ing the system into any standard form. An other prop-
erty of the time-varying system is that the reachability
(controllability) indices might be variable. Such a sys-
tem is called a non-lexicographially-fixed system. For
continuous systems, N.Olgac et.al. [8] also discussed
this problem, and proposed one design method by aug-
menting the original system. Here, we use this idea for
multivariable discrete systems, and propose the new de-
sign method of the pole placement state feedback.

2 Preliminaries
Condider the following linear time-varying mutltivari-

able discrete system.

x(k + 1) = A(k)x(k) +B(k)u(k) (1)

wherex ∈ Rn andu ∈ Rm are the state variable and
the input.A(k) ∈ Rn×n andB(k) ∈ Rn×m are time-
varying coefficient matrices. The state transition matrix
of the system (1) fromk = j to k = i, Φ(i, j), is
defined as follows.

Φ(i, j) = A(i− 1)A(i− 2) · · ·A(j) i > j (2)

Definition 1. System(1) is called ”completely reach-
able inn steps” if and only if, for anyx1 ∈ Rn there
exists a bounded inputu(l) (l = k, · · · , k+n−1) such
thatx(k) = 0 andx(k + n) = x1 for all k.

Lemma 1. System(1) is completely reachable inn
steps if and only if the rank of the reachability matrix
defined below isn for all k.

UR(k) =
[
B0(k), B1(k), · · · , Bn−1(k)

]
(3)

where,

B0(k) = B(k + n− 1)

B1(k) = Φ(k + n, k + n− 1)B(k + n− 2)

... (4)

Bn−1(k) = Φ(k + n, k + 1)B(k)

Let bli(k) be thei-th column ofBl(k), then, the reach-
ability matrixUR(k) can be written as

UR(k) =
[
b01(k) · · · b0m(k)| · · · |bn−1

1 (k) · · · bn−1
m (k)

]
(5)



Note thatbri (k) also satisfies (4), i.e.,

b0i (k) = bi(k + n− 1)

b1i (k) = Φ(k + n, k + n− 1)bi(k + n− 2)

... (6)

bn−1
i = Φ(k + n, k + 1)bi(k)

wherebi(k) is thei-th column ofB(k). Suppose that
the system (1) is completely reachable inn steps. Then,
the reachability indices,µi(i = 1, · · · ,m), can be de-
fined such that

m∑
i=1

µi = n (7)

and then× n trancated reachability matrix

R(k) =
[
b01(k), · · · , b

µ1−1
1 (k)| · · · |

, b0m(k), · · · , bµm−1
m

]
(8)

is non-singular. It is assumed thatµ1 ≥ µ2 ≥ · · · ≥
µm without loss of generallity.

3 Pole Placement
In this section, we consider the pole placement con-

trol for linear time-varying multivariable discrete sys-
tems. The problem is to design a state feedback for the
system(1) so that the resulting closed-loop system be-
comes equivalent to some linear time-invariant system
with arbitrarily stable poles. For this purpose, we first
define a new output signalη(k) ∈ Rm by

η(k) = C(k)x(k) (9)

such that the relative degree fromu(k) to η(k) is equal
to the system degreen. Here,

η(k) =


η1(k)
η2(k)

...
ηm(k)

 , C(k) =


cT1 (k)
cT2 (k)

...
cTm(k)

 (10)

Then, the problem is to findC(k) ∈ Rm×n that satis-
fies this condition.
Using suchη(k), the pole placement state feedback

control can be desined by a simpler procedure than con-
ventional methods.
Let cTi (k) be thei-th row ofC(k). We defineclTi (k)

by the following.

c0Ti (k) = cTi (k)

c
(l+1)T
i (k) = clTi (k + 1)A(k) (11)

for i = 1, · · · ,m.

