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Abstract

In the present paper and to improve the results in [8], we consider
a class of fractional impulsive wave equations. Using a new topological
approach, we prove the existence of classical solutions with a com-
plex arguments caused by impulsive perturbations. To the best of our
knowledge, There is a severe lack of results related to such impulsive
equations.

Key words: Fractional impulsive wave equations, Classical solutions, Fixed
point, Cone, Sum of operators.

Mathematics Subject Classification: 58J20, 47H10, 35L15.

1 Introduction

The theory of nonlinear waves is still a young sciences, although research in
this direction was carried out even in the 19th century, mainly in connection
with the problems of gas and hydrodynamics. For example, the works of J.
Scott Russell [12] who was the first to observe solutions on the surfaces of
a liquid, date back to 1830-1840. Nonlinear wave pgenomena have been the
subject of research by such outstanding scientists as Poison, Stokes, Airy,
Rayleigh, Boussinesq, Riemann. However, as a unified science, the theory
of nonlinear waves developed in the late 1960s and early 1970s, which were
the years of its rapid development.
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This type of problem appears in several mathematical models which describe
wave phenomena in areas such as fluid dynamics and electromagnetism.
Many authors such as H. Brésiz, J. Mawhin, K. C. Chang and others, have
developed topological tools, index theory and variational methods to obtain
a classical existence results for the one-dimensional problem with various
non-linearities. One can review the associated results in [2, 3, 4, 5] and the
references therein.
A fractional derivative is a non-local characteristic of a function: it depends
not only on the behavior of the function in the vicinity of the point x under
consideration, but also on the values it takes over the entire interval (a, x).
This non-locality means that the change in the particle flux density depends
not only on its values in the vicinity of the point under consideration, but
also on its values at distant points in space. We mention some related
results on the impulsive equation in [8, 9] and these models have not been
sufficiently studies, despite their versability and practical importance.
To beginwith, we consider the following problem

cDβ
t,0+u−∆u = f(t, x, u, ut, ux), t ∈ J = [0, 1], t 6= tk, k ∈ {1, . . . , n1},

x ∈ Rn,

ut(tk+, x) = ut(tk−, x) + Ik(tk, x, u(tk, x)), x ∈ Rn, k ∈ {1, . . . , n1},

u(tk+, x) = u(tk−, x) + Lk(tk, x, u(tk, x)), x ∈ Rn, k ∈ {1, . . . , n1},

u(0, x) = h1(x, u(0, x)), u(1, x) = h2(x, u(1, x)), x ∈ Rn,
(1.1)

where

(H1) cDβ
t,0+ is the Caputo fractional derivative with respect to t, β ∈ (1, 2],

0 = t0 < t1 < . . . < tn1 < tn1+1 = 1, J0 = [0, t1], J1 = (t1, t2], . . .,
Jn1 = (tn1 , 1], n1 ∈ N.

(H2) Ik, Lk ∈ C([0, T ]× Rn+1),

|Ik(tk, x, u(tk, x))| ≤ a1k(tk, x)|u(tk, x)|s1k ,

|Lk(tk, x, u(tk, x))| ≤ a2k(tk, x)|u(tk, x)|s2k , x ∈ Rn, k ∈ {1, . . . , n1},

a1k, a2k ∈ C(J ×Rn), 0 ≤ a1k, a2k ≤ B on J ×Rn, k ∈ {1, . . . , n1}, for
some positive constant B, s1k, s2k ≥ 0, k ∈ {1, . . . , n1}.
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(H3) h1, h2 ∈ C2(Rn+1),

|h1(x, u(0, x))| ≤ b11(x)|u(0, x)|s1 ,

|h2(x, u(1, x))| ≤ b12(x)|u(1, x)|s2 , x ∈ Rn,

b11, b12 ∈ C(Rn), 0 ≤ b11, b12 ≤ B on Rn, s1, s2 ≥ 0.

(H4) f ∈ C(J × Rn × R× R× Rn),

|f(t, x, u, v, w)| ≤
r∑
j=1

(
aj(t, x)|u|pj + bj(t, x)|v|qj +

n∑
i=1

cji(t, x)|wi|rji
)
,

(t, x) ∈ J × Rn, u, v ∈ R, w ∈ Rn, aj , bj , cji ∈ C(J × Rn), 0 ≤
aj , bj , cji ≤ B on J × Rn, pj , qj , rji > 0, j ∈ {1, . . . , r}, i ∈ {1, . . . , n},
r ∈ N.

