
 1 

Neural network aided adaptive Kalman filter for 
GPS/INS navigation system design 

 
Dah-Jing Jwo 1, Jyh-Jeng Chen 2 

1Department of Communications and Guidance Engineering, National Taiwan Ocean University 
2 Pei-Ning Rd., Keelung 20224, Taiwan 

Fax: +886-224633492; E-mail: djjwo@mail.ntou.edu.tw 
2Quanta computer Inc. 

 

Abstract 
A mechanism called PSO-RBFN, which is 

composed of radial basis function (RBF) network and 
particle swarm optimization (PSO), for predicting the 
errors and to filtering the high frequency noise is 
proposed. As a model nonlinearity identification 
mechanism, the PSO-RBFN will implement the 
on-line identification of nonlinear dynamics errors 
such that the modeling error can be compensated. 
The PSO-RBFN will be applied to the 
loosely-coupled Global Positioning System 
(GPS)/inertial navigation systems (INS) navigation 
filter design and has demonstrated substantial 
performance improvement in comparison with the 
standard Kalman filtering method. 
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inertial navigation system (INS), radial basis function 
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1. Introduction 
GPS/INS integration is typically carried out through 

Kalman filter (KF) (Brown and Hwang, 1997, Gelb, 
1974). If the Kalman filter is provided with information 
that the process behaves a certain way, whereas, in fact, 
it behaves a different way, the filter will continually 
intend to fit an incorrect process signal. When the 
measurement situation does not provide sufficient 
information to estimate all the state variables of the 
system, in other words, the estimation error covariance 
matrix becomes unrealistically small and the filter 
disregards the measurement. In various circumstances 
where there are uncertainties in the system model and 
noise description, and the assumptions on the statistics 
of disturbances are violated since in a number of 
practical situations, the availability of a precisely known 
model is unrealistic due to the fact that in the modelling 
step, some phenomena are disregarded and a way to 
take them into account is to consider a nominal model 
affected by uncertainty. To overcome the deficiency of 
Kalma filter, the so-called adaptive Kalman filter (AKF) 
has been proposed. Many efforts have been made to 

improve the estimation of the covariance matrices 
(Mehra, 1970, 1972) based on the innovation-based 
estimation (IAE) approach.  

In actual navigation filter designs, there exist the 
model uncertainties which cannot be expressed by the 
linear state-space model. The linear model includes 
modeling errors since the actual vehicle motions are 
non-linear process. The system model, system initial 
conditions, and noise characteristics have to be specified 
a priori. It is very often the case that little a priori 
knowledge is available concerning the maneuver. The 
implementation of IAE based AKF to navigation 
designs has been widely explored (Hide et al, 2003, 
Mohamed and Schwarz 1999). The application of 
artificial intelligence to adaptive Kalman filter has been 
explored. A relatively large amount of research has been 
essentially based on the use of fuzzy logic.  

A new approach is proposed for improving 
GPS/INS navigation system designs. The method makes 
use of the radial basis function network (RBFN) 
(Haykin, 1994) and the particle swarm optimization 
(PSO) techniques (Kennedy and Eberhart, 1995, 
Eberhart and Shi, 1998), resulting in an aiding 
mechanism called PSO-RBFN, which is employed into 
the navigation systems for real-time identification of 
noise covariance matrices to prevent divergence of the 
Kalman filter. The PSO is employed to obtain suitable 
RBFN parameters for filtering out the high frequency 
noise; RBFN is employed to filter out the high 
frequency noise for estimating the noise covariance 
matrices of the process noise and measurement noise for 
the navigation Kalman filter. 

2. Inertial error modeling in state space 
To avoid the complex coupling as in the 

‘perturbation error’ equations, the so-called ‘psi-angle’ 
equations (Kong, Nebot and Durrant-Whyte, 1999, 
GPSoft LLC, 2005) approach is taken to model the 
inertial errors. In the approach, the nomenclature used is 
summarized for convenience.  

