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Abstract
In this paper, the synchronization of coupled quad-

copters using contraction theory principles is presented.
In order to synchronize the roll and pitch angles of the
quadcopter models, contraction theory application is a
pivotal tool. Despite the fact that all of the quadcopters
used in this study have identical characteristics, their be-
haviour greatly depends on their initial conditions. Be-
cause of the inherently nonlinear nature of quadcopters,
slight variations in the initial conditions can have a sig-
nificant impact on the trajectory of the quadcopters in
the future. Contraction theory is a useful technique for
addressing this problem. By using the contraction the-
ory, synchronization has been done for two quadcopters
as well as for three quadcopters. Finally, a generalized
method for synchronizing any number of quadcopters
using contraction theory is presented. For the synchro-
nization of two quadcopters, roll angles and pitch angles
were synchronized in 3.2 and 3.6 seconds, respectively
whereas for the synchronization of three quadcopters,
roll angles and pitch angles were synchronized in 3.2 and
3.4 seconds, respectively. MATLAB® is used to carry
out the mathematical modelling of the quadcopters and
the synchronization procedure.

Key words
Quadcopter, synchronization, contraction theory, mod-

elling and nonlinear system.

1 Introduction
Quadcopters have become a vital part of modern so-

ciety because of their many applications, which in-
clude delivery services, photography, agricultural activ-
ities, environmental monitoring, military use, and res-
cue missions [Ahmed et al., 2022]. However, effec-
tive quadcopter control requires advanced controllers

capable of managing system non-linearity and main-
taining a steady trajectory in any condition. Conse-
quently, researchers have proposed linear and nonlin-
ear, both kind of controllers to address such issues
[Kadhim and Abdulsadda, 2022], [Kumar and Dewan,
2020]. The most popular choice for linear controllers
is Proportional-Integral-Derivative and Linear Quadratic
Regulator to efficiently govern quadcopter flight [Ahmad
et al., 2020], [Saini and Ohri, 2023]. These controllers
are very simple to design and execute, but in noisy and
uncertain environments, they are unable to deliver the
desired outcomes. Researchers have developed differ-
ent nonlinear controllers to tackle this issue, including
reinforcement learning based controllers [Barzegar and
Lee, 2022], model predictive controllers [Ribeiro et al.,
2015], sliding mode controllers [Yagiz et al., 2011], [Ku-
mar and Dewan, 2023b], [Kumar and Dewan, 2023a]
and feedback linearization controllers [Lee et al., 2009],
[Rigatos, 2021] to improve performance, especially in
noisy or disturbed environments. The deployment of a
coordinated squadron of quadcopters instead of a sin-
gle vehicle is significantly more effective in many mis-
sion circumstances. This is especially apparent in ap-
plications like tracking, mapping, and swarm robots
[Blais and Akhloufi, 2023]. Managing and coordinat-
ing a swarm of quadcopters is a difficult task that re-
quires synchronization, formation, flocking, consensus,
and rendezvous procedures that are customised to meet
particular needs [Enwerem and Baras, 2023a]. In [En-
werem and Baras, 2023b], the authors proposed control
strategies that use both centralised and decentralised ap-
proaches to enable the coordinated functioning of several
quadcopter units. Quadcopter synchronization depends
on communication network reliability, and a lot of study
looks at communication protocol effects [Sharma et al.,
2020]. In [Yanmaz et al., 2018], Different communi-
cation ranges have been taken into consideration while
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discussing the synchronization of quadcopter networks,
which is particularly helpful in situations where there
are quadcopters with varied capabilities or sensor ranges.
Furthermore, researchers also investigate how sensor fu-
sion methods can improve the synchronization process
[Zhang et al., 2023]. Human engagement is sometimes
required for the efficient synchronization and control of
quadcopter swarms. This emphasises how important it
is to have user-friendly control interfaces that provide
an acceptable method for people to interact with swarms
of quadcopters [Bjurling et al., 2020]. Quadcopter syn-
chronization is complicated by its nonlinear dynamics of
quadcopters. Researchers deal with the complexities of
quadcopter modelling and control, attempting to reduce
problems like trajectory variations due to the initial con-
ditions and external disturbances [Hehn and D’Andrea,
2011]. Moreover, it is still crucial to guarantee the safety
and reliability of synchronized quadcopters, with fault
tolerance and redundancy identified as essential compo-
nents to guarantee the secure and reliable coordination
between multiple quadcopters [Nguyen et al., 2023].