Here ux = (ux1 , . . . , uxn), ut(tk−, x) = lim
t→tk−

ut(t, x), ut(tk+, x) = lim
t→tk+

ut(t, x),

u(tk−, x) = lim
t→tk−

u(t, x), u(tk+, x) = lim
t→tk+

u(t, x), x ∈ Rn, k ∈ {1, . . . , n1}.
For l, s ∈ N ∪ {0}, define

PC(J) = PC0(J)

= {g : J → R, g ∈ C(J\{tj}m−1
j=1 ),

∃g(tj+), g(tj−) and g(tj−) = g(tj),

j ∈ {1, . . . , n1}},

PC l(J) = {g : J → R, g ∈ PC l−1(J), g ∈ Cl(J\{tj}n1
j=1),

∃g(l)(tj−), g(l)(tj+) and g(l)(tj−) = g(l)(tj),

j ∈ {1, . . . , n1}}

and

PC l(J, Cs(Rn)) = {u : u(·, x) ∈ PC l(J), x ∈ Rn,

u(t, ·) ∈ Cs(Rn), t ∈ J}.
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In PC2(J, C2(Rn)), we define the norm

‖u‖ = max{ max
j∈{0,1,...,n1}

sup
(t,x)∈[tj ,tj+1]×Rn

|u(t, x)|,

max
j∈{0,1,...,n1}

sup
(t,x)∈[tj ,tj+1]×Rn

|ut(t, x)|,

max
j∈{0,1,...,n1}

sup
(t,x)∈[tj ,tj+1]×Rn

|utt(t, x)|,

max
j∈{0,1,...,n1}

sup
(t,x)∈[tj ,tj+1]×Rn

|uxi(t, x)|,

max
j∈{0,1,...,n1}

sup
(t,x)∈[tj ,tj+1]×Rn

|uxixi(t, x)|, i ∈ {1, . . . , n}},

as long as it exists. Here PC2(J, C2(Rn)) is a Banach space.
We state now our main results.

Theorem 1.1. Suppose (H1)-(H4). Then the problem (1.1) has a solution
in PC2(J, C2(Rn)).

Theorem 1.2. Suppose (H1)-(H4). Then the problem (1.1) has at least
two solutions in PC2(J, C2(Rn)).

2 Preliminary

Here, we introduce some preliminary results which will be used to prove the
main results. The following fixed point theorem for sum of two operators
will be used to prove the existence of at least one solution to the problem
(1.1).

Theorem 2.1. Let ε ∈ (0, 1), B > 0, E be a Banach space and X = {x ∈
E : ‖x‖ ≤ B}. Let also, Tx = −εx, x ∈ X, S : X → E is continuous,
(I − S)(X) resides in a compact subset of E and

{x ∈ E : x = λ(I − S)x, ‖x‖ = B} = ∅ (2.1)

for any λ ∈
(
0, 1

ε

)
. Then there exists a x∗ ∈ X so that

Tx∗ + Sx∗ = x∗.

Here µX = {µx : x ∈ X} for any µ ∈ R.
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Proof. Define

r

(
−1

ε
x

)
=


−1
εx if ‖x‖ ≤ Bε

Bx
‖x‖ if ‖x‖ > Bε.

Then r
(
−1
ε (I − S)

)
: X → X is continuous and compact. Then, owing to

the Schauder fixed point theorem, there exists x∗ ∈ X such that

r

(
−1

ε
(I − S)x∗

)
= x∗,

where −1
ε (I − S)x∗ 6∈ X. Thus∥∥∥(I − S)x∗

∥∥∥ > Bε,
B

‖(I − S)x∗‖
<

1

ε

and

x∗ =
B

‖(I − S)x∗‖
(I − S)x∗ = r

(
−1

ε
(I − S)x∗

)
and hence, ‖x∗‖ = B. This contradicts with (2.1). Therefore −1

ε (I−S)x∗ ∈
X and

x∗ = r

(
−1

ε
(I − S)x∗

)
= −1

ε
(I − S)x∗

or
−εx∗ + Sx∗ = x∗,

or
Tx∗ + Sx∗ = x∗.

The proof is now completed.

Let X be a real Banach space.

Definition 2.2. A mapping K : X → X is said to be completely continuous
if it is continuous and maps bounded sets into relatively compact sets.

The concept of contraction of the set l is linked to that of the Kuratowski
measure of non-compactness which we recall for completeness.

Definition 2.3. Let ΩX be the class of all bounded sets of X. The Kura-
towski measure of noncompactness α : ΩX → [0,∞) is defined by

α(Y ) = inf

δ > 0 : Y =
m⋃
j=1

Yj and diam(Yj) ≤ δ, j ∈ {1, . . . ,m}

 ,

where diam(Yj) = sup{‖x − y‖X : x, y ∈ Yj} is the diameter of Yj, j ∈
{1, . . . ,m}.
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For more detail on the properties for measure of noncompactness, we
refer to [1].