Body frame (b-frame): frame fixed to the vehicle. 
Computer frame (c-frame): local level frame at 
the computed position 
Platform frame (p-frame): frame which the 
transformed accelerations and angular rates from the 
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accelerometers and gyros are resolved. 
Earth frame (e-frame): located at the earth center. 
True frame (n-frame): true local level frame at the 
true position. 
psi-angle ( ψ ): the angle between c-frame and 
p-frame. 
phi-angle ( Φ ): the angle between n-frame and 
p-frame. 
theta-angle ( θ ): the angle between n-frame and 
c-frame. 

o
mC : DCM from m-frame to o-frame, where DCM is 

the direction cosine matrix. 
j

klω : angular rate between k-frame and l-frame 
resolved in j-frame. 
The psi-angle position, velocity and attitude errors 

are given as follows: 
Position Error:  

     cnn
en VRωR δδδ +×= -&          (1) 
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where b
ibωδ refers to the gyro errors in the body-frame 

expressed in continuous-time.  
    The dynamic process model in state space form is 
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    In Equation (4), the‘0’sare 33× matrices of zeros, 
and the ‘C’s stand for the direction cosine matrices. 
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where ‘ f ’is the specific force vector; ‘ g ’ is gravity; 
er  is the radius of the earth; h  is the vehicle height 

above the reference ellipsoid; n
ecω  refers to 

transport-rate; n
ieω  refers to earth-rate vector. The 

term ][ ×A  refers to the skew-symmetric matrix form 
of the vector A . 

The error model for INS is augmented by some 
sensor error states such as accelerometer biases and 
gyroscope drifts. Actually, there are several random 
errors associated with each inertial sensor. Noise 
contributions in typical optical gyroscope systems 
include white noise, correlated random noise, bias 
instability and angle random walk. A state vector with 
18 states is employed: nine so-called inertial error states 
(position, velocity and psi-angle), three accelerometer 
bias states, three gyro bias states, and three GPS 
estimated position bias states.The position and velocity 
errors are expressed in the local-level frame ENU 
(East-North-Up) frame.  

3. Particle Swarm Optimization and Radial 
Basis Function (RBF) network 

3.1 Particle Swarm Optimization (PSO) 
Particle swarm optimization (PSO) is a population 

based stochastic searching technique developed by 
Kennedy and Eberhart (1995). It is a relatively recent 
heuristic search method whose mechanics are inspired 
by swarming or collaborative behavior of biological 
populations. Among various evolutionary optimizer 
techniques, Genetic Algorithms (GA) and PSO have 
attracted considerable attention. The PSO is a robust 
stochastic evolutionary computation technique based on 
the movement and intelligence of swarms looking for 
the most fertile feeding location. Unlike the drawback 
of expensive computational cost of GA, PSO has better 
convergence speed. 

A swarm consists of a set of particles moving 
around the search space, each representing a potential 
solution (fitness). Each particle has a position vector (xi), 
a velocity vector (vi), the position at which the best 
fitness (Pbesti) encountered by the particle, and the 
index of the best particle (Gbest) in the swarm. The 
position of each particle is updated every generation. 
This is done by adding the velocity to the position 
vector. 

)(())(() 21 iiiii xGbestrandCxPbestrandCvv −××+−××+=  (5) 
The positions are based on their movement over a 
discrete time interval ( t∆ ) as follows, with t∆  usually 
set to 1. 

tvxx iii ∆⋅+=              (6) 
The parameters C1 and C2 are set to positive 

constant values, which are normally taken as 2 whereas 
rand() represent uniformly distributed random values, 
uniformly distributed in [0, 1] and w is called as inertia 
weight, the inertia weight is employed to control the 
impact of the previous history of velocities on the 
current one. Fig. 1 shows the flowchart for the PSO 
algorithm. 

