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Abstract

This paper presents a simple algorithm for the out-
put range estimation problem in Deep Neural Networks
(DNNG5) by integrating a Simulated Annealing (SA) al-
gorithm tailored to operate within constrained domains
and ensure convergence towards global optima. The
method effectively addresses the challenges posed by
the lack of local geometric information and the high
non-linearity inherent to DNNs, making it applicable
to a wide variety of architectures, with a special fo-
cus on Residual Networks (ResNets) due to their prac-
tical importance. Unlike existing methods, our algo-
rithm imposes minimal assumptions on the internal ar-
chitecture of neural networks, thereby extending its us-
ability to complex models. Theoretical analysis guar-
antees convergence, while extensive empirical evalua-
tions—including optimization tests involving functions
with multiple local minima—demonstrate the robustness
of our algorithm in navigating non-convex response sur-
faces. The experimental results highlight the algorithm’s
efficiency in accurately estimating DNN output ranges,
even in scenarios characterized by high non-linearity and
complex constraints.
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1 Introduction

Unquestionably, in recent decades, Deep Neural Net-
works (DNNs) have been by far the most widely used
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tools to perform complex machine learning tasks. More
recently, DNNs have been used in cyber-physical sys-
tems critical to public security and integrity; such as au-
tonomous vehicle driving and air traffic systems. There-
fore, it is of pressing interest to implement security ver-
ification systems for DNNs. One of the objectives in
this line of interest is the verification of the maximum
and minimum values assumed by a DNN, an objective
commonly known as the range estimation problem, see
[Dutta et al., 2018; Wang et al., 2018]. This interest
in estimating the range assumed by a DNN responds
to the objective of diagnosing and validating the previ-
ously executed training. However, the relationships es-
tablished between the inputs and outputs of a DNN are
highly non-linear and complex, making it difficult to un-
derstand with existing tools today. Due to this inability,
DNNs are commonly referred to as black boxes. This
nature of DNN makes the range estimation problem par-
ticularly challenging because there is no geometric infor-
mation about the response surface generated by a DNN.
For example, if local geometric information about the
generated surface by a DNN was obtained, such as the
gradient vector and the Hessian matrix at each point, the
problem could be addressed with conventional nonlinear
programming techniques. However, in a DNN it is only
possible to obtain point information about the estimated
response, without any local knowledge around that point.
These facts, added to the high nonlinearity of a DNN,
make the range estimation problem nontrivial. In partic-
ular, this problem is even more challenging when dealing
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with a DNN, in contrast to other types of neural network,
since its multiple layers increase the complexity of the
problem. In this paper, we present a simple algorithm
based on global optimization techniques, initially moti-
vated by the classical Simulated Annealing (SA) [Kirk-
patrick et al., 1983], to solve the range estimation prob-
lem for a wide spectrum of neural networks, and in par-
ticular DNNSs. In contrast to classical SA, our algorithm
considers the existence of a restricted domain for search-
ing for optimal points, which eventually corresponds to
the domain of the training data of the analyzed neural
network. Our algorithm does not make use of any in-
formation about the internal architecture of the analyzed
DNN, which makes it applicable to a much larger spec-
trum than other proposals available in the literature, see
for example [Dutta et al., 2018; Wang et al., 2018; Katz
et al., 2017]. Our algorithm considers restricted search
spaces, which underlie the nature of the output range es-
timation problem of neural networks. Furthermore, we
present results, both theoretical and empirical, that guar-
antee the convergence of our algorithm towards the opti-
mal points, which leads to a good estimation of the out-
put range.

In line with the objective and motivation
stated—estimating, in a reliable way, the extreme
values that the network can produce under bounded
inputs while treating it as a black box—we adopt a
global search strategy on a finite domain that combines
four simple and complementary ideas. First, symmetric
random proposals are generated around the current
point to explore without directional bias. Second, a
cyclic reflection is applied at the domain boundaries:
any proposal that leaves the range “bounces” back
in by symmetry, preventing artificial accumulation
near the boundary. Third, a probabilistic acceptance
criterion balances exploration and exploitation and, in
a controlled way, allows accepting moves that do not
immediately improve in order to escape local optima.
Fourth, the intensity of exploration is reduced gradually
so that the search progressively concentrates on the most
promising regions. These elements are articulated into a
single update mechanism: at each iteration a candidate is
proposed (with reflection if needed), the network output
is evaluated at that point, and acceptance or rejection
is decided; if accepted, the state is updated, and in all
cases the best value found and its location are recorded.
The formal details and assumptions are presented in the
methodology Section 5. The rationale for this dynamics
is that it combines broad, unbiased coverage with pro-
gressive focusing. Symmetric proposals together with
cyclic reflection support a balanced exploration of the
admissible space, preventing the trajectory from sticking
to the boundaries and encouraging visits to distinct
regions of the domain. The probabilistic acceptance
criterion acts as a safeguard against entrapment: early on
it facilitates barrier crossing and exits from local optima;

later, as the exploration intensity is gradually reduced, it
acts as an adaptive “zoom” that concentrates sampling
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where the evidence is stronger. Moreover, by always
retaining the best value observed, the procedure does
not lose progress: even while exploring alternatives, the
best estimate of the extreme improves monotonically. In
a black-box setting with bounded inputs, this sequence
makes visits to neighborhoods of the true extrema very
likely and, under mild continuity, yields estimates close
to the extreme values of interest.