Definition 2.4. A mapping K : X → X is said to be l-set contraction if it
is continuous, bounded and there exists a constant l ≥ 0 such that

α(K(Y )) ≤ lα(Y ),

for any bounded set Y ⊂ X. The mapping K is said to be a strict set
contraction if l < 1.

Obviously, if K : X → X is a completely continuous mapping, then K
is 0-set contraction(see [7]).

Definition 2.5. Let X and Y be real Banach spaces. A mapping K : X → Y
is said to be expansive if there exists a constant h > 1 such that

‖Kx−Ky‖Y ≥ h‖x− y‖X

for any x, y ∈ X.

Definition 2.6. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,

2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.

Lemma 2.7. Let X be a closed convex subset of a Banach space E and
U ⊂ X a bounded open subset with 0 ∈ U. Assume there exists ε > 0 small
enough and that K : U → X is a strict k-set contraction that satisfies the
boundary condition:

Kx 6∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Then i (K,U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1]× U → X defined by

H(t, x) =
1

ε+ 1
tKx.

The operator H is continuous and uniformly continuous in t for each x, and
the mapping H(t, .) is a strict set contraction for each t ∈ [0, 1].In addition,
H(t, .) has no fixed point on ∂U . On the contrary,
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• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U.
• If t ∈ (0, 1], there exists some x0 ∈ P ∩ ∂U such that 1

ε+1 tKx0 = x0; then

Kx0 = 1+ε
t x0 with 1+ε

t ≥ 1 + ε, contradicting the assumption. From the
invariance under homotopy and the normalization properties of the index,
we deduce

i (
1

ε+ 1
K,U,X) = i (0, U,X) = 1.

New, we show that

i (K,U,X) = i (
1

ε+ 1
K,U,X).

We have
1

ε+ 1
Kx 6= x, ∀x ∈ ∂U. (2.2)

Then there exists γ > 0 such that

‖x− 1

ε+ 1
Kx‖ ≥ γ, ∀x ∈ ∂U.

In other hand, we have 1
ε+1Kx → Kx as ε → 0, for x ∈ U. So for ε small

enough

‖Kx− 1

ε+ 1
Kx‖ < γ

2
, ∀x ∈ ∂U.

Define the convex deformation G : [0, 1]× U → X by

G(t, x) = tKx+ (1− t) 1

ε+ 1
Kx.

The operator G is continuous and uniformly continuous in t for each x,
and the mapping G(t, .) is a strict set contraction for each t ∈ [0, 1] (since
t+ 1

ε+1(1− t) < t+ 1− t = 1).In addition, G(t, .) has no fixed point on ∂U .
In fact, for all x ∈ ∂U , we have

‖x−G(t, x)‖ = ‖x− tKx− (1− t) 1
ε+1Kx‖

≥ ‖x− 1
ε+1Kx‖ − t‖Kx−

1
ε+1Kx‖

> γ − γ
2 >

γ
2 .

Then our claim follows from the invariance property by homotopy of the
index.
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Proposition 2.8. Let P be a cone in a Banach space E. Let also, U be a
bounded open subset of P with 0 ∈ U. Assume that T : Ω ⊂ P → E is an
expansive mapping with constant h > 1, S : U → E is a l-set contraction
with 0 ≤ l < h− 1, and S(U) ⊂ (I − T )(Ω). If there exists ε ≥ 0 such that

Sx 6= {(I − T )(x), (I − T )(λx)} for all x ∈ ∂U ∩ Ω and λ ≥ 1 + ε,

then the fixed point index i∗ (T + S,U ∩ Ω,P) = 1.

Proof. The mapping (I − T )−1S : U → P is a strict set contraction and it
is readily seen that the following condition is satisfied

(I − T )−1Sx 6∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Our claim then follows from the definition of i∗ and the following Lemma
2.7.

The following result will be used to prove existence of at least two non-
negative solutions to the problem (1.1).

