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Abstract There are many technical applications of the system
The analysis of vibrations of the weak nonlinear containing various types of pendulums. Discussion o
smooth auto-parametrical non autonomous two degreesuch models with a view to damping vibrations may
of freedom systems was made. The pendulum ofbe found in [Sado; Shivamoggi; Genin and Ryabow].

changing length is an example of such a system. A

multiple scales method of investigation of small

vibrations is applied to the analysis of resonaite /

obtained results were confirmed numerically. (0]
Analytical calculation was made with the use of

Mathematica.
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1. Introduction

Dynamical systems including mathematical or
physical pendulum play significant role in techrgylo

In such systems one can observe an auto-parametric
resonance phenomena, because of the coupling

occurring in the equation of motion. The phenomenon Al the calculations presented in the paper, both
of energy transfer from one of the mode of vibmatio analytical and numerical transformations, were made

to the other was widely discussed in [Karamyskin]. with the help of computer algebra system
Dynamical analysis of nonlinear vibrations of sgrin  Mathematica.

pendulum (Figure 1) was presented in the paper.

The main goal of the analysis is recognition of
primary and parametric resonances using the mailtipl 2. Spring pendulum
scales method. The program in the computer algebra
system Mathematica was elaborated. It enables The kinetic and potential energy of the examined
automatizing many transformations in the pertudrati ~ System has the form:
method use for this purpose [Starosta, Awrejcewicz]

The phenomenon of energy transferring between the

Figure 1. Spring pendulum

modes of vibrations occurs in the vicinity of the T =1m[)'(2 +(I +x)292] L
parametric resonance. The multiple scale method 2 (1)
makes possible to recognize parameters of thersyste V = mg(l + x)(l— cosH) + 1 loc

that are dangerous due to the resonance and altows
make a time history for the assumed generalized co-

ordinates. wherem — mass of the pendulurh;- the lengthk —

stiffness of the springg Earth’s acceleration and



and § — generalized co-ordinates admitted according
to Fig.1.

Applying Lagrangian equation and taking into
account external excitation as a force acting an th
mass along the pendulum the following equation of
motion are obtained:

2
MK + kx — 2m(| +x)—gm%= f cosQt
2 2
9 4,
[+x  I+X

4+ X0 =0

Expansion of trigonometric functions

sind DH—%Hs and cos@ Dl—%&z,

are admitted, assuming that vibrations are small.
Let us introduce dimensionless generalized co-

ordinates (with tilde)l—x=£i, =¢6. Let us

assume the forcing amplitude in the forin= £2f
Equations (2) can be rewritten in the form:

§+azfi=£(52 —Glézj+choth

9+w§9=—5(2§9+i9j
where
f k g g .
=— =— == == 1
me A= @@= Gy eslisa

so-called small parameter.

In order to simplify the notation, the sign ~ (&)d
will be omitted below.
The solution of (4) is sought in the following form

X(t;“:): Xo(To*Tl)"' € Xl(TO’T1)+O(‘92)
(4)

H(t;“:): 90(T01T1)+‘961(T01T1)+O(52)
where T,=t, T,=¢t is a scale of time of slow
changing processes.

The original set of equations will be transformed t
the set of partial differential equations becau$e o
differentiating of the compound functions according
to:

d_ o o
— = 44—
dt 0T, 0T,

2 2 2 (5)
d 0 0
_2: 5 +2¢&
dt2 912 aT,0T,

Substitution of (4) and (5) to (3) leads to the

equations:
(order £°)
62
aTXE +afx, =0
a% (6)
aTg +ax, =0
0
(order &)
2 2 2
o X1+wfx1+2 0%, +G,67 - 06 | .
0T/, 0T, 0T, 0T,
+F cos(QTo) =0
2 2 2 7
ael+w2261+2090 _0090+ )
0Ty 0T,0T, 0Ty
+ 2% 9, _ 0
0T, 0T,
The solution of (6) may be found as follows
X = AT) e +A(T) e " ©

8, = B(T) ™ +B(T,)e'".