Our methodology for output range estimation in deep
neural networks shares similarities with global optimiza-
tion methods used in previous studies. For example,
Gromov et al. [Gromov et al., 2024] and Kovaleva &
Smirnov [Kovaleva and Smirnov, 2024] explore opti-
mization techniques for finding global extrema in com-
plex systems, including neural networks. These meth-
ods, such as Simulated Annealing (SA) and memetic
algorithms, are effective for general optimization prob-
lems. However, while these studies focus on optimizing
various types of systems, our work introduces a novel
approach by applying SA with reflective boundary con-
ditions specifically designed for deep neural networks
with constrained input spaces. This reflects a need in
the literature for methods that preserve boundaries while
optimizing over complex, high-dimensional spaces. Fur-
thermore, previous works like the one by van Laarhoven
& Aarts [van Laarhoven and Aarts, 1987] and Nourani &
Andresen [Nourani and Andresen, 1998] provide strong
theoretical foundations for SA in global optimization.
Our approach complements these methods by maintain-
ing asymptotic convergence guarantees while incorpo-
rating constraints imposed by the architecture of deep
neural networks. Additionally, recent studies such as the
one by Gromov et al. [Gromov et al., 2024] on Bayesian
optimization and the study of evolutionary algorithms
for global optimization by Kovaleva & Smirnov [Ko-
valeva and Smirnov, 2024] further emphasize the impor-
tance of global extrema search in machine learning con-
texts. Our method extends these approaches by directly
addressing the challenges posed by the constrained do-
mains in neural network outputs, offering a practical so-
lution for deep learning models. Finally, optimization
methods and extremal problems in neural network train-
ing, such as those explored by Gromov et al. [Gromov
et al., 2024], are directly addressed by our technique.
While previous studies have applied evolutionary strate-
gies and optimization algorithms to explore global min-
ima, our approach with reflective boundaries adds a layer
of robustness by ensuring that the optimization process
remains within feasible input domains, thus overcoming
the limitations of traditional methods in constrained en-
vironments.

Outline. In the section “Residual Neural Networks”
we make a mathematical description of a very particu-
lar family of deep neural networks called Residual Net-
works. Although our methodology works for any par-
ticular family, we focus on these neural networks given
their relevance in applications and for illustrative pur-
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poses of the use of our algorithm. In the section “Out-
put Range Analysis Problem”, we specifically define the
output range analysis problem for neural networks, men-
tioning its characteristics, limitations, and challenges.
In the section titled “Simulated Annealing with Bound-
ary Conditions” we develop an exhaustive treatment of
Simulated Annealing for limited domains, adapting its
properties and guaranteeing its results for our purposes.
In the section titled “Algorithm Derivation”, from the
above, we derive an algorithm to solve the output range
analysis problem. Finally, in the section “Experimental
Evaluation” we present a part of the experimental eval-
uations that we have executed to numerically guarantee
our results and the performance of our proposed algo-
rithm.

2 Related Work

Recently, various methodologies have been proposed
for the analysis of the output range of DNNs. [Dutta
et al., 2018] propose a novel approach to estimate the
output ranges of these models given specific input sets.
Their novel algorithm utilizes local search techniques
and linear programming to efficiently compute the max-
imum and minimum values in a DNN over the input
set. The algorithm repeatedly applies local gradient de-
scent to identify and eliminate local minima of the neural
network’s output function. Once local optima are iden-
tified, the final global optimum is validated through a
mixed integer programming model. The authors con-
sider the algorithm’s computational efficiency while still
maintaining the accuracy of the output range estimation.
However, common issues like scalability and the poten-
tial complexity of a DNN are not fully addressed. Fur-
thermore, the methodology makes specific assumptions
about the neural network, which means that the method-
ology can only be applied to a rather restricted class of
neural networks.

On the other hand, autonomous vehicles, collision
avoidance systems, and others are part of a real-world
security-critical domain, making it important to check
the security properties of DNNs. These security proper-
ties guarantee that a DNN should have to ensure it oper-
ates safely and reliably against potential threats. There
are frameworks for verifying the security properties of
DNN that use interval arithmetic [Wang et al., 2018;
Katz et al., 2017; Carlini et al., 2018]. [Wang et al.,
2018] shows us a framework called ReluVal, which em-
ploys interval arithmetic to represent the ranges of inputs
and outputs. For each input and operation in a DNN, the
interval calculation is performed to explore the output
range of the network. By analyzing these intervals, the
framework can detect inputs that lead to incorrect clas-
sifications or outputs, thereby exposing potential weak-
nesses in the network. The experiments demonstrate
the efficiency of ReluVal in verifying security proper-
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ties, outperforming other frameworks. Nevertheless, it

may still struggle with scalability when applied to ex-
tensive networks or complex architectures. Furthermore,

the framework is focused on specific types of adversarial
attacks, leaving uncertainty regarding its performance on
different architectures.