Theorem 2.9. Let P be a cone of a Banach space E; Ω a subset of P and
U1, U2 and U3 three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and
0 ∈ U1. Assume that T : Ω → P is an expansive mapping with constant
h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h − 1 and S(U3) ⊂
(I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω 6= ∅, (U3 \ U2) ∩ Ω 6= ∅, and there
exists u0 ∈ P∗ such that the following conditions hold:

(i) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ε ≥ 0 such that Sx 6= (I − T )(λx), for all λ ≥ 1 + ε, x ∈
∂U2 and λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or
x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

Proof. If Sx = (I − T )x for x ∈ ∂U2 ∩ Ω, then we get a fixed point x1 ∈
∂U2 ∩ Ω of the operator T + S. Suppose that Sx 6= (I − T )x for any
x ∈ ∂U2∩Ω. Without loss of generality, assume that Tx+Sx 6= x on ∂U1∩
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Ω and Tx+ Sx 6= x on ∂U3 ∩ Ω, otherwise the conclusion has been proved.
By [6, Proposition 2.11 and Proposition 2.16] and Proposition 2.8, we have

i∗ (T +S,U1∩Ω,P) = i∗ (T+S,U3∩Ω,P) = 0 and i∗ (T +S,U2∩Ω,P) = 1.

The additivity property of the index yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1.

Consequently, by the existence property of the index, T +S has at least two
fixed points x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

In [13], it is proved that the problem

cDβ
t,0+u(t) = f1(t), t ∈ J, t 6= tk, k ∈ {1, . . . , n1},

u′(tk+) = u′(tk−) + Ĩk(u(tk)), tk ∈ (0, 1), k ∈ {1, . . . , n1},

u(tk+) = u(tk−) + L̃k(u(tk)), tk ∈ (0, 1), k ∈ {1, . . . , n1},

u(0) = h1(u(0)), u(1) = h2(u(1)),

where f1 ∈ C(J), h1, h2 ∈ C(R), has a solution of the form

u(t) =



c1(t, u(t))t+ h1(u(t)) + 1
Γ(β)

∫ t
0 (t− s)β−1f1(s)ds, t ∈ J0,

c1(t, u(t))t+ h1(u(t)) + 1
Γ(β)

∫ t
tk

(t− s)β−1f1(s)ds

+
k∑
j=1

1
Γ(β)

∫ tj
tj−1

(tj − s)β−1f1(s)ds+
k∑
j=1

(t− tj)Ĩj(u(tj))

+
k∑
j=1

t−tj
Γ(β−1)

∫ tj
tj−1

(tj − s)β−2f1(s)ds+
k∑
j=1

L̃j(u(tj)), t ∈ Jk, k ∈ {1, . . . , n1},
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where

c1(t, u(t)) = h2(u(t))− h1(u(t))−
n1+1∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1f1(s)ds

−
n1∑
j=1

L̃j(u(tj))−
n1∑
j=1

1− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−2f1(s)ds

−
n1∑
j=1

(1− tj)Ij(u(tj)), t ∈ J.

3 Proof of Theorem 1.1

For convenience, we setX = PC2(J, C2(Rn)). For u ∈ X, define the operator

S1u(t, x) =



−u(t, x) + c(t, x, u(t, x)) + h1(x, u(0, x))

+ 1
Γ(β)

∫ t
0 (t− s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds,

(t, x) ∈ J × Rn,

−u(t, x) + c(t, x, u(t, x)) + h1(x, u(0, x))

+ 1
Γ(β)

∫ t
tk

(t− s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+
k∑
j=1

1
Γ(β)

∫ tj
tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+
k∑
j=1

(t− tj)Ij(tj , x, u(tj , x))

+
k∑
j=1

t−tj
Γ(β−1)

∫ tj
tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+
k∑
j=1

Lj(tj , x, u(tj , x)), t ∈ Jk, k ∈ {1, . . . , n1},
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where

c(t, x, u(t, x)) = h2(x, u(1, x))− h1(x, u(0, x))

−
n1+1∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

−
n1∑
j=1

Lj(tj , x, u(tj , x))

−
n1∑
j=1

1− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

−
n1∑
j=1

(1− tj)Ij(tj , x, u(tj , x)), (t, x) ∈ J × Rn.

Note, that if u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ J × Rn,

then u is a solution to the problem (1.1). Set

B1 = B + 2B1+s1 + 2B1+s2 + 2

m−1∑
j=1

(
B1+s1j +B1+s2j

)

+

(
n1 + 3

Γ(β + 1)
+
n1 + 1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB

 .

Lemma 3.1. Suppose (H1)-(H4). For u ∈ X, ‖u‖ ≤ B, we have

|S1u(t, x)| ≤ B1, (t, x) ∈ J × Rn.