This work primarily deals with contraction theory to
effectively synchronize the roll and pitch angles of cou-
pled quadcopters. Contraction theory, which is gener-
ally used for the synchronization of chaotic systems, is
employed in the context of quadcopters, where it is use
to synchronize the trajectories of two quadcopters and
three quadcopters and then a generalised method is pro-
posed to synchronize any number of quadcopters. The
structure of this paper is as follows: in section 1, quad-
copters are introduced and the importance of synchro-
nization is highlighted. A complete quadcopter mathe-
matical model is provided in section 2. The introduc-
tion of contraction theory and its application in the syn-
chronization process is examined in section 3. The sim-
ulations and results are presented in section 4, which
demonstrate the synchronization methodology’s imple-
mentations and outcomes. section 5 concludes with a
summary of the main conclusions.

2 Quadcopter Model
A quadcopter is an underactuated system because it has

more outputs than inputs. The total degree of freedom of
the quadcopter is six, which is achieved by the different
speed combinations of propellers. These combinations
decide the trajectory of the quadcopter. The quadcopter
motion is defined by two different coordinate frames in
space: one is a body-fixed frame, B = [xB , yB , zB ], and
the other is an earth-fixed frame or inertial-fixed frame,
G = [X,Y, Z] as shown in Figure 1 [Ivanov et al., 2024].
In a quadcopter, there are broadly two types of parame-
ters: one is rotational parameters, and the other is trans-
lational parameters.

The coordinates x (East), y (North), and z (Up) are
used to describe the quadcopter’s position with respect
to the inertial reference frame, which is a fixed point on
the globe. The rotating angles are represented by ϕ, θ,

and ψ ∈ R, where:

−π
2
≤ ϕ ≤ π

2
, −π

2
≤ θ ≤ π

2
, −π ≤ ψ ≤ π

where ϕ represents the roll angle, θ represents the pitch
angle, and ψ represents the yaw angle. ϕ, θ, and ψ are
also known as the Euler angles, and ϕ̇, θ̇, and ψ̇ are
known as the Euler angle velocities.

Angular velocities with respect to the inertial frame G
can be converted to angular velocities with respect to the
body-fixed frame B using the transformation matrix T
[Chovancová et al., 2014].

T =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


The reverse transformation of angular velocities can be
obtained by the inverse of the transformation matrix
T−1.

T−1 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ


For quadcopter small angle assumption has been taken
as ϕ ≈ θ ≈ 0. by which T and T−1 become identity
matrix. The other assumptions taken in this paper are
following [Ivanov et al., 2024]:
1) There is rigidity and symmetry in the quadcopter’s
architecture around the vertical axis.
2) The body-fixed frame origin and center of gravity
coincide
3) The structure’s bending can be neglected.

Figure 1. Quadcopter Model

The following is the complete dynamic model (ro-
tational and translational) that controls the quadcopter
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[Thanh and Hong, 2018]:



ϕ̈ =
(Jy−Jz)

Jx
θ̇ψ̇ + l

Jx
u2 + θ̇ Jr

Jx
τr

θ̈ = (Jz−Jx)
Jy

ϕ̇ψ̇ + l
Jy
u3 − ϕ̇ Jr

Jy
τr

ψ̇ =
(Jx−Jy)

Jz
θ̇ϕ̇+ 1

Jz
u4

z̈ = u1

m (cθcϕ)− g
ẍ = u1

m (cϕsθcψ + sϕsψ)
ÿ = u1

m (cϕsθcψ − sϕsψ)

(1)

The dynamic mathematical quadcopter model includes
Jx (about x-axis), Jy (about y -axis) and Jz (about z -
axis), which are inertias, whereas Jr represents the in-
ertia of the motor and τr represents the residual angular
velocity of the rotor. the definitions of these and other
parameters as well as their values [Thanh and Hong,
2018]. For simplification, the state space model has been
achieved with the help of the dynamic model of the quad-
copter.