Other kinds of verification of DNNs are required:
safety and robustness. [Tran et al., 2020] presents the
Neural Network Verification (NNV) software tool. The
tool applies a collection of reachability algorithms and
the use of a variety of set representations, such as polyhe-
dra, star sets, zonotopes, and abstract-domain represen-
tations. Also, NNV can handle different types of neural
networks and system models, allowing it to support both
exact and over-approximate analysis. However, repre-
sentations as polyhedra are limited by scalability and
may not work effectively, as they involve costly opera-
tions, leading to a conservative and less practical reach-
ability analysis in larger systems. Moreover, all exper-
iments focus on specific exercises, which limits the ex-
ploration of new and complex DNN architectures. Then,
[Liu et al., 2021] provide a comprehensive overview of
methods developed to formally verify the safety and ro-
bustness of DNNs. The authors discuss different algo-
rithms that incorporate reachability analysis, optimiza-
tion, and search techniques to verify the appropriate
configuration of the DNNs for the input-output proper-
ties across their entire input space. These algorithms
are classified into different categories, such as layer-
by-layer, reachability analysis, optimization-based, and
combined search and verification methods. However, af-
ter exhaustive verification of these algorithms, the work
concludes with some algorithms that present, like the
other works, problems with the network scale. Finally,
[Huang et al., 2020] analyze the output range of a neu-
ral network using a convex polygonal relaxation (over-
approximation) of the activation functions to manage
nonlinearity, allowing the problem to be formulated as
a mixed-integer linear program (MILP). However, a key
limitation is the addition of more integer variables in the
MILP, which increases computational complexity, par-
ticularly in DNNSs or those with more complex architec-
tures.

In general, these proposals described above make
restrictive assumptions about the network architecture
which limits the use and application of these method-
ologies. In contrast, our proposal does not make any
assumptions about the internal architecture of the evalu-
ated neural network, which makes our algorithm widely
applicable in output rank analysis for neural networks,
and given the greater complexity, even more so when it
comes to DNNs. Given these features of our algorithm,
added to this are the theoretical and empirical guarantees
that we present, and its simple and easy implementation,
we believe that it is a relevant and practical contribution
to the objectives in this application area.
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3 Residual Neural Networks

As mentioned above, since we make no assumptions
about the internal architecture of the analyzed neural net-
work, our algorithm works for a wide spectrum of neural
networks. However, without loss of generality, we fo-
cus on Residual Neural Networks given their relevance
in applications and for illustrative purposes of the use of
our algorithm. The Residual Networks (or ResNets) is
a kind of DNN that was introduced in [He et al., 2016],
for which in this chapter we show a mathematical de-
scription. Let z € R? denote the inputs and y € R
be the output in a supervised learning problem. In this
learning context, the objective is the approximation of
a function f : z € RY — y € R using a ResNet,
which we denote as F. The basic unitary components of
a ResNet are called residual blocks, which are organized
in a consecutive number of layers that are linked through
nonlinear functions. To obtain a mathematical descrip-
tion of the operations carried out within a ResNet, we
define some notations. We consider a network with a
source layer, a output layer and L hidden layers, where
the [-th layer contains H; neurons (/-th layer width), for
[l =0,...,L+ 1. Note that Hy = d and Hp 41 = 1,
corresponding to the feature inputs and target outputs re-
spectively. We denote the output vector of the I-th layer
by () € Rt which corresponds to the input of the next
layer. We set (%) = 2 € R? and 2(*+1) = ¢ € R. For
l =1,..., L, the i-th neuron performs an affine trans-
formation on that layers input (') followed by a non-
linear transformation

Hy_,
e _a< > Wil ™ +b§”> +27V 1<i<H, (1)
P

J

where W;; and bz(l) are respectively known as the
weights and bias associated with i-th neuron of layer [,
while the function o(+) is known as the activation func-
tion.

Definition 1 (ResNet). Ler W1 = [W\/)] € RHi-1xHi

be the weight matrix and b") = [bgl)] € R pe the bias
vector for layer l, then the operations within each layer
are described by

20 — J(Aa) (:C(zfl))) 420D,
@)
AD (=D = w071 4 b0

where o acts component-wise; that is, o(x1,...,2q) :=
(o(x1),...,0(xq)). Thus, a ResNet with L hidden lay-
ers F : R? — R is mathematically defined as

F(z) = AFNogo AP ogo AL Vo . .ogo AD (2).
3)

Although the activation function can, in principle, be
chosen arbitrarily, there are three functions that have

particularly proven to be useful in various applications;
ReLU, Sigmoid, and Tanh, see [LeCun et al., 2015;
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Goodfellow et al., 2016]. The parameters of the network

is all the weights and biases {W® b }LFL ¢ RN»,
L+1

where N, = ) (H;—1 + 1)H; is the total number of
=1

parameters.

Residual blocks with general activations. Let o :
R — R be a Lipschitz activation (e.g., ReLU, tanh,
GELU). To make the residual path explicit and avoid am-
biguity between (2) and (3), we write

2© =g,
20D J(A(l)(x(l))) + 2O,
and the network output
Fla) = AL D).

These expressions preserve the skip connection for any
choice of 0. Note that our algorithm treats the network
as a black box; the presence of residual connections is
not required by the method or by the analysis. In this
case, we display the residual formulation to adopt nota-
tion that is standard in modern architectures and to align
with the models used in our experiments, ResNet-based
surrogates of Ackley and Drop—Wave. The simulated-
annealing procedure and the theoretical development,
however, treat F as a black box; the same analysis ap-
plies verbatim to generic feedforward DNNs with affine
layers and a Lipschitz activation.