3.2 The Radial Basis Function network 
A radial basis function network (RBFN) shuns the 

biological paradigm in favor of a topology which is 
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simpler and more amenable to analysis and training. In 
an RBFN, only a single layer of nodes with radically 
symmetric basis activation functions is needed to 
achieve a smooth approximation to an arbitrary real 
nonlinear function. Fig. 2 shows a schematic of a typical 
RBF network. The overall response of the RBF 
network )(xF  of Fig. 2 using Gaussian function )(xjϕ  
can be formulated as 
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where x  is the input pattern; jm  represents the 
center of the RBFN, which have the same 
dimensionality as the input vector ; •  denotes the 
Euclidean norm; φj(·) is the Gaussian (basis) function of 
the j-th neuron; σ  is a positive constant representing 
the width of the RBF; jw  is the weight of the RBFN; 
and b  is the bias; p  is the number of inputs; J  is the 
number of neurons in the hidden layer (also the number 
of centers for the RBF). 

1

2

1

1)1(

1

)1(1

21

111

)()(1

)(1
)()(1

××++×



















=





































NNJJJNNJN

J

d

d
d

w

w
b

MM

L

MOMM

M

L

xx

x
xx

ϕϕ

ϕ
ϕϕ

(9a) 

where N  is the number of training pattern. The 
above equation can be written in the simplified form 

dWΦ =               (9b) 
The weigh vector W  is calculated by the 
pseudoinverse matrix method 

          dΦW +=              (10) 
where TT ΦΦΦΦ 1)( −+ =  represents the 
pseudo-inverse of Φ . For further discussion on the 
topics of RBFN, the readers are referred to, e.g., 
Haykin (1999). 

4. The proposed PSO-RBFN design 
It is usually difficult to set a certain stochastic 

model for each inertial sensor that works efficiently at 
all environments and reflects the long-term behavior of 
sensor errors. The difficulty of modeling the errors of 
INS raised the need for a model-less GPS/INS 
integration technique. The fact that KF highly depends 
on a predefined dynamics model forms a major 
drawback. If the estimated internal model does not 
reflect the real model, the KF estimates may not be 
reliable and divergence problem might occur. Many 
efforts have been made to improve the estimation of the 
covariance matrices. 

In this work, the PSO is employed to obtain suitable 
RBF parameters. RBF is employed to filter out the high 
frequency noise for deriving the noise covariance 
matrices of the process noise and measurement noise in 
the navigation KF. Fig. 3 shows the PSO-RBFN 
functional block diagram. 

Initial population of particles with random 

position xi and velocities vi   

Evaluate the fitness of each particle  

If |fitness (xi)| < |fitness (Pbest)| then Pbest = xi 

If |fitness (xi)| < |fitness (Gbest)| then Gbest = xi 

vi = vi+2*rand()*(Pbest-xi)+2*rand()*(Gbest-x i) 

xi = xi+vi 

Output Gbest and 

fitness (Pbest) 

Fig. 1. Flowchart for the PSO algorithm 
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 Fig. 2. Architecture of an RBF network 

 

Noise corrupted signal 

z 
xNN 
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Tuning of RBFN parameter (J and σ) 
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RBFN 

+ 
_ 

    Fig. 3. PSO-RBFN functional block diagram 

4.1 Fitness function for the PSO-RBFN mechanism  
The RBFN is employed for filtering out the high 

frequency noise while the PSO is employed for 
obtaining the suitable network parameters so as to 
obtain good filtering performance.  
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Expressing the measurement model for certain time 
interval: 

vxz +=              (11) 
where z  is the measurement vector, 

][ 1 nkkk zzz ++= Lz ; x  is the state vector, 
T

nkkk xxx ][ 1 ++= Lx ; and v  is the measurement 
noise vector, T

nkkk vvv ][ 1 ++= Lv . It should be noted 
that the ‘vector’ here is formed by a group of n samples 
at n time epochs for certain state variable. Furthermore, 
the measurement noise vector taken at the previous 
epoch and is denoted as T

nkkkf vvv ][ 121 ++++= Lv .  
Taking the difference between ‘current’ epoch and 
‘previous’ epoch, we have 