Ż = f(Z, u) (2)

where Z represents the state vector and u represents the
input vector,{
Z = |Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12|

Z = |ϕ, ϕ̇, θ, θ̇, ψ̇, ψ̇, z, ż, x, ẋ, y, ẏ|

and,

u = |u1, u2, u3, u4|

Then,

Ż =



Ż1 = Z2

Ż2 = a1Z4Z6 + a2Z4τr + b1u2
Ż3 = Z4

Ż4 = a3Z2Z6 + a4Z2τr + b2u3
Ż5 = Z6

Ż6 = a5Z2Z4 + b3u4
Ż7 = Z8

Ż8 = 1
m (cZ1cZ3)u1 − g

Ż9 = Z10

Ż10 = 1
m (uxu1)

Ż11 = Z12

Ż12 = 1
m (uyu1)

(3)

where,
a1 =

(Jy−Jz)
Jx

, a3 = (Jz−Jx)
Jy

a5 =
(Jx−Jy)

Jz
, a2 = Jr

Jx
, a4 = − Jr

Jy

b1 = l
Jx
, b2 = l

Jy
, b3 = 1

Jz

In a quadcopter, the forces and torques are used as
control inputs and are controlled by adjusting the mo-
tor speeds. The lift force generated by each motor is
proportional to the square of its speed, while torques for

roll, pitch, and yaw are produced by differential thrust
between the motors. The control system computes the
required forces and torques and converts them into corre-
sponding motor speed adjustments to achieve the desired
movement.

u1 = b
(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
u2 = b

(
−ω2

2 + ω2
4

)
u3 = b

(
−ω2

1 + ω2
3

)
u4 = d

(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

) (4)

u1, u2, u3 and u4 are the control inputs. Here b stands
for the lift coefficient, d stands for drag coefficient and
omegai = (i = 1, 2, 3, 4) represents propeller speeds.

3 Contraction Theory
Contraction is a property regarding the convergence

of two system trajectories. If initial conditions or tem-
porary disruptions of a nonlinear time-varying dynamic
system are shrunk exponentially fast, it must be said that
the system will be contracting, i.e., the trajectory of the
perturbed system converges exponentially to its nominal
behavior [Sharma and Handa, 2022]. Two quadcopters
are shown in Figure 2 which are bi-directionally cou-
pled to each other, they have different responses due to
the different initial conditions but after the application of
contraction theory, their responses are synchronized to a
single trajectory. Consider a nonlinear system:

ż = f(z, t) (5)

where f is an m × 1 vector function and z ∈ Rm is the
state vector. Assuming f(z, t) is continuously differen-
tiable, then we have [Yao and Liu, 2010]:

d(δzT δz)

dt
= 2δzT δ̇z = 2δzT

∂f

∂z
δz ≤ 2λmaxδz

T δz

(6)
and,

∥δz∥ ≤ ∥δz0∥e
∫ t
0
λmax(z,t) dt (7)

where λmax is the largest eigenvalue of the symmetric
component of the Jacobian J = ∂f

∂z , and δz stands for
the virtual distance between two trajectories. For the
convergence of any infinitesimal length ∥δz∥ exponen-
tially to zero, λmax must be uniformly negative definite
[Yao and Liu, 2010].