Lemma 2. The relative degree fromu(k) to η(k) is n
if and only if the following equations hold.

cµi−1
i

T
(k + 1)bi(k) = 1

cli
T
(k + 1)bi(k) = 0, l = 0, 1, · · · , µi − 2

clr
T
(k + 1)bj(k) = 0,

 l = 0, 1, · · · , µi − 1
r = 1, 2, · · · ,m
( r ̸= i )

(12)

for i = 1, · · · ,m. Here,c(µi−1)
i (k+1)b(k) is equal to

1 for simplicity without loss of generality, since its only
requirement is to be a non-zero scalar.

(Proof) Using (1), (9) and (11),ηi(k + 1), ηi(k + 2),
· · · can be calculated to obtain the following equations.

ηi(k + 1) = c0Ti (k + 1)A(k)x(k)

+ c0Ti (k + 1)bi(k)ui(k)

= c1Ti (k)x(k)

ηi(k + 2) = c1Ti (k + 1)A(k)x(k)

+ c1Ti (k + 1)bi(k)ui(k)

= c2Ti (k)x(k)

...

ηi(k + µi) = cµi−1T
i (k + 1)A(k)x(k)

+ cµi−1T
i (k + 1)bi(k)ui(k)

= cµiT
i (k)x(k) + ui(k) + γi(i+1)ui+1(k)

+ γimum(k) (13)

Here,

γij = cµi−1T
i (k + 1)bj(k) (14)

This implies the relative degree fromui(k) to ηi(k) are
µi. Then, the total relative degree fromu(k) to η(k) is
n and the converse is also clear.
SuchC(k) can be obtained by solving (12). Using (5),

(6) and (11), (12) can be rewritten as follows.

cTi (k)b
µi−1
i (k − n) = 1

cTi (k)b
l
i(k − n) = 0, l = 0, 1, · · · , µi − 2

cTr (k)b
l
j(k − n) = 0,

 l = 0, 1, · · · , µi − 1
r = 1, 2, · · · ,m
( r ̸= i )

(15)

These equations contain onlycTj (k) This makes it pos-
sible to deriveC(k) directly from (12). Then, we have
the following Theorem.



Theorem 1. If the system is completely reachable in
n steps, there exists a new outputη(k) such that the
relative degree fromu(k) to η(k) is n. And, suchC(k)
can be calculated by the following equation.

C(k) = WR−1(k − n) (16)

where

W = diag(w1, w2, · · · , wm)

wi =
[
0 · · · 0 1

]
∈ R1×µi (17)

In the sequel, using thisη(k), we will obtain the pole
placement state feedback gain.
As stated above, ifC(k) satisfies (12), we have the

following equations.

ηi(k) = c0i
T
(k)x(k)

ηi(k + 1) = c1i
T
(k)x(k)

... (18)

ηi(k + µi) = cµi

i
T
(k)x(k) + ui(k)

for i = 1, · · · ,m. Let qi(z) be the ideal characteris-
tic polynomial of the closed-loop system fromui(k) to
ηi(k), i.e.,

qi(z) = zµi + αi
µi−1z

µi−1 + · · ·+ αi
1z + αi

0 (19)

Here,z is the shift operator.
Multiplying η(k+ l) byαl(l = 0, 1, . . . , µi) and then

summing them up, the following equation is obtained.

qi(z)ηi(k) = DT
i (k)x(k) + λT

i (k)u(k) (20)

where,αµi = 1, andDT
i (k) andλT

i (k) are defined as

DT
i (k) =

[
αi
0, α

i
1, · · · , αi

µi−1, 1
]

c0Ti (k)
c1Ti (k)

...
cµiT
i (k)

 (21)

λT
i (k) = [0, · · · , 0, 1, γi(i+1), · · · , γim]

Let defineD(k) andΛ(k) by the following.

D(k) =


DT

1 (k)
DT

2 (k)
...

DT
m(k)

, Λ(k) =


λT
1 (k)

λT
2 (k)

...
λT
m(k)

 (22)

Then, by applying the state feedback

u(k) = −Λ−1(k)D(k)x(k) (23)

to the system (1), the closed loop system fromu(k) to
η(k) becomes as follows.q

1(z)
. ..

qm(z)

 η(k) = 0 (24)

This system is time-invariant and has the following
state representation.