4 Output Range Analysis Problem

In the rest of this paper, we consider a ResNet F with
inputs z € R and output y € R as defined (3). We
assume that the network parameters of the neural net-
work were optimally estimated following standard train-
ing procedures such as those shown in [Bishop, 2006;
Murphy, 2012].

Definition 2 (Range Estimation Problem). The prob-
lem is defined as follows:

INPUTS: : A trained neural network (for example
a ResNet F) and input constraints Ax < b which
generates a feasible set E, i.e., E = {x € RY .
Az < b}

OUTPUT: An interval [Fpin,Fmaz] Such that
F(x) € [Fmins Fmaz)> -, [Fmin, Fmaz] cOntains
the range of F over inputs x € E. Moreover,
the optimal points {Tin, Tmaz} € E such that
-/_'.(xmin) = Fnin and -F(xmaz) = Frmaaz-

Remark 1. Due to the applications, we focus just on hy-
percubes of R as feasible set, that is; sets of the type
E = [l1,u1] x -+ % [lg,uq) C R% where [l;,u;] are in-
tervals in R. Note that E is the restricted search domain
in which we want to diagnose and validate the analyzed
neural network.
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As mentioned above, this problem is particularly chal-
lenging given that there is generally almost total igno-
rance about the surfaces generated by a DNN. That is,
there is no information on the functional form of the
mapping F. Therefore, there is no local geometric in-
formation such as the local slopes and curvatures of
these surfaces, making the use of traditional nonlinear
programming methodologies impossible. Furthermore,
the surfaces generated by this type of neural network
are strictly non-convex, with many minima. Therefore,
it requires thinking about global optimization methods,
methods such as SA for which it is necessary to incorpo-
rate the restricted search domain E.

5 Simulated Annealing with Boundary Conditions

Our objective in this session is to incorporate the do-
main F, coming from the range estimation problem, into
the classical SA, and at the same time establish theoret-
ical guarantees of the optimization process of the neural
network F. To this end, our range estimation problem
can be summarized in an optimization problem of the
form

21161]131 F, “4)

where F is a ResNet and E is a hypercubes of R, which
we denote by the pair (F, E). The main problem now is
to find a point ,,;,, € E such tha F (2 yi,) is global min-
imal on E. The max,¢g F is equivalent to min,c g —F,
which is why we can, without loss of generality, only talk
about “Minimization” throughout this paper. We denote
by Mr = {&min € E : F(xmin) < F(z), forall z €
E'} the minimum set of F. From Equation (3), we know
that F is a continuous function, and added to the fact that
E is a compact set, we know that M is a non-empty
set. For simplicity in notation we set Fnin = F(Zmin)-
Next, we will incorporate the search domain by estab-
lishing reflective band conditions on E.

Definition 3 (Cyclic Reflection). Ler E = [l1,u1] %
oo X [lg,uq) C R, where [lj,u;] are intervals in
R. We denote by R : RY — E, the different com-
binations of the reflections on E, that is, R(y) =
(R(y1), ..., R(ya)), where

ify; =1y mod (2u; =) <wj =1y,

®)

L+ [(1/_, —1;) mod (u; 71,)}‘
Rly;) =

wj— [(y; — ;) mod (u; —1;)], if(y; —1;) mod (2(u; —1;)) > u; — 1.

Remark 2 (Intuitive role of the reflection step).

The range estimation problem is inherently posed on
bounded input domains—here, a hypercube E—and any
search scheme must therefore keep all iterates within E.
We employ a cyclic reflection that returns any out-of-box
proposal to E via the function 'R, so that local explo-
ration near the boundary OE resembles that of interior
points and boundary-driven bias is avoided. Crucially,
this boundary mechanism is designed to preserve the

assumptions used in our theoretical analysis and ensure
the asymptotic convergence of the simulated-annealing

chain to the set of global extrema on E, see Theorem
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1 and Corollary 1. Compared with the general-state-
space framework of [Haario and Saksman, 1991 ], which
is implicitly compatible with boundary handling but
does not instantiate an explicit, algorithmic reflection
tailored to box-constrained output-range estimation,
our contribution makes this reflection function explicit
and operational for the present objective.

Definition 4 (Generating Distribution). We say that
is a generating distribution, with Gaussian density func-
tion p : E x R — Rt and with reflective boundary
conditions on E, if Q) is defined as

Q(z,B) := p(z,y)dy, (6)

{yeR*:R(y)eB}

where

1 _ 2
px,y) = (@ro)i? exp <||:1:20y||> @)

forx € E, B C B(E) and y € RY. Here o is a positive
parameter and B (E) denote the Borel o -algebra on the
state space E.

Definition 5 (Acceptance Probability). Given F and a
number T' > 0, the acceptance probability qr : E X
E — R is defined as

ar(z,y) = et min{Of(-T)—f(y)}’ (8)

where T is called temperature parameter.

