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Abstract

In this paper we exploit the approximation capabilities of non linear
function approximator based on fuzzy system structure, to devise an iden-
tification procedure for Single-Input Single-Output systems, which mini-
mizes the squared error between the model and the target. The adoption
of a model featuring an increased locality allows a substantial reduction
in the complexity of the identification phase in which samples are taken
into account. Then, a data-independent mapping is devised to translate
modified Non-Linear models into conventional ones.

1 Introduction

The fuzzy system’s ability of conjugating heuristic knowledge with quantita-
tive and accurate representation has been widely exploited for the identification
of complex processes [1]. Many approaches to fuzzy modeling have been in-
vestigated and, for many of the possible choices, theoretical results have been
established confirming that fuzzy systems are universal approximators, i.e. that
they are suitable for the identification of general non-linear systems.

Actually, this is true for classical Mamdani models with constant consequents
(e.g. [2][3]) which are also able to reproduce the first-order differential charac-
teristics of the target system. It is also true for Takagi-Sugeno (TS) models [4]
which benefit from their enriched consequent structure and provide reproduc-
tion of first and second order differential behavior of the target system at least
in the Single-Input Single-Output (SISO) case.

Relying on the above results we introduce a simple and efficient procedure
for the identification of the consequent parameters of a SISO TS model in the
sense of the least squares. It is based on triangular membership functions mod-
ified to increase the locality of the resulting fuzzy base functions and granting



a favorable structure to the matrix involved in the classical least square identi-
fication. A data independent technique, is also defined to map a modified TS
model into a conventional one.

The paper is organized as follows. In Section 2, the definition of Takagi-
Sugeno models is briefly recalled along with its cardinal properties which are
subsequently discussed in relation with the main steps in identification proce-
dures.

Section 3 introduces the increased-locality fuzzy basis functions and show
how this reduces the complexity of the least squares identification of conse-
quents. The general principles on which the translation between modified and
conventional TS models is based are discussed in Section 4 which also details
the related procedure.

Final version of the paper will present somo more theoretical insight and
some practical examples.

2 Non-Linear Models

Let us concentrate on SISO fuzzy systems mapping a real variable z,,, < x < xs
into a single real number and let the output of such systems be given by [4]
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where n rules of the kind “if =z is A; then y is a;z + b;” are assumed and

fta, is the membership function of the fuzzy set A,. We will also assume that n
points 1 <z < ... <z, 1 < xp, with 1 = x,, and z,, = x);, exist for which
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so that the A; are triangular and form a strict partition of [z,,, za], 1.e. Dy pa,(x) =
1.

For a more compact development of the following discussion let us also define
xpa(z) if i=1,...,n
pa, (x) if i=n+1,...,2n
a; if i=1,...,n
bi_y if i=n+1,...,2n
(1) actually translates into the linear combination

the generic basis function ¢;(z) = { and the

generic parameter p; = { fori=1,...,2n, so that

2n
T(z) =) pidi(z) (3)
=1

Let us finally state the following



Theorem 1 For any F' with continuous second derivative there are three con-
stants Cy, C1,Cy > 0 with the following property.

If A = max;—1,.. p—1(Tiy1 — x;) then a TS model based on the triangular
membership functions in (2) exists such that

sup  |FO(z) —TW(z)] < CA%i=1,2,3 (4)

Tm <z<TM

It can be easily seen that this is enough to say that sufficiently dense fuzzy
basis functions will reproduce a target behavior also in the least square sense.

Hence, we may adopt a T'S model and go through the two phases of clustering
and consequent estimation needed for a complete identification process.

To this end, note that Theorem 1 ensures that no complex membership
structure is needed to achieve universal approximation capabilities so that any
well-posed clustering scheme can be applied to compute the points x;.

3 Consequent identification

From (3) we easily get that T'(z) is linear in every parameter p,. Hence, least
square identification reduces to a classical quadratic problem.

To see this assume that m > 2n samples (Z1,751 = F(Z1)),..., (Zm, Im =
F(Z,,)) are given and define the rectangular regression matrix ® setting ®;; =
¢;(Z;). Indicate also with y = (§1,...,%m) the vector of the observed system
outputs and with p = (p1, ..., p2,) the parameter vector.

If the -7 operator transpose its argument, the square error between the model
and the sampled behavior is (®p — y)T (®p — y) which is trivially minimized by

p= (") 0Ty (5)

*

where the -* operator gives the pseudo-inverse of its argument. The compu-
tational complexity of such a calculation is dominated by the number of mul-
tiplications needed for 1 matrix by matrix product, 1 matrix inversion and 2
matrix by vector products. In our case the total number of multiplications can-
not be less than (2n)'°%27 + 8n? + 2nm, where the (2n)°%27 term comes from
the inversion [8] of the sample-dependent matrix &7 ®.