Substitution of (8) to (7) gives the first order
equation in the form

1

0%x,

Fel™? — o2 (5 + o2 )B2 —
aTOZ ( 1 2)

+ WX =
2@5@+&@B§—2@“M95+cg
2
g_l_ezl + w36, = —e”“(“’”“’z)(— 20,0, — W2 )AB +
0

B eiTo(M.‘wz)(Za_&wz - )AE + 2igTo g, :TB +CC.
1

wherec.c. represents the complex conjugates

In the above equations the arguments of A and B are
omitted in order to shorten the notation.
Removal of secular terms in equations (9), requires

dA(T,)

dT,

dB(T,) _
dT,

=0 and 0. (10)

The solution of (9) is then



iT,Q

_ (Gl + w§)82

e 2iT
X, =F gl
' 200 - w?) -w?+4w?
+ —(_ G, + @, )BB +cce.
w? (11)
6,=- w, (20, + w,) ABe'(@*@)lo 4
w \w, + 2w,

W, (2&)1 ~ 0)2) Agei(M‘mz)Tu +ccC.
a)lia)l - 2w, )

The above solution becomes singular when the
primary or internal resonances occurs i.e. when
w =Q andlor @ =2w,. In order to treat this

resonances case, we can introduce the new paramet
0, and 0, according to:
Q=w+e0, 2w, =w + &0, (12)

The equations (9) can be written now as follows:

at2 +afx =2 -2G,BB + 20£BB

_ eiTUq[; &NOF + TG B + €0 2B + 2"‘{ ] +ceC. (23)
2
aatfl + a&gl :e3iTu"'z (e’iTﬂz AB(ZO.{&)Z + ag))+

0

gl (e’”‘”z 20363, AB — (£ AB + 2i @3—?} +ce.
1

Removal of secular terms from (13) requires:

%eiTlglF +eiTlﬂzGle +eiT1r72a)2282 +2|&i% :0
1

(14)
e 20w, AB —e" " ) AB +2i w, S?B =0

1

In order to present the solution of (14) in more
familiar form:

X=acost +a)
, (15)
@ =bcost + B)

the following substitution can be made [Awrejcewicz

and Krysko]:
—e# (16)

The introduced amplitudessandb and phases and
p are functions of;.

With the use of the above substitution (16), the
equations (14) lead to expressions of derivatives o
the sought functions looked for:

da __2Fsin+ (G1 + a)zz)az sing
dT, 4w,
da __2Fcosé+ (Gl +a)22)02 cos}
Oclinl 4w (17)
1
—==12 w, Jabsin
aT, 4( W — 2) n
d8 _1
2 w, Jaco
T =, (2w -, Jacosy
er
where

E=T,0,-a()andy =T,0, -a(T,) +24(T,). (18)

Solving the above equations lets to obtain the
information about modulations of amplitudegT,)
andb(T,), and phase#(T,) and (T,) respectively.

Equations (17) are non-autonomous system because
right-hand side depends on the independent variable

T,. They can be transformed into an autonomous

: da dg .
system of equations by expres and —in
Y q y exp S’aﬂg aT,
terms ofK and — di
1 ar, -’
da _, _d¢ anddﬁ:l(dn—gz+a'l de (19)
dT, b odT, dar, 2(dT T,
Substituting (19) into (13)and (17) yields
3_:_( (4ala)la 2F cosé - (G +w2)o cosr7)
/4w a
d “ (20)
d'I/'7 (40'2a11a+ 2w, (20, - w, )a? cos -

(G1 + a)zz)o2 cosy - 2F cos{)/4wla

Equations (17), (17)% and (20) form an autonomous
system of equations. The fixed points of these

equations correspond to
da _ =0, a¢ =0. They can be
dT, dT dT dT

written in the form:



2F siné + (G1 + w22)02 sing _
4o,
- 40,wa+ 2F cosé + (Gl + a)zz)o2 cos7 _
4w a
%(Zwl - a)z)absinq =0

(21)

(40, @+ 26 (20, - w, Ja? cos -
(Gl + w22)02 cosy - 2F cos{)/4a)la =0

3. Stability of the fixed points

To analyze the fixed points let us to write a distd
equations. Lets

a=a+a,¢ =G+ e, b=+, n=n,+m (22)
where a,,&,,b,,/7, are solutions of the equations
(21) and a,¢;,b,n, are perturbations which are
assumed to be small comparedagé,,b,,/7,. Now

(22) are substituted into (4% and (19) and the
resulting equations are linearized. Taking intooact
that steady state values satisfy equations (21pete

a =Cpb; C05(’70 )’71 +C, 2, Sin( 1)b1 +
C,cod&,)&,

aogl =-08,+C 2, COE(’?o)bl +
Cby Sin(ﬂo)’h -G, Sin( O)El

bl =Cgby sinn, a +Ciag Sin( O)bl +
Cyagh, coio ),

ay), = (02 +4C;a, 005(’70))31 —2C;b, COS(Uo)bl +
(Clbg Sin( o) - 2C3a§ Sin( o))’71 +GC, Sin({o)fl

(23)

where
+ F 20, -~ w
ClzGl4 & o -F -0
2 203 4
If the steady state solutiona,,<&,,0y,/77, is
asymptotically stable then the real parts of ttets®f
matrix of set of equations (23) should be negathce.