Definition 6 (Simulated Annealing Process). Let

(F, E) be a global minimization problem, (Q;)icn be
a sequence of generating distributions with reflective
boundary conditions, {T;}ien 1 0 be a sequence of
temperature parameters, and (qr,)ien be a sequence
of acceptance probabilities. A simulated annealing
process with reflective boundary conditions on E is the
non-homogeneous Markov process (X;)ien, defined on
a probability space (Q, A,P), with state-space (E,*B)
and transition kernel (P;);cn defined by

i )
Jan (@) Qi) dy + (1~ o (2.) Qi) dy) forw € B

E

{f ar, (z,y) Qi(w,y) dy forx ¢ B,
Pi(z,B) =

where x € E and B C ‘B.

This definition aligns with the framework established
in Definition 2.4 of Haario and Saksman [Haario and
Saksman, 1991], which introduces the simulated anneal-
ing process in a general state space. Their work provides
a rigorous foundation for the transition kernels and the
Markov process in this context.

Given the transition kernel in (9), we defined the dis-
tributions of Markov process (X;)ien as p;(dz) :=
P(X; € dx). Consequently, we have that p; = p;_1 P;
for ¢ > 1, where p is an arbitrary initialization distribu-
tionon E.
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Theorem 1. Given the minimization problem (F,E),
let (X;)ien a simulated annealing process with reflec-
tive boundary conditions on E. Then, for each i € N,
the operator P; has the equilibrium distribution ; given
by

-F - fmin
mi(y) = C; exp (— (y)T> , (10)

where C; is the normalization constant and Fni, € M x.
Moreover; if we set T; = Ty 0", for some || < 1 and Ty
arbitrary, then we have that

lim ||y — 7|7y =0, (1)
71— 00
where || - || v is the total variation norm.

Remark 3. The total variation distance between two
probability measures P and () defined on a measurable
space (2, F) is given by

1P = Qllrv = sup [P(A) — Q(A)].
AeF

This measures the largest absolute difference between
the probabilities that the two distributions assign to the
same event. In the context of our problem, we apply the
total variation norm to measure the difference in the dis-
tributions of the output range across iterations.

Proof. By construction, () is symmetric, that is
[a@na= [awaas  az
B B

for B C ®B. Furthermore, F is a continuous function,
and added to the fact that F is a compact set, then M r
is a non-empty set and F : E — R is uniform contin-
uous. Given these facts, the results in (10) and (11) are
direct applications of Theorem 5.1 and Theorem 6.5 in
[Haario and Saksman, 1991].

Remark 1. Suppose that the conditions of Theorem 1
are fulfilled, then
F(X;) — Fmin as i —> o0 in probability,
(13)
for some Fiin € Mr.

Proof. The proof is a slight modification of Corollary
5.4 in [Haario and Saksman, 1991].

As will be seen later, Corollary 1 is the mechanism that
establishes the theoretical guarantees that our algorithm
converges to the global minimum point.

6 Algorithm Derivation

From Theorem 1 and its Corollary 1, a simple algo-
rithm can easily be derived to solve the range estimation
problem (F, E). The main idea is to generate a Markov
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process (X;);en taking values on E, as described in Def-
inition 6, for which its initial state is selected using an ar-
bitrary measure po. The following states of the Markov
process are selected according to two stages; In the first
stage, a new state generated by @ is proposed, and sub-
sequently in the second stage, it is decided to accept or
reject that new state according to the probability of ac-
ceptance q. If the proposed state is outside the domain
E we use reflection R to exchange it for another equally
probable state that is inside the domain E. It is important
to note that the generation of new proposed states using
@ is done through p. Both stages, proposing and accept-
ing new states, are executed repeatedly N times for each
temperature level 7. Theorem 1 guarantees that if we ex-
ecute this two-stage local recursive process the Markov
process (X;);en will converge towards the minimal state
corresponding to the value F,;y, this occurs for each set
temperature level. Finally, Corollary 1 guarantees that
if we execute the stages described above for a sequence
of temperatures {7} };cn that slowly decreases towards
zero, then the Markov process (X;);ecn will converge to
the minimal state corresponding to the global minimum
that solves our estimation problem. We summarize the
entire procedure described above in pseudo-code format
in Algorithm 1.

Convergence and cooling schedule. The theoretical
result of the previous section establishes asymptotic con-
vergence under the stated assumptions, compact box F,
continuity of F, and reflective update via the function
R. We do not derive finite-time rates for two comple-
mentary reasons. First, in simulated annealing such rates
depend on landscape features of F that, in our black-
box setting, are neither observable nor reliably estimable
without imposing strong assumptions or accessing inter-
nal model information; forcing those assumptions would
substantially broaden the scope without adding direct
operational value to output-range estimation. Second,
the aim of the paper is operational: to provide an ef-
fective procedure with asymptotic guarantees and clear
usage guidance. In practice, the community often adopts
geometric cooling T4, = 0 T}, as a pragmatic compro-
mise that accelerates progress empirically, while clas-
sical global guarantees are associated with logarithmic
schedules, see, e.g., [Hajek, 1988]. The practical guide-
lines we follow—choosing § and tuning the proposal
scale to maintain a moderate acceptance rate—are con-
sistent with the classical SA literature and empirical
comparisons [van Laarhoven and Aarts, 1987; Aarts and
Korst, 1989; Nourani and Andresen, 1998; Lundy and
Mees, 1986]. Implementation choices (target acceptance
range, proposal scaling, and stopping criterion) are doc-
umented in the experimental evaluations section, in line
with this framework.
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Algorithm 1 Minimum Output Search for a Neural Net-
work

