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Abstract 
The analysis of vibrations of the weak nonlinear 

smooth auto-parametrical non autonomous two degree 
of freedom systems was made. The pendulum of 
changing length is an example of such a system. A 
multiple scales method of investigation of small 
vibrations is applied to the analysis of resonance. The 
obtained results were confirmed numerically. 
Analytical calculation was made with the use of 
Mathematica. 
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1. Introduction 

Dynamical systems including mathematical or 
physical pendulum play significant role in technology. 
In such systems one can observe an auto-parametric 
resonance phenomena, because of the coupling 
occurring in the equation of motion. The phenomenon 
of energy transfer from one of the mode of vibration 
to the other was widely discussed in [Karamyskin]. 

Dynamical analysis of nonlinear vibrations of spring 
pendulum (Figure 1) was presented in the paper. 

The main goal of the analysis is recognition of 
primary and parametric resonances using the multiple 
scales method. The program in the computer algebra 
system Mathematica was elaborated. It enables 
automatizing many transformations in the perturbation 
method use for this purpose [Starosta, Awrejcewicz]. 

The phenomenon of energy transferring between the 
modes of vibrations occurs in the vicinity of the 
parametric resonance. The multiple scale method 
makes possible to recognize parameters of the system 
that are dangerous due to the resonance and allows to 
make a time history for the assumed generalized co-
ordinates. 

There are many technical applications of the systems 
containing various types of pendulums. Discussion on 
such models with a view to damping vibrations may 
be found in [Sado; Shivamoggi; Genin and Ryabow]. 

 

Figure 1. Spring pendulum. 
 

All the calculations presented in the paper, both 
analytical and numerical transformations, were made 
with the help of computer algebra system 
Mathematica. 

 

2. Spring pendulum 

The kinetic and potential energy of the examined 
system has the form: 
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where m – mass of the pendulum, l – the length, k – 
stiffness of the spring, g Earth’s acceleration and x 
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and θ – generalized co-ordinates admitted according 
to Fig.1.  

Applying Lagrangian equation and taking into 
account external excitation as a force acting on the 
mass along the pendulum the following equation of 
motion are obtained: 
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Expansion of trigonometric functions 
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are admitted, assuming that vibrations are small. 
Let us introduce dimensionless generalized co-

ordinates (with tilde) x
l

x ~ε= , θεθ ~= . Let us 

assume the forcing amplitude in the form ff
~2ε=   

Equations (2) can be rewritten in the form: 
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where 

lm

f
F

~
≡ , 

m

k≡2
1ω , 

l

g≡2
2ω , 

l

g
G

21 ≡ ,  1<<ε , is a 

so-called small parameter. 
 

In order to simplify the notation, the sign ~ (tilde) 
will be omitted below. 

The solution of (4) is sought in the following form  
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where tT =0 , tT ε=1  is a scale of time of slow 

changing processes. 
The original set of equations will be transformed to 

the set of partial differential equations because of 
differentiating of the compound functions according 
to: 
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Substitution of  (4) and (5) to (3) leads to the 
equations: 

 
(order 0ε ) 
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(order 1ε ) 
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The solution of (6) may be found as follows 
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Substitution of (8) to (7) gives the first order 
equation in the form 
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where c.c. represents the complex conjugates 

In the above equations the arguments of A and B are 
omitted in order to shorten the notation. 

Removal of secular terms in equations (9), requires 
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 The solution of (9) is then 
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The above solution becomes singular when the 

primary or internal resonances occurs i.e. when 
Ω=1ω  and/or 21 2ωω = . In order to treat this 

resonances case, we can introduce the new parameter 

1σ  and 2σ  according to: 

 

 11 σεω +=Ω  2122 εσωω +=   (12) 

 
The equations (9) can be written now as follows: 
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Removal of secular terms from (13) requires: 
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In order to present the solution of (14) in more 
familiar form: 
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the following substitution can be made [Awrejcewicz 
and Krysko]: 
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The introduced amplitudes a and b and phases α and 
β are functions of T1. 

With the use of the above substitution (16), the 
equations (14) lead to expressions of derivatives of 
the sought functions looked for: 
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where 
 

)( 111 TT ασξ −= and ( )1121 2)( TTT βαση +−= . (18) 

 
Solving the above equations lets to obtain the 

information about modulations of amplitudes a(T1) 
and b(T1),  and phases ( )1Tα  and ( )1Tβ  respectively. 