stability of the particular fixed point obtainedoin
(21) eigenvalues are given by the equation

A HT R+ +T A+T,=0 (24)

were I,I,,I;,I, are functions of the parameters

ay,0,,&,.17y, 0, ,,0,,0,,F . They are given in the
appendix. According to the Routh-Hurwitz criterion
the necessary and sufficient conditions for allrinats
of equation (24) to possess negative real pattais

r,>0,r,(rr,-r,)-r,r2>0,r,>0,r,>0.(25)

3 Examples
The set (17) was solved numerically by Runge-Kutta
method for various parameters of the system.

3.1 Main and internal resonance

The modulations of amplitudes are shown in the
Figs. 2-3. The admitted parameters:
Q=3w=3w,=2¢=01,1f=01 and
conditionsa(0) = 0.1, b(0) = 0.1, a(0) =0, 3(0) =0.
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Figure 2. Modulation of amplitude ot(Tl) (combined
resonances).
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Figure 3. Modulation of amplitude cﬁ(Tl) (combined
resonances).

Time history of motion in time is presented in the
Figures below. In the Fig. 4 the solution is obegiry
multiple-scale-method while in Fig. 5 by numerical
solution of eq. (3). The results are very similaatt
confirms correctness of calculation. The numerical
solution was also positively verified by analysfstoe
mechanical energy.
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Figure 4. Time history oﬁ((t)— andB(t)—
(combined resonances).
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Figure 5. Time history oﬁ((t) — andH(t)—
(combined resonances).
Results presented in Figs. 2-5 suggest

combination of two resonances causes a chaotic

behavior. It is confirmed by Poincare map showed in
the Fig 6., made for amplitudasandb.
b(T1)]
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Figure 6. Poincare map for amplitudes.

Let us to drive the largest Lapunov coefficient
versus frequency of the exciting force (Fig. 7).
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Figure 7. The largest Lapunov exponeint

3.2 Internal resonance

In that case the energy exchange between the modes
of vibrations is clearly indicates. The time histdor
both co-ordinates with the same parameters andlinit
conditions as before is presented in Figure 8. Now
frequencies are as follow§2 =5, =4, w, =2. The

other parameters are the same as before.
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Figure 8. Time history ofx( ) — andH(t) —
(internal resonance).

3.3 Primary resonance
In Figure 9 the increase of amplitude appears due t
same values of) andw, (Q=3 w, =3, w,=2).In

thatthe Figure 4 we can see the time history of geizexl

co-ordinates.
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Figure 9. Time history ofx(t) — andH(t) —
(main resonance).

4, Conclusions

The transformations within the multiple-scale-
method were carried out automatically with the ofe
a procedure elaborated iklathematica. Analytical
results obtained by the multi-scale perturbationthoe
were confirmed numerically.

The results show that both quantitative and
qualitative analyses of nonlinear dynamical systems
can be made by the multiple-scale-method in time
domain.

The method allow to recognize the parameters of the
system with respect to the occurring resonance.

Stability of the motion is also carried out by the
procedure written iMathematica.
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Appendix
Coefficients of the characteristic equation (24)

I, =-bZsinn,C, +a, sinn,C,(2a, —1)+C, sing,

I, =2ayf3; co$ 17,C,C; + &, sirvyhy sing,C.C; —

207 sir? 13,C,C, — 2 sirf 17,C5 -, invg,C,C; siné; +
23 sinvy,C,C, siné, +C, cosf,0; —

bg cog1,C, (4a, co9,C, +,)

I, =-G,(G,(2€ sing, cosp,G cos + 2 sirf .G, sing,
+2,i1v7, cosE,0;) + 28, {4af cod, sig,GC,
+2af3 sirf ,G.C, ~ 26 COT1,GC, oSS,

+28; sinv,C,C,Siné —a, Sinvg,C, coséyo; +

+1 cos7, SinC, )| +hG (245 cod 7, sinCCy
+bd4a, co9,C,(8 sing, - C, sin&,) + &, siAC,o,
~C,Sin& (g, + )+ by sirvp, (2 sirf 1,GC,

-G COS{O(460 cosp G+, + Uz))

r,=C,C, (bocl(b0 sins, co +b, cosy, sin{o)
(2)3 sinfy, /2)C, + a, siny, (4a, cos7,C, + 0, + 0, ))
-2a, (4a0b§ co¥ 17,C,C, (cosy, cost, +sinn, sing,)
+agbg sin® ’70C1C3(00970 COs{, +sinsg, Sin{o)
+a2 cog ,C, cosé, 0, +h, c07,C, (b, cos7, COS,

(Jz - 01) +Dy sing, Sin{o(al + 02))))