Input: The minimization problem (F, E)
Initialize ¢ < 0, x ~ pg, Ty < Tmax and Fryin <
Fl(zx)

Output: Foip

1: while T; > T,;, do

2 for k = 1to N do

3 Generate y ~ p(z,y)

4; Reflect y + R(y)

5: Set AF «+ F(y) — F(x)

6: if AF < 0 then

7 q(z,y) =1.0

8 else ar
9 q(z,y) :min{l,e_ T; }
10 end if
11 Sample U ~ Unif (0, 1)

12: if U < ¢(z,y) then

13: Update z < y

14: end if

15: if 7 () < Finin then
16: ‘/—"min <~ -7:(55)

17: end if

18: end for

19: Update T; = T;_1 &
20: Update ¢ < ¢+ 1
21: end while

22: Output: F;,

7 Experimental Evaluations

Based on the above constructions, our algorithm can
be used to estimate the maxima and minima assumed
by neural networks that were trained using an available
database. It is important to mention that the database
provided for training the neural network does not nec-
essarily contain the maxima and minima assumed by
this neural network. These maxima and minima corre-
spond to the optimal points of the continuous response
surface generated by the neural network that arises from
the adjustment of the discrete observations contained in
the training database. The response surface generated
by a neural network can be viewed as a smoothing of
the data. But, as mentioned above, we do not know the
explicit form of the function graph that corresponds to
the response surface generated by the trained neural net-
work. Therefore, our strategy to empirically evaluate our
algorithm consists in proposing some explicit functional
forms for which we know their optimal points, in this
case their minimum points. We will use these explicit
functions, for which we have all possible geometric in-
formation, including their minimum points, to generate
a noisy discrete sample through uniform sampling in its
domain. These discretized samples are used as training
data for a ResNet. The main idea of our experimental
evaluation strategy is that by applying this algorithm to
the ResNet, trained with the discretized data, we can ap-
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proximate the true global minima of the functions that
were used to generate these discretized samples.

Following the empirical evaluation scheme proposed
above, and to illustrate the use and operation of our al-
gorithm, we will use a couple of commonly used func-
tions for testing optimization algorithms. This functions
are: Ackley Function, Drop-Wave Function and a func-
tion with multiple global minima.

7.1 The Ackley Function

In mathematical optimization, the Ackley function is
a non-convex function, with many local minima, which
is often used as a performance test problem for opti-
mization algorithms.This function on a 2-dimensional
domain is defined by

f(a1,32) = —20exp (70.2 0503 + 75)) — oxp (0.5(cos 2wy + cos 2mxs)) + € + 20,

(14)
for which its global minimum point is f(0,0) = 0, see
Figure 1. We use this function to obtain a noisy dis-
cretized sample D = {(x14, 22, fi)}, C E, where
E = [—4,4] x [—4,4], see 1. Furthermore, suppose
we want to estimate the function (14) using only the
discretized sample of points D. To this end, we use
a ResNet as described in the chapter “Residual Neural
Networks,” with a total depth of L = 5 residual blocks.
The input layer maps a 2-dimensional input to Hy = 128
neurons. The network contains 4 intermediate residual
blocks, each with H; = 256 neurons for l = 1,...,4,
followed by a fifth residual block that reduces the dimen-
sionality back to H; = 128 neurons before the output
layer. The output layer maps the final 128 neurons to a
single output. All layers in the network use the ReLU ac-
tivation function. The model was initialized with the fol-
lowing setup: Mean Squared Error (MSE) was employed
as the loss function, and the Adam optimizer [Kingma
and Ba, 2017] was used smooth surface generated by
ResNet for training with a learning rate of 0.001. The
model was trained for 1000 epochs. The fit generated by
these ResNet is quite good, resulting in a mean absolute
error of 1.0070 and a mean squared error of 3.0298 from
1000 uniform random points generated within the range
[-5,5] x [—5,5]. The surface generated by the neural
network maintains all the properties of the original func-
tion, including its non-convex nature and the existence of
many local minima, see Figure 1. As mentioned above,
we will use this generated response surface to find the
global minimum of the Ackley function.

The fact that the generated surface consists of too many
local minima constitutes a suitable scenario where our
methodology shows its greatest strength. Let us remem-
ber that when working with deep neural networks, this
scenario is quite recurrent due to the high non-linearity
and flexibility of the relationships established by this
type of neural network. After training the ResNet F,
our main objective is to find the global minimum on the
surface generated with the neural network within the do-
main E, denoted as (E, F(E)). To this end, we apply
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(a) Ackley function in two dimensions.

Ackley Value (z)

(b) Discretized sample from the Ackley function

Ackley value (z)

(c) Response surface generated (smoothing) from the ResNet

Figure 1: Graphs of the experimental evaluation using
the Ackley function.
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Figure 2: Red line: Sample path of Markov process
(Xi)ien for the Ackley function. Blue line: fitted trend
line.