ω(k + 1) = A∗ω(k) (25)

The characteristic polynomial ofA∗ is

q(z) =
m∏
i=1

qi(z) (26)

and, the state variable,ω(k), is

ω(k) :=



η1(k)
...

η1(k + µ1 − 1)
...

ηm(k)
...

ηm(k + µm − 1)


=



c0T1 (k)
...

cµ1−1T
1 (k)

...
c0Tm (k)

...
cµm−1T
m (k)


x(k)

= P (k)x(k) (27)

On the other hand, from (1) and (23), the closed loop
system becomes

x(k + 1) = (A(k)−B(k)DT (k))x(k). (28)

Thus, the system (28) is equivalent to the system (25),
under the transformation matrixP (k). It is then obvi-
ous that the following equation holds.

P (k + 1)(A(k)−B(k)DT (k))P−1(k) = A∗ (29)

This implies that the state feedback (23) makes the
closed loop system equivalent to the system (25)
that has an arbitrarily stable characteristic polynomial,
q(z).
Note that the transformation matrixP (k) andP−1(k)

must be bounded functions, in other words,P (k) must
be a Lyapunov transformation, to ensure the stability of
the closed-loop system.

The procedures to obtain the state feedback gain is
summarized below.



Pole Placement Design Procedure

STEP 1 Calculate the reachability matrixUR(k − n)
and the reachability indicesµi.

STEP 2 CalculateC(k) = WR−1(k−n) for the new
output sigal,η(k), using the trancated reachability
matrixR(k).

STEP 3 Determine the desired closed-loop character-
istic polynomials, i.e.,
qi(z) = zµi + αi

µi−1z
µi−1 + · · ·+ αi

1z + αi
0

for i = 1, · · · ,m.
STEP 4 Using (21) and (22), calculateD(k).

Then the state feedback for the pole placement is

u(k) = −Λ−1(k)DT (k)x(k)

3.1 Example 1
Consider the following system.

x(k + 1) =1 0 2
1 0 5 + cos(0.2k)
0 0 1

x(k) +

 1 0
sin(0.2k) 1

1 0

u(k)

(30)

This system is unstable and completely reachable in
n(= 3) steps. The pole placement state feedback is
calculated according to the following steps.
STEP 1 The reachability matrix is

UR(k − 3) = 1 0 3 0
sin(0.2(k − 1)) 1 h1(k − 1) 0

1 0 1 0

5 0
h2(k − 1) 0

1 0


(31)

where h1(k) = 6 + cos(0.2k) and h2(k) = 8 +
cos(0.2k). From this, the reachability indices are ob-
tained asµ1 = 2 andµ2 = 1.
The trancated reachability matrixR(k − 3) is

R(k − 3) =

 1 3 0
sin(0.2(k − 1)) h1(k − 1) 1

1 1 0

 (32)

STEP2 Using (16), calculate the new output matrix
C(k) as follows.

C(k) =

[
0 1 0
0 0 1

]
×

 −1
2 0 3

2
−1

2 0 − 1
2

δ1(k) 1 δ1(k)

 (33)

=

[
−1

2 0 − 1
2

δ1(k) 1 δ2(k)

]
(34)

where

δ1(k) =
1

2
sin(0.2(k−1))− 1

2
cos(0.2(k−2))−3

δ2(k) = −3

2
sin(0.2(k−1))+

1

2
cos(0.2(k−2))+3

STEP3 The desired stable characteristic polynomi-
als of the closed-loop system are chosen as

q1(z) = z2 + α1
1z + α1

0 = z2 + 0.4z − 0.05
(35)

q2(z) = z + α2
0 = z + 0.1 (36)

STEP4 From (21) and (24), we have

D(k) =

[
DT

1 (k)
DT

2 (k)