For the system to be synchronized, the condition is
that the symmetric part of the Jacobian matrix must be
negative definite. In this work, two quadcopter systems
have been considered, which are supposed to be synchro-
nized. For this, a virtual system has been created that
represents both systems. Both systems are coupled (bi-
directional) as shown in Figure 3.

Here, Z2 and Z14 are the two trajectories of different
systems, and k1 is the coupling strength, which indicates
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Figure 2. Structure of contraction theory for two quadcopters

how tightly the systems are coupled to each other. The
coupling part is represented by k1(Z14 − Z2) for Fig-
ure 3(a), which is a forward coupling, and k1(Z2 −Z14)
for Figure 3(b), which is a backward coupling. Alterna-
tively, these couplings can be represented by Figure 3(c),
which shows a bi-directional coupling.

This presentation is shown for roll angles, but it can
similarly be applied to pitch and yaw angles.

(a)

(b)

(c)

Figure 3. Coupling of two nonlinear systems: (a) Forward coupling,
(b) Backward coupling, (c) Bi-directional coupling

Corollary: Suppose two n-dimensional nonlinear sys-
tems:

Ȧ = F (A) +H(B)−H(A) (8)

Ḃ = F (B) +H(A)−H(B) (9)

The virtual system of the above equations can be built
as:

γ(C,A,B) = F (C)− 2H(C) +H(A) +H(B) (10)

This virtual system represents both systems (equation
(8) and equation (9)), as Ȧ = γ(A,A,B) and Ḃ =
γ(B,A,B).

The connected systems will be synchronized if the vir-
tual system is contracting with respect to the virtual γ-
variable [Sharma and Handa, 2022].

3.1 Contraction Theory Application for Two Quad-
copters

For this work, two identical quadcopters have been
taken. The initial conditions are different for both quad-
copters. Due to the highly nonlinear system, the future
trajectories will be different. In this work, synchroniza-
tion has been done for roll and pitch angles so we can
consider the rotational part only.
Let the rotational part of the first system be represented
as; 

Ż2 = a1Z4Z6 + a2Z4τr + b1u2
Ż4 = a3Z2Z6 + a4Z2τr + b2u3
Ż6 = a5Z2Z4 + b3u4

(11)

Where Z2, Z4, and Z6 represent the roll, pitch, and
yaw angles of the first quadcopter and are denoted by
ϕ1, θ1, and ψ1, respectively.
And rotational part of other systems is represented as;

Ż14 = a1Z16Z18 + a2Z16τr + b1u2
Ż16 = a3Z14Z18 + a4Z14τr + b2u3
Ż18 = a5Z14Z16 + b3u4

(12)

Where Z14, Z16, and Z18 represent the roll, pitch, and
yaw angles of the second quadcopter and are denoted
by ϕ2, θ2, and ψ2, respectively.Consider that both sys-
tems are coupled with a coupling strength of ki (for
i = 1, 2, 3).
The system 11 and 12 become;

Ż2 = a1Z4Z6 + a2Z4τr + b1u2 + k1(Z14 − Z2)

Ż4 = a3Z2Z6 + a4Z2τr + b2u3 + k2(Z16 − Z4)

Ż6 = a5Z2Z4 + b3u4 + k3(Z18 − Z6)
(13)

and
Ż14 = a1Z16Z18 + a2Z16τr + b1u2 + k1(Z2 − Z14)

Ż16 = a3Z14Z18 + a4Z14τr + b2u3 + k2(Z4 − Z16)

Ż18 = a5Z14Z16 + b3u4 + k3(Z6 − Z18)
(14)

With the help of systems 13 and 14 virtual system can
be constructed like; ṗ = a1qr + a2qτr + b1u2 − 2k1p+ k1(Z2 + Z14)

q̇ = a3pr + a4pτr + b2u3 − 2k2q + k2(Z4 + Z16)
ṙ = a5pq + b3u4 − 2k3r + k3(Z6 + Z18)

(15)
System 15 represents both systems (13 and 14). After

substituting p = Z2, q = Z4, and r = Z6, system 13 is
obtained. Similarly, after substituting p = Z14, q = Z16,
and r = Z18, system 14 is obtained.
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For the synchronization of systems 13 and 14, the sym-
metric part of the Jacobian of the virtual system should
be negative definite.