—— Original Values
— Trend Line

Figure 3: Red line: Sample path of the classical Simu-
lated Annealing algorithm for the Ackley Function. Blue
line: fitted trend line.

our Algorithm 1 to this case. In figure 2, we present the
evolution of the values assumed by the Markov process
generated through the algorithm and its tendency. We
note the reasonably fast convergence towards the global
minimum F,,;, = 0. While it is true that there are fluc-
tuations around the trajectory towards convergence, this
is due to the highly fluctuating nature of the generated
surface (E, F(E)), but there is also a clear and consis-
tent trend towards the global minimum 0.

7.1.1 Differences with the Classical Simulated An-
nealing Algorithm As mentioned above, the funda-
mental difference between our proposed algorithm and
the classical Simulated Annealing algorithm is the in-
corporation of a restricted search domain. This do-
main restriction is a priority need present in applications
within the area of output range analysis for neural net-
works. As shown in Section 5, we successfully incor-
porate bounded domains into the algorithm and further
establish theoretical properties that guarantee the conver-
gence of the algorithm to optimal points. In this subsec-
tion, ignoring the priority need for domain restrictions,
for performance comparison purposes only, we apply the
classical SA algorithm with a scheme analogous to Al-
gorithm 1 but without the incorporation of bounded do-
mains. In Figure 3 shows the extensive range and un-
bounded path traced by the classic Simulated Annealing
algorithm. In iteration 125 a maximum value, 131.21, is
found to subsequently fluctuate to converge to the min-
imum. Therefore, the non-incorporation of a restricted
domain causes the algorithm to experience large fluctua-
tions before converging to the optimal points. But, as we
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Figure 5: Drop-Wave surface generated by the ResNet
(E, F(E)). Left: Perspective view; Right: Top View.

Figure 6: Red line: Sample path of Markov process
(X;)ien for the Drop-Wave function. Blue line: fitted
trend line.

mentioned before, this comparison is only didactic, since
restricted domains are part of the nature of the problem.
In many cases, as part of the diagnosis of the trained neu-
ral network, it is necessary to evaluate the optimal points
assumed by the neural network in certain previously de-
fined limited domains.

7.2 The Drop-Wave Function

This function is characterized by being multimodal,
with many local minima, and highly complex; it is also
non-convex. Like the previous function, it has a 2-
dimensional domain and is defined by

1 + cos (12 2+ x%)

flan, ) = = 0.5(z% +23)+2

5)

for which its global minimum point is f(0,0) = —1,
see Figure 4. In particular, the function is usually evalu-
ated on the square £ = [—5.12,5.12] x [—5.12,5.12].
Moreover, suppose we want to estimate the function
(15) using only a discretized sample of points D =
{(z14, @2, i)}, C E. For this experiment, we use
a total depth of L = 7 residual blocks. The input layer
maps a 2-dimensional input to Hy = 128 neurons. The
network contains L = 7 residual blocks with the fol-
lowing dimensions: Hy = Hy = 256, H3 = Hy =
Hy =512, Hg = 256, and H; = 128. Finally, The out-
put layer has 128 neurons. All layers in the network use
the ReLLU activation function The model was configured
with the following setup: The loss function utilized was
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Mean Squared Error (MSE). Training was performed us-
ing the Adam optimizer [Kingma and Ba, 2017] with
a learning rate of 0.001 and was performed over 1000
epochs. The fit generated by these ResNets is strong,
with a mean absolute error of 0.0221 and a mean squared
error of 0.0010, based on 1500 points generated within
the range [—5.12,5.12] x[—5.12, 5.12]. The surface gen-
erated by the neural network maintains all the properties
of the original function, including its non-convex nature
and the existence of many local minima, see Figure 5.

Figure 4: Drop-Wave function of two variables. Left:
Perspective view; Right: Top View.

This second function is highly complex, and its exper-
iment demonstrates the power of our method. Despite
the presence of numerous local minima, our method suc-
cessfully approximates to the global minimum. This sce-

nario is crucial for solving highly complex problems,
which are common in physics and other fields [Bezhko

et al., 2021; Vijvers et al., 2008]. We applied our Algo-
rithm 1 and obtained the results shown in Figure 6. The
evolution of values assumed by the Markov process in
this instance reveals the full path, where the low values
we seek do not always appear at the end of the itera-
tion, but they are still identified. The global minimum,
Fmin = —1, was successfully found using our method.
The trend line clearly illustrates the fluctuations, making
them easier to observe. Similar to the previous experi-
ment with the Ackley function, the high fluctuations in
the generated surface explain the highly fluctuating path
we observed.

7.2.1 Differences with the Classical Simulated An-
nealing Algorithm As in the previous case, we forget
for a moment the imperative need for restricted domains.
Therefore, only for diagnostic purposes will we compare
our proposal with the classic SA. In this highly complex
example, we found an acceptable mapping DNN for The
Drop-Wave function (15). In Figure 7, we observed a
similar behavior between this classic SA algorithm and
our method until iteration 300. However, the chaotic
movement of the classic SA shifted significantly towards
the opposite direction of the minimum value. Moreover,
if we examine closely, these values do not make sense for
the original equation (15), which is easily distinguish-
able in Figure 5.
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—— Original Values
—— Trend Line

Function Value

Figure 7: Red line: Sample path of the classical Simu-
lated Annealing algorithm for the Drop-Wave function.
Blue line: fitted trend line.