]
, Λ(k) =

[
1 −2

−2−h(k)+h(k+1)

0 1

]
(37)

where

DT
1 (k) =

[
−0.05 0.4 1

] c0T1 (k)
c1T1 (k)
c2T1 (k)

 (38)

DT
2 (k) =

[
0.1 1

] [c0T2 (k)
c1T2 (k)

]
(39)

and

c0T1 (k) =
[
1
2
0 − 1

2

]
c1T1 (k) =

[
1
2
0 − 1

2

] 1 0 2
1 0 h3(k)

0 0 1


c2T1 (k) =

[
1
2
0 − 1

2

] 1 0 2
1 0 h3(k + 1)
0 0 1

1 0 2
1 0 h3(k)
0 0 1


c0T2 (k) =

[
δ1(k) 1 δ2(k)

]
c1T2 (k) =

[
δ1(k + 1) 1 δ2(k + 1)

] 1 0 2
1 0 h3(k)
0 0 1


whereh3(k) = 5 + cos(0.2k).

Thus, the pole placement state feedback isu(k) =
−Λ−1(k)DT (k)x(k).

The simulation results are shown in Fig.1.

4 Pole Placement of Non-Lexicographically-Fixed
Systems

In the previous section, the reachability indices are
supposed to be fixed. Such a system is called a
lexicographically-fixed system. However, since the
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Figure 1. Simulation Result of the Pole Placement Control

system has time-varying parameters, there is a possi-
bility that the reachability indices are also variable. In
this section, we consider the pole placement control
desing procedure for a non-lexicographically-fixed sys-
tems. Valasek et. al. proposed the pole placement de-
sign method for non-lexicographically-fixed multivari-
able continuous systems in [8]. Here, we apply this
method to the discrete system together with the the new
pole placement technique stated in the previous section.
Assume that the system (1) is completely reachable in
n steps, and is non-lexicographically-fixed. It is also
assumed that the maximum value of each reachability
indexµi is known, i.e.,

vi = max
k

µi(k) (i = 1, · · · ,m) (40)

Next, we extendµi to vi in R(k) to obtainRv(k) ∈
Rn×ng as follows.

Rv(k) =
[
b01(k), · · · , b

v1−1
1 (k)| · · ·

· · · |b0m(k), · · · , bvm−1
m

]
(41)

Define the augmented system by

xg(k + 1) = Ag(k)xg(k) +Bg(k)u(k) (42)

wherexg(k) ∈ Rng and

Ag(k) =

[
A(k) 0
A2(k) A1(k)

]
, xg(k) =

[
x(k)
xe(k)

]
(43)

Bg(k) =

[
B(k)
Be(k)

]
. (44)

MatricesA1(k), A2(k) andBe(k) should be chosen
such that the reachability indices of the augmented sys-
tem, (44), arevi, and they arelexicographically-fixed.
Theng × ng trancated reachability matrix of (44) can

be written as

Rg(k) =
[
b0g1(k) · · · b

v1−1
g1 (k)| · · · |b0gm(k) · · · bvm−1

gm (k)
]

(45)

whereblgi(k) is calculated as follows.

b0gi(k) =

[
bi(k + n− 1)
bei(k + n− 1)

]
b1gi(k) =

[
A(k + n− 1)b0i (k − 1)[

A2(k + n− 1) A1(k + n− 1)
]
b0gi(k − 1)

]
...

bvmgi (k) =[
A(k + n− 1)(bvm−1

i (k − 1))[
A2(k + n− 1) A1(k + n− 1)

]
bvm−1
gi (k − 1)

]
(46)

wherebgi andbei are thei-th column ofBg andBe(k)
respectively, fori = 1, · · · ,m. This implies that the
upper block ofRg(k) is the augmented trancated reach-
ability matrix of (1),Rv(k), i.e.,

Rg(k) =

[
Rv(k)
Re(k)

]
(47)