Proof. We have

|∆u(t, x)| =

∣∣∣∣ n∑
j=1

uxjxj (t, x)

∣∣∣∣
≤

n∑
j=1

|uxjxj (t, x)|

≤ nB, (t, x) ∈ J × Rn,
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and

|f(t, x, u(t, x), ut(t, x), ux(t, x))| ≤
n∑
j=1

(
aj(t, x)|u(t, x)|pj + bj(t, x)|u(t, x)|qj

+

n∑
i=1

cji(t, x)|uxi(t, x)|rji
)

≤
r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
,

(t, x) ∈ J × Rn, and

|Ik(tk, x, u(tk, x))| ≤ a1k(tk, x)|u(tk, x)|s1k

≤ B1+s1k , x ∈ Rn, k ∈ {1, . . . , n1},

and

|Lk(tk, x, u(tk, x))| ≤ a2k(tk, x)|u(tk, x)|s2k

≤ B1+s2k , x ∈ Rn, k ∈ {1, . . . , n1},

and

|h1(x, u(0, x))| ≤ b11(x)|u(0, x)|s1

≤ B1+s1 , x ∈ Rn,

and

|h2(x, u(1, x))| ≤ b12(x)|u(1, x)|s2

≤ B1+s2 , x ∈ Rn,
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and

|c(t, x, u(t, x))| =

∣∣∣∣h2(x, u(1, x))− h1(x, u(0, x))

−
n1+1∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

−
n1∑
j=1

Lj(tj , x, u(tj , x))

−
n1∑
j=1

1− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

−
n1∑
j=1

(1− tj)Ij(tj , x, u(tj , x))

∣∣∣∣

≤ |h2(x, u(1, x))|+ |h1(x, u(0, x))|

+

n1+1∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

+

n1∑
j=1

|Lj(tj , x, u(tj , x))|

+

n1∑
j=1

1− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

+

n1∑
j=1

(1− tj)|Ij(tj , x, u(tj , x))|

≤ B1+s1 +B1+s2 +
m−1∑
j=1

(
B1+s1j +B1+s2j

)

+

(
n1 + 1

Γ(β + 1)
+

n1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB

 ,
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(t, x) ∈ J × Rn. Hence,

|S1u(t, x)| =

∣∣∣∣− u(t, x) + c(t, x, u(t, x)) + h1(x, u(0, x))

+
1

Γ(β)

∫ t

0
(t− s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

∣∣∣∣
≤ |u(t, x)|+ |c(t, x, u(t, x))|+ |h1(x, u(0, x))|

+
1

Γ(β)

∫ t

0
(t− s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

≤ B +

(
n1 + 1

Γ(β + 1)
+

n1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


+B1+s1 +B1+s2 +

n1∑
j=1

(
B1+s1j +B1+s2j

)
+B1+s1

+
1

Γ(β + 1)

 r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


= B + 2B1+s1 +B1+s2 +

m−1∑
j=1

(
B1+s1j +B1+s2j

)

+

(
n1 + 2

Γ(β + 1)
+

n1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


≤ B1,
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(t, x) ∈ J0 × Rn, and

|S1u(t, x)| =

∣∣∣∣− u(t, x) + c(t, x, u(t, x)) + h1(x, u(0, x))

+
1

Γ(β)

∫ t

tk

(t− s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+

k∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+

k∑
j=1

(t− tj)Ij(tj , x, u(tj , x))

+

k∑
j=1

t− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−1 (f(s, x, u(s, x), ut(s, x), ux(s, x)) + ∆u(s, x)) ds

+

k∑
j=1

Lj(tj , x, u(tj , x))

∣∣∣∣
≤ |u(t, x)|+ |c(t, x, u(t, x))|+ |h1(x, u(0, x))|

+
1

Γ(β)

∫ t

tk

(t− s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

+
k∑
j=1

1

Γ(β)

∫ tj

tj−1

(tj − s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

+
k∑
j=1

(t− tj)|Ij(tj , x, u(tj , x))|

+
k∑
j=1

t− tj
Γ(β − 1)

∫ tj

tj−1

(tj − s)β−1 (|f(s, x, u(s, x), ut(s, x), ux(s, x))|+ |∆u(s, x)|) ds

+
k∑
j=1

|Lj(tj , x, u(tj , x))|

≤ B + 2B1+s1 +B1+s2 +

m−1∑
j=1

(
B1+s1j +B1+s2j

)
15



+

(
n1 + 2

Γ(β + 1)
+

n1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


+

1

Γ(β + 1)

 r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


+

1

Γ(β)

 r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


+

k∑
j=1

B1+s1j +
k∑
j=1

B1+s2j

= B + 2B1+s1 + 2B1+s2 + 2

m−1∑
j=1

(
B1+s1j +B1+s2j

)

+

(
n1 + 3

Γ(β + 1)
+
n1 + 1

Γ(β)

) r∑
j=1

(
Bpj+1 +Bqj+1 +

n∑
i=1

Brji+1

)
+ nB


= B1, (t, x) ∈ Jk × Rn,

k ∈ {1, . . . , n1}. The proof is now completed.