Equations (17) are non-autonomous system because 
right-hand side depends on the independent variable 

1T . They can be transformed into an autonomous 

system of equations by expressing
1dT

dα
 and 

1dT

dβ
in 

terms of 
1dT

dξ
 and 

1dT

dη
. 
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Substituting (19) into (17)2 and (17)4 yields 
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Equations (17)1 , (17)3 and (20) form an autonomous 

system of equations. The fixed points of these 
equations correspond to 
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written in the form: 
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3. Stability of the fixed points 

To analyze the fixed points let us to write a disturbed 
equations. Lets 

 

10 aaa += , 10 ξξξ += , 10 bbb += , 10 ηηη +=    (22) 

 
where 0000 ,,, ηξ ba  are solutions of the equations 

(21) and 1111 ,,, ηξ ba  are perturbations which are 

assumed to be small compared to 0000 ,,, ηξ ba . Now 

(22) are substituted into (17)1,3 and (19) and the 
resulting equations are linearized. Taking into account 
that steady state values satisfy equations (21), we get 
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If the steady state solution 0000 ,,, ηξ ba  is 

asymptotically stable then the real parts of the roots of 
matrix of set of equations (23) should be negative. For 
stability of the particular fixed point obtained from 
(21) eigenvalues are given by the equation  
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were 4321 ,,, ΓΓΓΓ  are functions of the parameters 

Fba ,,,,,,,, 21210000 σσωωηξ . They are given in the 

appendix. According to the Routh-Hurwitz criterion 
the necessary and sufficient conditions for all the roots 
of equation (24) to possess negative real parts is that 
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3 Examples 

The set (17) was solved numerically by Runge-Kutta 
method for various parameters of the system. 

 
 

3.1 Main and internal resonance 
The modulations of amplitudes are shown in the 

Figs. 2-3. The admitted parameters:  
1.0,1.0,2,3,3 21 =====Ω fεωω  and initial 

conditions 0)0(,0)0(,1.0)0(,1.0)0( ==== βαba . 
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Figure 2. Modulation of amplitude of ( )1Tx  (combined 

resonances). 
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Figure 3. Modulation of amplitude of ( )1Tθ  (combined 

resonances).  
 

Time history of motion in time is presented in the 
Figures below. In the Fig. 4 the solution is obtained by 
multiple-scale-method while in Fig. 5 by numerical 
solution of eq. (3). The results are very similar that 
confirms correctness of calculation. The numerical 
solution was also positively verified by analysis of the 
mechanical energy. 
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Figure 4. Time history of ( )tx          and ( )tθ   

(combined resonances). 
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Figure 5. Time history of ( )tx          and ( )tθ  

 (combined resonances). 
 

Results presented in Figs. 2-5 suggest that 
combination of two resonances causes a chaotic 
behavior. It is confirmed by Poincare map showed in 
the Fig 6., made for amplitudes a and b. 
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Figure 6. Poincare map for amplitudes. 

 
 

Let us to drive the largest Lapunov coefficient λ 
versus frequency of the exciting force (Fig. 7).  
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Figure 7. The largest Lapunov exponent λ . 

 
 

3.2 Internal resonance 
In that case the energy exchange between the modes 

of vibrations is clearly indicates. The time history for 
both co-ordinates with the same parameters and initial 
conditions as before is presented in Figure 8. Now 
frequencies are as follows: 2,4,5 21 ===Ω ωω . The 

other parameters are the same as before. 
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Figure 8. Time history of ( )tx         and ( )tθ  

 (internal resonance). 
 

 
3.3 Primary resonance 

In Figure 9 the increase of amplitude appears due to 
same values of Ω  and 1ω  ( 2,3,3 21 ===Ω ωω ). In 

the Figure 4 we can see the time history of generalized 
co-ordinates. 
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Figure 9. Time history of ( )tx          and ( )tθ                    

(main resonance). 
 

 
4. Conclusions 

The transformations within the multiple-scale-
method were carried out automatically with the use of 
a procedure elaborated in Mathematica. Analytical 
results obtained by the multi-scale perturbation method 
were confirmed numerically. 

The results show that both quantitative and 
qualitative analyses of nonlinear dynamical systems 
can be made by the multiple-scale-method in time 
domain. 

The method allow to recognize the parameters of the 
system with respect to the occurring resonance. 

Stability of the motion is also carried out by the 
procedure written in Mathematica. 
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Appendix  
Coefficients of the characteristic equation (24)  
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