The problem is then to findA1(k), A2(k) andBe(k)
such thatRg(k) is non-singular for allk. Since the
rank ofn× ng matrixRv(k) is n, there exists a matrix
Re(k) such thatRg(k) is non-singular for allk. Let
such a matrixRe(k) be denoted by

Re(k) =[
r0e1(k) · · · r

v1−1
e1 (k)| · · · | r0em(k) · · · rvm−1

em (k)
]

(48)

In addition to this, we choosem vectors,rv1e1 (k), · · · ,
rvmem (k), arbitrarily. Then, from the lower block of (48)
we have[

A2(k + n− 1) A1(k + n− 1)
]
Rg(k − 1)

= R+
e (k − 1) (49)

whereR+
e (k) is defined by the following.

R+
e (k) =

[
r1e1(k) · · · r

v1
e1 (k)| · · · |r

1
em(k) · · · rvm

em (k)
]

(50)

SinceRg(k) is chosen to be non-singular for allk,
[A2(k), A1(k)] is obtained by[

A2(k) A1(k)
]
= R+

e (k)R̄
−1
g (k − n) (51)

and,

Be(k) =
[
r0e1(k) r

0
e2(k), · · · , r

0
em(k)

]
(52)

Thus, the augmentedlexicographically-fixedsystem
is obtained. Then, the pole placement state feedback
for the originalnon-lexicographically-fixedsystem can
be designed by applying the proposed method to this
augmented system.



4.1 Example 2
Consider the followingnon-lexicographically-fixed

system.

A(k) =


0 0 1

1

2
cos(0.2k) 0 0

0 1 0

 , B(k) =


1 0
0 1

1

2
sin(0.2k) 0

 (53)

The reachability matrixUR(k − 3) is

UR(k − 3) =


1 0

1

2
sin(0.2(k − 2)) 0 ∗ ∗

0 1
1

2
cos(0.2(k − 1)) 0 ∗ ∗

1

2
sin(0.2(k − 1)) 0 0 1 ∗ ∗


(54)

This system is completely reachable inn (= 3) steps.
However, the reachability indices should be regarded
asµ1 = 2, µ2 = 1 orµ1 = 1, µ2 = 2 depending on the
value ofsin(0.2k) andcos(0.2k). We can choose

v1 = 2, v2 = 2 (55)

Then,Rg(k) becomes

Rg(k − 3) =



1
1

2
sin(0.2(k − 2)) 0 0

0
1

2
cos(0.2(k − 1)) 1 0

1

2
sin(0.2(k − 1)) 0 0 1

r0e1 r1e1 r0e2 r1e2


(56)

We chooser0e1 = r1e1 = r0e2 = 0, r1e2 = 3 so that
Rg(k) is non-singular. From this, we have

[
A2(k) A1(k)

]
=

[
3 0 0 −

1

2
sin(0.2(k − 2))

]
(57)

then,Ag(k) andBg(k) for the augmented system are
as follows.

Ag(k) =


0 0 1 0

1

2
cos(0.2k) 0 0 0

0 1 0 0

3 0 0 −
1

2
sin(0.2(k − 2))


(58)

Bg(k) =


1 0
0 1

1

2
sin(0.2k) 0

0 0

 (59)

For this augmented system, the new output matrix
C(k) so that the system has a relative degree,ng = 4
is,

C(k) =

 0 0 0
1

3

−
1

2
sin(0.2(k − 1)) 0 1

1

12
sin2(0.2(k − 1))


(60)

Finaly, by the desing prodecure proposed in Section
2, the pole placement state feedback is obtained for the
augmented system. The simulation result is shown in
Fig.2.
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Figure 2. Simulation Result of the Pole Placement Control

5 Conclusions
In this paper, the Ackermann type of pole placement

controller was proposed for linear time-varying mul-
tivariable discrete systems. By using the notion of
the relative degree, the controller can be derived di-
rectly from the system parameters without transform-
ing the system into any standard form. Further, this
method was applied to the non-lexicographically-fixed
systems.
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