Let us suppose that A ∈ R+
∗ and g to be continuous function on Rn,

where

(H5) g > 0 on Rn\ {
⋃n
i=1{xi = 0}},

g(0, x2, . . . , xn) = . . . = g(x1, . . . , xn−1, 0) = 0, xj ∈ R, j ∈ {1, . . . , n},

and

2 · 8n
n∏
j=1

(
1 + |xj |+ x2

j

) ∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣ ≤ A,
x ∈ Rn, where ∫ x

0
=

∫ x1

0
. . .

∫ xn

0
, dy = dyn . . . dy1.
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We define for u ∈ X, the operator

S2u(t, x) =

∫ t

0
(t− s)2

∫ x

0

n∏
j=1

(xj − yj)2g(y)S1u(s, y)dyds,

(t, x) ∈ J × Rn.

Lemma 3.2. Suppose (H1)-(H5). If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ J × Rn, (3.1)

then u satisfies the problem (1.1).

Proof. Differentiating three times in t and three times in x1, . . ., xn the
equation (3.1), we get

g(x)S1u(t, x) = 0, (t, x) ∈ J ×

(
Rn\

{
n⋃
i=1

{xi = 0}

})
,

whereupon

S1u(t, x) = 0, (t, x) ∈ J ×

(
Rn\

{
n⋃
i=1

{xi = 0}

})
.

Since S1u ∈ C(J × Rn), we have

0 = S1u(t, 0, x2, . . . , xn)

= lim
x1→0

S1u(t, x1, x2, . . . , xn),

· · ·

0 = S1u(t, x1, x2, . . . , 0)

= lim
xn→0

S1u(t, x1, x2, . . . , xn), x1, . . . , xn ∈ R, t ∈ J.

Therefore
S1u(t, x) = 0, (t, x) ∈ J × Rn.

Hence, we then conclude that u satisfies (1.1). The proof is now completed.
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Lemma 3.3. Suppose (H1)-(H5). If u ∈ X and ‖u‖ ≤ B, then

‖S2u‖ ≤ AB1.

Proof. We have

|S2u(t, x)| =

∣∣∣∣ ∫ t

0

∫ x

0

n∏
j=1

(t− s)2(xj − sj)2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(t− s)2(xj − sj)2g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(xj − sj)2g(t1, s)ds

∣∣∣∣dt1
≤ B14n

n∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ 2B18n

n∏
j=1

(
1 + |xj |+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × Rn,

and∣∣∣∣ ∂∂tS2u(t, x)

∣∣∣∣ =

∣∣∣∣2 ∫ t

0

∫ x

0

n∏
j=1

(t− s)(xj − sj)2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(t− s)(xj − sj)2g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(xj − sj)2g(t1, s)ds

∣∣∣∣dt1
≤ 2B14n

n∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ 2B18n

n∏
j=1

(
1 + |xj |+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × Rn,
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∣∣∣∣ ∂2

∂t2
S2u(t, x)

∣∣∣∣ =

∣∣∣∣2 ∫ t

0

∫ x

0

n∏
j=1

(xj − sj)2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(xj − sj)2g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

(xj − sj)2g(t1, s)ds

∣∣∣∣dt1
≤ 2B14n

n∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ 2B18n

n∏
j=1

(
1 + |xj |+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × Rn,

and

∣∣∣∣ ∂∂xkS2u(t, x)

∣∣∣∣ = 2

∣∣∣∣ ∫ t

0

∫ x

0

n∏
j=1,j 6=k

(t− s)2(xj − sj)2(xk − sk)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1,j 6=k

(t− s)2(xj − sj)2|xk − sk|g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1,j 6=k

(xj − sj)2|xk − sk|g(t1, s)ds

∣∣∣∣dt1
≤ B14n

n∏
j=1

x2
j |xk|

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B18n

n∏
j=1

(
1 + |xj |+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × Rn, k ∈ {1, . . . , n},
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and∣∣∣∣ ∂2

∂x2
k

S2u(t, x)

∣∣∣∣ = 2

∣∣∣∣ ∫ t

0

∫ x

0

n∏
j=1,j 6=k

(t− s)2(xj − sj)2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤ 2

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1,j 6=k

(t− s)2(xj − sj)2g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ 2B1

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1,j 6=k

(xj − sj)2g(t1, s)ds

∣∣∣∣dt1
≤ B14n−1

n∏
j=1

x2
j

∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B18n

n∏
j=1

(
1 + |xj |+ x2

j

) ∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J × Rn, k ∈ {1, . . . , n}.