T
nknkkkkkf vvvvvv ][ 1211 ++++++ −−−=−=∆ Lvvv  

Taking the variance for z∆  leads to 
]var[]var[ vxz ∆+∆=∆  

For x∆  and v∆  being mutually independent, we 
have 

]var[]var[]var[ vxz ∆+∆=∆         (12) 
where v∆  stands for the difference of measurement 
noise vector v  for two successively epochs. Taking the 
variance of v∆  leads to 

]var[]var[ fvvv −=∆  
][][2][2]var[]var[ fff EEE vvvvvv ⋅+⋅−+=  (13) 

Since fv  and v  in fact belongs to the same sequence 
(but taken at two successively epochs), we have 

0]var[]var[ ≠≅ fvv  
and it is seen that 

][][2][2]var[2]var[ ff EEE vvvvvv ⋅+⋅−=∆   (14) 
For fv  and v  being mutually independent with the 
same probability density function (PDF), we have 

][][][ ff EEE vvvv ⋅=⋅          (15) 
and the relation can be obtained: 

]var[2]var[ vv =∆             (16) 
If the objective value of RBFN for training is z  and 
the outputs is NNx , the difference between the two is 
the noise vector: 

NNNN xzv −=              (17) 
where the subscript ‘NN’ denotes the RBFN output. The 
RBFN output is the smoothed version of the noise 
corrupted signals. 

Combining Equations (12), (16) and (17) leads to 
]var[2]var[]var[ NNNN xzxz −+∆=∆  

Therefore, the fitness function for the condition of 
network convergence is chosen to be 

  0]var[2]var[]var[ =−−∆−∆ NNNN xzxz    (18) 
For fv  and v  being mutually independent and being 
zero mean, Equation (15) becomes 

   0])()[( =⋅ fNNNNE vv          (19) 
where fNN )(v  basically represents the same vector as 

NNv  but only taken at the previous epoch. Equation (6) 
is used as the criterion of convergence for the neural 
network. 
 
4.2 Feasibility check for the proposed fitness 
function 

Validation on Equations (16), (18) and (19) will be 
performed. A set of 3600 sample points corrupted by the 
Gaussian white sequence were generated using the 
following function: 

randnttx +−= )10/exp()sin(200  
where ππ 4:900/:0=t  and randn  stands for the 
unity Gaussian white sequence. Table 1 provides 
summary of the statistics for various sequences of 
concern. Equations (18) and (19) both hold and ]var[ v∆  
is approximately equal to ]var[2 v . 
 
Table 1. Statistics for various sequences of concern. 
 

]var[ z∆  2.0398 

]var[ x∆  0.1052 

]var[ v∆  1.9346 

]var[2 v  1.9644 

]var[2]var[]var[ vxz −∆−∆  -0.0299 

][ fE vv ⋅  0.0150 

 

4.3 Roles of the PSO-RBFN mechanism 
The design strategy of the PSO-RBFN mechanism is 
presented. 
(1) Use of RBFN as a low pass filter. RBFN is 
employed to filter out high frequency noises. Since the 
pseudo-inverse matrix approach is employed, there are 
two parameters (J and σ) to be determined in the RBFN. 
With various combinations of J and σ, it can be seen that 
when the value of ])()[( fNNNNE vv ⋅  is approaching 
zero, so will the RMS values be, which indicates that 
the noise has been ideally mitigated.  
(2) Optimization of RBFN parameters through PSO 
optimization searching process. The PSO is employed to 
search for the optimal RBFN parameters for filtering out 
high frequency noises. When ])()[( fNNNNE vv ⋅  
approaches zero, the RBFN output approaches the 
optimal values Therefore, the trained RBFN is 
employed as the PSO fitness function, and the PSO will 
be used to search the J and σ parameters in the RBFN, 
as presented in Fig. 3. The other parameters for the PSO 
is: 1=jw , 221 == cc . The required number of iterations 
(epochs) is dependent on the number of particles. To 
verify the effectiveness of the PSO-RBFN, an 
experiment was conducted. The function 

randnxxy +−= )5/exp()sin(100  was employed. Here, 20 
iterations, 5 particles were employed. The results are 
shown in Fig. 4. Fig. 4(a) shows the PSO-RBFN output 
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as compared to the actual trajectory and noise corrupted 
trajectory and Fig. 4(b) gives the errors for the 
PSO-RBFN outputs. Table 2 provides various 
combinations of J and σ, the fitness, and RMS error for 
various iteration epochs. 
(3) Derivation of noise variances from the RBFN 
outputs. By defining the windowed version of noise 