Assume, now,that ;11 — x; = (xpr — @, )/(n — 1) and note that, as it can
be also proved that the bound in Theorem 1 is strict (i.e. that functions F' exist
for which (4) holds with the equal sign) the asymptotic decay of the error is like
O(1/n?) while the asymptotic increase in identification complexity is O(n!°227).
A different technique is therefore needed to make precision computationally
affordable.

To this end, assume that the point 1 < x2 < ... < x, are given. Define
another sequence i, ..., a5, o as



1 if i=1
r_ Ti/241 if i<2n—2 even
Ti = $(i+1)/2 if ¢>1 odd (6)

T if i=2n-2

and indicate with A;, ¢(x), ®’, p’ the related quantities. This new TS model
is defined on the same points z; but relies on basis functions with a more local
behavior.

As it can be expected, this increased locality, eases the least square identifi-
cation. To see how let us now prove the following

Theorem 2 Let the m samples be sorted so that T1 < Ty < ... < T, and
indicate with m; the number of samples falling within [z}, x;_ ].

The columns of ®" (and thus of the parameter vector p') can be appropriately
permuted to obtain the following structure

® 0 ... 0

, 0 ® ... 0

¢ = : c : (7)
0 0 .. @ _,

where each @} is a m; x 4 matriz.

Proof: Note first that from (6) we get that xj =z}, for any even i < 2n — 2
and xj < xj,, for any odd i. Thus, if ¢ is odd and = €]z}, 2] [ the only
non-vanishing basis functions are ¢}(x), ¢j, (), ¢} 0,_o(x) and ¢; o, ().

From the definition of ®' we get that the structure in (7) can be easily
obtained if the columns 4,7+ 1,7 + 2n — 2,7 + 2n — 1 are made adjacent. n

From Theorem 2 we easily get that, once that the parameter vector is appro-
priately permuted, the quadratic minimization problem ®’ can be decomposed
into n — 1 smaller problems involving ;.

As @) is a m; x 4 matrix, ®7® is a 4 x 4 matrix and solving each of these
problems entails 4!°82 7 42 x 42 4 4m, for a total of Z?;ll 4log 7 4 9 % 42 4 4, =
(n —1)(4°827 4 32) + 4m.

This reduction in the computational burden is not without price. In fact,
as the number of parameters increases from 2n to 4n — 4, the modified model
is more prone to follow noisy fluctuations in the samples and may even be non-
continuous at any point z} with ¢ > 1 odd.

If this is not desired a procedure for the translation of modified TS models
into conventional T'S models can be applied as described in the following Section.

4 Consequent Reduction

The core idea allowing a smooth transition from local T'S models to conventional
TS models is contained in the following rephrasing of a well-known Theorem
from linear algebra.



Theorem 3 Let two set of basis functions ¢1(x), ..., dan(x) and ¢y (), ..., ¢,_4()

be given along with a vector of coefficients p' = (pi, ..., Dhn_4a)-
The vector of coefficients p = (p1, - .., pan) which minimizes the error

[ [ipi¢i<x> -y p;qb;(w)] iz ®

is given by p = A*Bp’ where A is a 2n X 2n symmetric matriz defined by
Aij = [TY ¢i(x)¢;(x)dz and B is a (4n — 4) x 2n matriz defined by B;; =

Lo () (x)d.

m

Proof: We have to require that the derivative of (8) with respect to p; vanishes
for each j, i.e.

4dn—4

/:rM l piti(x) — Z pgfﬁi(x)] ¢j(x)dz =0

m

or, alternatively,

4n—4

; [ sy ore] - > [ ] =0

which, with the definition of A and B, yields Ap— Bp’ = 0. The property of the
pseudo-inverse finally guarantee that p = A* Bp' satisfies this latter equation. m

Theorem 3 allows the translation of local TS models as defined and iden-
tified in the previous Section into conventional TS models. This translations
minimizes the square error between the local and the conventional model under
the assumption of uniformly distributed samples and benefits from the noise
rejection properties of least square identification. Model smoothing is therefore
performed as the number of parameter is brought down to 2n and the conven-
tional a; and b; are determined.

The computational complexity of this procedure is dominated by the multi-
plications needed in the inversion of A which are not less than (2n)'°%27. Never-
theless, the matrix A* B do not depend on the samples but only on the two sets
of basis functions and can be re-applied to every subsequent identification ex-
ploiting the same antecedent structure. Moreover, A* B can be pre-computed in
the case that is by far the most common, i.e. when the z; are evenly distributed
from x,, to xps.

Further on, the proposed technique is of general applicability as it allows the
translation from any fuzzy basis to any other fuzzy basis, whatever is the shape
and the position of the underlying membership functions.
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