Thus,

‖S2u‖ ≤ AB1.

The proof is now completed.

Below, suppose

(H6) ε ∈ (0, 1), A and B satisfy the inequalities εB1(1 + A) < 1 and
AB1 < 1.

Let
˜̃̃
Y denote the set of all equi-continuous families in X with respect to the

norm ‖ · ‖. Let also,
˜̃
Y =

˜̃̃
Y be the closure of

˜̃̃
Y , Ỹ =

˜̃
Y ∪ {h1, h2},

Y = {u ∈ Ỹ : ‖u‖ ≤ B}.

Note that Y is a compact set in X. For u ∈ X, define the operators

Tu(t, x) = −εu(t, x),

Su(t, x) = u(t, x) + εu(t, x) + εS2u(t, x), (t, x) ∈ J × Rn.
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For u ∈ Y , using Lemma 3.3, we have

‖(I − S)u‖ = ‖εu− εS2u‖

≤ ε‖u‖+ ε‖S2u‖

≤ εB1 + εAB1

= εB1(1 +A)

< B

Thus, S : Y → E is continuous and (I − S)(Y ) resides in a compact subset
of E. Now, suppose that there is a u ∈ E so that ‖u‖ = B and

u = λ(I − S)u

or
1

λ
u = (I − S)u = −εu− εS2u,

or (
1

λ
+ ε

)
u = −εS2u

for some λ ∈
(
0, 1

ε

)
. Hence, ‖S2u‖ ≤ AB1 < B,

εB <

(
1

λ
+ ε

)
B =

(
1

λ
+ ε

)
‖u‖ = ε‖S2u‖ < εB,

which is a contradiction. Hence and Theorem 2.1, it follows that the operator
T + S has a fixed point u∗ ∈ Y . Therefore

u∗(t, x) = Tu∗(t, x) + Su∗(t, x)

= −εu∗(t, x) + u∗(t, x) + εu∗(t, x) + εS2u
∗(t, x), (t, x) ∈ J × Rn,

whereupon
0 = S2u

∗(t, x), (t, x) ∈ J × Rn.

From here and from Lemma 3.2, it follows that u is a solution to the BVP
(1.1). The proof is now completed.
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4 Proof of Theorem 1.2

Let X be the space used in the previous section. Suppose

(H7) Let m > 0 be large enough and A, B, r, L, R1 be positive constants
that satisfy the following conditions

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1

)
L,

AB1 <
L

5
.

Let
P̃ = {u ∈ X : u ≥ 0 on J × Rn}.

With P we will denote the set of all equi-continuous families in P̃ . For
v ∈ X, define the operators

T1v(t) = (1 +mε)v(t)− ε L
10
,

S3v(t) = −εS2v(t)−mεv(t)− ε L
10
,

t ∈ [0,∞). Note that any fixed point v ∈ X of the operator T1 + S3 is a
solution to the BVP (1.1). Define

U1 = Pr = {v ∈ P : ‖v‖ < r},

U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1 = {v ∈ P : ‖v‖ < R1},

R2 = R1 +
A

m
B1 +

L

5m
,

Ω = PR2 = {v ∈ P : ‖v‖ ≤ R2}.

1. For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 +mε)‖v1 − v2‖,

whereupon T1 : Ω → X is an expansive operator with a constant
h = 1 +mε > 1.
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2. For v ∈ PR1 , we get

‖S3v‖ ≤ ε‖S2v‖+mε‖v‖+ ε
L

10

≤ ε

(
AB1 +mR1 +

L

10

)
.

Therefore S3(PR1) is uniformly bounded. Since S3 : PR1 → X is
continuous, we have that S3(PR1) is equi-continuous. Consequently
S3 : PR1 → X is a 0-set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1

m
S2v1 +

L

5m
.

Note that S2v1 + L
5 ≥ 0 on J × Rn. We have v2 ≥ 0 on J × Rn and

‖v2‖ ≤ ‖v1‖+
1

m
‖S2v1‖+

L

5m

≤ R1 +
A

m
B1 +

L

5m

= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10
− ε L

10

or

(I − T1)v2 = −εmv2 + ε
L

10

= S3v1.

Consequently S3(PR1) ⊂ (I − T1)(Ω).

4. Assume that for any u0 ∈ P∗ there exist λ ≥ 0 and x ∈ ∂Pr∩(Ω+λu0)
or x ∈ ∂PR1 ∩ (Ω + λu0) such that

S3x = (I − T1)(x− λu0).