***
NNNN xzv −= , the measurement noise standard 

deviation derived from the RBFN outputs is based on 

the relation )var( *
NNNNv v=−σ , where the superscript 

‘*’ stands for the windowed version (windows size is to 
be determined) of a signal. The process noise standard 
deviation derived from the RBFN outputs can be 
performed based on the relation ))(var( *

NNNNw x∆∆=−σ . 
 

 
(a) 

 
(b) 

Fig. 4. (a) PSO-RBFN output as compared to the actual 
trajectory and noise corrupted trajectory; (b) Errors for 
the PSO-RBFN outputs 
 
Table 2. Various combinations of J and σ, the fitness, 
and RMS error for at various iteration epochs. 

Converged 
values  

Epoch 
|Fitness 

( ])()[( fNNNNE vv ⋅ )| 
RMS 

J σ 
1 174.3581 13.265449 5 4.0801 
2 7.7724992 2.8005671 7 7.0289 
3 0.0620789 0.0891904 9 4.5987 
4 0.0620789 0.0891904 9 4.5987 

 
5. Application of the PSO-RBFN for GPS/INS 

navigation design  
Application of the PSO-RBFN mechanism to 

GPS/INS navigation filter design is presented. The 
loosely-coupled GPS/INS architecture is investigated. 
Fig. 5 provides the strategy for the GPS/INS 
architecture aided by the PSO-RBFN mechanism.  

The GPS navigation solution based on the 
least-squares (LS) is solved first. The measurement is 
the residual between GPS LS and INS derived data, 
which is used as the basis of KF parameter adaptation 
for the PSO-RBFN mechanism. The PSO-RBFN is 
employed for deriving parameters NNw−σ  and NNv−σ  
through the relations: 

))(var( *
NNNNw x∆∆=−σ ; )var( *

NNNNv v=−σ  
As mentioned before, the subscript ‘NN’ stands for the 
outputs from PSO-RBFN and the superscript ‘*’ stands 
for the windowed version of the signals. 

 

xINS 

xGPS 

z 

Estimated 
INS Errors + _ 

_ 

+ 
Corrected 
Output 

Estimation of noise variances 

INS 

GPS navigation solution 

PSO-RBFN 

Kalman filter 

Fig. 5. The proposed loosely-coupled GPS/INS strategy 
 

Simulation experiments have been carried out to 
evaluate the performance of the proposed method in 
comparison with the conventional methods for GPS/INS 
navigation processing. The computer codes were 
constructed using the Matlab software. The 
commercial software Satellite Navigation (SATNAV) 
Toolbox, INS Toolbox and Navigation System 
Integration and Kalman Filter Toolbox by GPSoft LLC 
was employed. 

Satellite constellation was simulated and the error 
sources corrupting GPS measurements include 
ionospheric delay, tropospheric delay, receiver noise and 
multipath. The positioning result obtained form GPS is 
based on the least-squares approach. It assumed that 
there is no GPS failure during simulation. The INS 
errors are assumed to be follows: initial east velocity 
error: 2 m/s; initial north velocity error: 2 m/s; body-x 
tilt error = 0.1 milli-radian; body-y tilt error = 0.1 
milli-radian; x-acceleration bias = 500 micro-g; 
y-acceleration bias = 500 micro-g; acceleration noise = 
0.00001 km/hour2; gyro bias = 0.0015 deg/hr; gyro 
noise = 0.00001 deg/hr2. 