7.3 Multiple Global Minima Function

Our method also can be applied in an space where there
are multiple global minima. Also, it is not restricted for
two dimension but more than two dimensions, and in
particular n-dimensions, is allowed. For example, con-
sider the function

flay,z) =22 =12+ (P = 1)* + (z> = 1)%, (16)

where each term (2% — 1)2, (y? — 1)%, and (22 — 1)
achieves its minimum value of 0 when z2 = 1, y2 =1,
and 22 = 1, respectively. This results in two possible
values for each variable: x = +1,y = +1,and 2z = +1.
The combination of these values gives the following 8
global minima:

(x,y,2) € {(-1,-1,-1), (-1,-1,1), (—1,1,-1),
(-1,1,1), (1,-1,-1), (1,-1,1),
(17 ]-7 _1)’ (17 ]-a 1)}

The function is evaluated on the square £ = [—3, 3] x
[—3,3] x [-3,3]. Then, we want to estimate the func-
tion (16) using only a discretized sample of points D =

{(@14, @24, , w34, fi) }i2y C E.

—— Original Values
—— Trend Line

. M

Figure 8: Red line: Sample path of Markov process
(X)ien for the Multiple Global Minima function. Blue
line: fitted trend line.
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For this function, we use L = 7 residual blocks, where
Hy = 128 represents the neurons in the input layer,
Hy = Hy =256, H = 512forl = 3,4,5, Hs = 256,
and H; = 128, which represents the neurons in the fi-
nal residual block. The output layer maps the final 128
neurons to a single output. All layers in the network use
the ReLU activation function, except for the final out-
put layer. The model was configured with the following
setup: The loss function utilized was Mean Squared Er-
ror (MSE). Training was performed using the Adam op-
timizer with a learning rate of 0.001 and was performed
over 1000 epochs. The fit generated by these ResNets
is acceptable, with a mean absolute error of 1.4161 and
a mean squared error of 4.1011, based on 1500 points
generated within the range [—3,3] x [-3,3] x [-3,3].
The Figure 8§ illustrates the sample path of our method,
showing early convergence towards to one of the global
minimum.

7.3.1 Differences with the Classical Simulated An-
nealing Algorithm In this exampleinvolving a func-
tion with multiple global minima, we compare the per-
formance of our method with the classical Simulated
Annealing (SA) algorithm. The Figure 8 illustrates the
sample path of our method, showing early convergence
towards to one of the global minimum and repetitive be-
havior in various iterations. In contrast, Figure 9 depicts
the sample path of the classical SA algorithm. While
both methods exhibit comparable behavior in the early
iterations, the classical SA algorithm demonstrates sig-
nificant chaotic exploration and is slower in finding a
global minimum. This behavior is evident after itera-
tion 200, where the function values deviate from conver-
gence.

1400 —— Original Values
—— Trend Line

1200

Function Value

Figure 9: Red line: Sample path of the classical Simu-
lated Annealing algorithm for Multiple Global Minima
function. Blue line: fitted trend line.

The Python codes of all the experimental evaluations
are available in this link.
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8 Conclusions

This work presents an algorithm based on Simulated
Annealing (SA) for output range estimation in Deep
Neural Networks (DNNs). This approach effectively
adapts to restricted domains, overcoming the limitations
posed by high non-linearity and the lack of local geomet-
ric information in DNNs. Through rigorous theoretical
analysis, we demonstrate the algorithm’s convergence to
optimal points, enabling accurate estimation of global
minima and maxima.

The experimental evaluation, using complex functions
such as Ackley and Drop-Wave, validates the algo-
rithm’s effectiveness, showcasing its ability to handle
multiple local minima and multidimensional domains.
Compared to classical Simulated Annealing, our method
exhibits greater stability and faster convergence. With its
simple implementation and versatility, this methodology
is applicable to various DNN architectures, providing a
practical and reliable tool for neural network verification
and validation.

Data availability

The data and source code used in this study are pub-
licly available at the following repository:

GitHub Repository: Output Range Analysis for
Deep Neural Networks with Simulated Annealing

This study uses data and code to analyze the out-
put range of deep neural networks based on simulated
annealing processes. To ensure the reproducibility of
the experiments and facilitate replication, the data and
source code are freely accessible.

Source Data

If the data has been previously published, details of the
dataset and where it can be accessed should be provided
here.

Underlying Data

The repository contains all data used in this study, in-
cluding input and output files, Python implementation
code, and experimental results. The key contents in-
clude:

README.md: Provides an overview of the
project, detailing the approach and methodology for
output range analysis of deep neural networks us-
ing simulated annealing. It includes instructions for
reproducing the results and relevant references.

neural_network.py: Implements the deep neural
network architecture used in the study. It defines
the DeeperResidualNN class, the loss function
(criterion), the optimizer (optimizer), and
the training loop for fitting the model to the dataset.
simulated_annealing.py: Implements the simu-
lated annealing algorithm used to estimate the out-
put range of the neural network. It defines the
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simulated_annealing function, which opti-
mizes over non-convex surfaces, including parame-
ters such as initial solution, maximum and minimum
temperature, cooling rate, number of iterations, in-
tervals, and sigma.

The data and code are freely available without restric-
tions for use and reproduction.
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