Then

−εS2x−mεx− ε
L

10
= −mε(x− λu0) + ε

L

10
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or

−S2x = λmu0 +
L

5
.

Hence,

‖S2x‖ =

∥∥∥∥λmu0 +
L

5

∥∥∥∥ > L

5
.

This is a contradiction.

5. Suppose that for any ε1 ≥ 0 small enough there exist a x1 ∈ ∂PL and
λ1 ≥ 1 + ε1 such that λ1x1 ∈ PR1 and

S3x1 = (I − T1)(λ1x1). (4.1)

In particular, for ε1 >
2

5m , we have x1 ∈ ∂PL, λ1x1 ∈ PR1 , λ1 ≥ 1 + ε1
and (4.1) holds. Since x1 ∈ ∂PL and λ1x1 ∈ PR1 , it follows that(

2

5m
+ 1

)
L < λ1L = λ1‖x1‖ ≤ R1.

Moreover,

−εS2x1 −mεx1 − ε
L

10
= −λ1mεx1 + ε

L

10
,

or

S2x1 +
L

5
= (λ1 − 1)mx1.

From here,

2
L

5
≥
∥∥∥∥S2x1 +

L

5

∥∥∥∥ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.

Therefore all conditions of Theorem 1.2 hold. Hence, the BVP (1.1) has at
least two solutions u1 and u2 so that

‖u1‖ = L < ‖u2‖ < R1

or
r < ‖u1‖ < L < ‖u2‖ < R1.
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5 An Example

Below, we will illustrate our main results. Let m = 2, n = 1,

s1 = s2 = 0, s1k = s2k = 2, k ∈ {1, 2}, p1 = 3, q1 = 0, r11 = 0,

t1 = 1
4 , t2 = 1

2 and

R1 = B = 10, L = 5, r = 4, m = 1050, A =
1

10B1
, ε =

1

5B1(1 +A)
.

Then

AB1 =
1

10
< B, εB1(1 +A) < 1,

i.e., (H6) holds. Next,

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1

)
L, AB1 <

L

5
.

i.e., (H7) holds. Take

h(s) = log
1 + s11

√
2 + s22

1− s11
√

2 + s22
, l(s) = arctan

s11
√

2

1− s22
, s ∈ R, s 6= ±1.

Then

h′(s) =
22
√

2s10(1− s22)

(1− s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s20)

1 + s40
, s ∈ R, s 6= ±1.

Therefore

−∞ < lim
s→±∞

(1 + s+ s2)h(s) <∞,

−∞ < lim
s→±∞

(1 + s+ s2)l(s) <∞.

Hence, there exists a positive constant C1 so that

(1 + s+ s2)3

(
1

44
√

2
log

1 + s11
√

2 + s22

1− s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2

1− s22

)
≤ C1,
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s ∈ R. Note that lim
s→±1

l(s) = π
2 and by [11] (pp. 707, Integral 79), we have

∫
dz

1 + z4
=

1

4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1

2
√

2
arctan

z
√

2

1− z2
.

Let

Q(s) =
s10

(1 + s44)(1 + s+ s2)2
, s ∈ R,

and
g1(x) = Q(x1) . . . Q(xn), x ∈ Rn.

Then there exists a constant C > 0 such that

2 · 8n
n∏
j=1

(
1 + |xj |+ x2

j

) ∣∣∣∣ ∫ x

0
g1(y)dy

∣∣∣∣∣ ≤ C, (t, x) ∈ J × Rn.

Let

g(x) =
A

C
g1(x), x ∈ Rn.

Then

2 · 8n
n∏
j=1

(
1 + |xj |+ x2

j

) ∣∣∣∣ ∫ x

0
g(y)dy

∣∣∣∣∣ ≤ A, x ∈ Rn,

i.e., (H7) holds. Therefore for the problem

cD
5
3
t,0+u− uxx = u3

1+x4
, t ∈ [0, 1], x ∈ R,

u(t+1 , x) = u(t1, x) + (u(t1,x))2

1+x10
, x ∈ R,

u(t+2 , x) = u(t2, x) + (u(t2,x))2

1+x18
, x ∈ R,

ut(t
+
1 , x) = ut(t1, x) + (u(t1,x))2

10+20x30
, x ∈ R,

ut(t
+
2 , x) = ut(t2, x) + (u(t2,x))2

1+4x20
, x ∈ R,

u(0, x) = 1
1+x4

, x ∈ R,

u(1, x) = 1
1+x6

, x ∈ R,

are fulfilled all conditions of Theorem 1.1 and Theorem 1.2.
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