Fig. 6 shows the vehicle trajectory and Fig. 7 gives 
the velocity components and Euler angles for the 
vehicle for simulation. The trajectory of the aircraft can 
be approximately divided into three zones according to 
the dynamic characteristics: (1) At Zone 1, the aircraft 
performed highest dynamic flight, during the time 
interval 0-11 min; (2) At Zone 2, the aircraft performed 
medium dynamic flight, during the time interval 11-22 
min; (3) At Zone 3, the aircraft performed straight line 

Network output  
– actual trajectory 

Noise corrupted trajectory  
– actual trajectory 
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flight, during the time interval 22-32 min. The 
characteristics of the trajectory can be approximately 
divided into three zones, in which low dynamic motion 
is involved during 698-1314 second; medium dynamic 
maneuvering is involved during 1314-1914 second; high 
dynamic maneuvering is involved during 0-698 second. 
The initial position of the aircraft was located at the 
position North 39o degrees and West 82o degrees at an 
altitude of 1000 meters. 

 
Fig. 6. The vehicle trajectory for simulation 
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Fig. 7. Velocity components (top) and Euler angles 
(down) for the vehicle 
 

The other setting on various parameters is 

summarized as follows. 
(1) PSO-RBFN parameters 

The parameters employed in RBFN are not chosen 
by the designer but come from the PSO searching 
process when convergence is reached. There are not 
many parameters in PSO need to be adjusted. The 
parameters used in the PSO are as follows: 

- Number of samples for the measurements: 300; 
- Maximum J value: 30;  
- Number of particles in each swam: 5; 
- Number of iterations (generations) for each  
searching process (epochs): 30;  
- Window size for NNw−σ  derivation: 30;  
- Window size for NNv−σ  derivation: 30. 

(2) Kalman filter parameters 
The parameters in the Kalman filter recursive loop 

include kΦ , kH , kQ and kR . Matrices kΦ  and kQ are 
obtained through the setting: 
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where I*981.9*3.0 −= eaσ ; I*81 −= egσ . Through 
 W and G  matrices, kΦ  and kQ  can be computed. 

In addition, [ ]  00000IH =k ; IR ×= prk , 
where 100=pr . The ‘0’s in  W , G  and kH  are 

33×  matrices of zeros. The initial values of covariance 
matrix and state vector, −

ox̂  and  −
oP , respectively, are 

118ˆ ×
− = 0xo ;  

000
000
000
000

18,18

1,1

1,1





















=−

p

p
p

o O
P  

where 

prppppp ===== 18,1817,1716,162,21,1 ;  
45,54,4 == pp ;  

819,98,87,7 −=== eppp ;  
2

12,1211,1110,10 4)(9.81e −=== ppp ;  
4515,1514,1413,13 −=== eppp ;  

06,63,3 == pp . 
The positioning errors based on the standard KF 

and as compared to the proposed method are shown in 
Figs. 8 and 9.  Fig. 8 presents the result for which no 
differential correction is applied; Fig. 9 presents the 
result for which differential correction is applied. 
Substantial performance improvement is clearly seen for 
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both the modes without and with differential correction. 
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Fig. 8. Positioning errors – without differential 
correction 
 

 
Fig. 9.  Positioning errors – DGPS mode 

6. Conclusions 
Incorporation of PSO-RBFN mechanism into the 

Kalman filter design has been presented. Fitness 
function for the PSO-RBFN mechanism has been 
proposed and the feasibility has been checked. The PSO 
is employed to search for the optimal RBFN parameters 
such that the PSO-RBFN is able to filter out high 
frequency noises (act as a low pass filter). The 
PSO-RBFN filtered outputs are utilized for derivation of 
noise variances (or equivalently, standard deviations) in 
the Kalman filter. Using the proposed method, the 
covariance matrices for both the process dynamic and 
measurement models in the Kalman filter have been 
estimated on-line and the nonlinear dynamics errors has 
been identified so that the modeling error can be 

compensated. The PSO-RBFN has been applied to the 
loosely-coupled GPS/INS navigation filter design.The 
results using the proposed approach have demonstrated 
significant positioning performance improvement in 
comparison with the standard Kalman filtering method. 
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