Let system 15 be:

Ṅ = ξ(N), where N = (p, q, r) ∈ R3.

The Jacobian Λ of system 17 is:

Λ =
∂ξ

∂N
=

 −2k1 a1r + a2τr a1q
a3r + a4τr −2k2 a3p

a5q a5p −2k3


The symmetric part A of the Jacobian is calculated as:

A =
1

2
(Λ + ΛT )

After substituting the parameter values, the symmetric
part A of the Jacobian becomes:

A =

−2k1 0 − q
2

0 −2k2
p
2

− q
2

p
2 −2k3


The conditions for the matrix to be negative definite are:

k1 > 0,

k2 > 0,

k3 > 0.

The contraction region is defined as:

C :

{
(p, q, r) :

p2

16k2k3
+

q2

16k1k3
< 1

}
Thus, every solution that begins with any initial condi-
tion will stay in C and converge exponentially to a single
path.

3.2 Contraction Theory Application for Three
Quadcopters

For the synchronization of three quadcopters same
strategy has been followed. A virtual system is formu-
lated which represents all three systems. The first two
systems are taken the same as in equations 11 and 12.
The third system is considered as;

Ż26 = a1Z28Z30 + a2Z28τr + b1u2
Ż28 = a3Z26Z30 + a4Z26τr + b2u3
Ż30 = a5Z26Z28 + b3u4

(16)

Where Z26, Z28, and Z30 represent the roll, pitch, and
yaw angles of the third quadcopter and are denoted by
ϕ3, θ3, and ψ3, respectively.

All three systems are coupled (bi-directional) as shown
in Figure 4, where Z2, Z14, and Z26 are the trajectories

of the different systems, and k1 is the coupling strength,
indicating how tightly the systems are coupled to each
other. This presentation has been shown for roll angles;
similarly, it can be achieved for pitch and yaw angles.



Ż2 = a1Z4Z6 + a2Z4τr + b1u2 − 2k1Z2

+k1Z14 + k1Z26

Ż4 = a3Z2Z6 + a4Z2τr + b2u3 − 2k2Z4

+k2Z16 + k2Z28

Ż6 = a5Z2Z4 + b3u4 − 2k3Z6

+k3Z18 + k3Z30

(17)



Ż14 = a1Z16Z18 + a2Z16τr + b1u2 − 2k1Z14

+k1Z2 + k1Z26

Ż16 = a3Z14Z18 + a4Z14τr + b2u3 − 2k2Z16

+k2Z4 + k2Z28

Ż18 = a5Z14Z16 + b3u4 − 2k3Z18

+k3Z6 + k3Z30

(18)
and,

Ż26 = a1Z28Z30 + a2Z28τr + b1u2 − 2k1Z26

+k1Z2 + k1Z14

Ż28 = a3Z26Z30 + a4Z26τr + b2u3 − 2k2Z28

+k2Z4 + k2Z16

Ż30 = a5Z26Z28 + b3u4 − 2k3Z30

+k3Z6 + k3Z18

(19)
With the help of systems 17, 18 and 19, a virtual sys-

tem is formulated which looks like;

ṗ = a1qr + a2qτr + b1u2 − 3k1p
+k1(Z2 + Z14 + Z26)

q̇ = a3pr + a4pτr + b2u3 − 3k2q
+k2(Z4 + Z16 + Z28)

ṙ = a5pq + b3u4 − 3k3r
+k3(Z6 + Z18 + Z30)

(20)

Virtual System 20 represents all three systems (17, 18,
and 19). After substituting p = Z2, q = Z4, and r =
Z6, system 17 is achieved. Similarly, after substituting
p = Z14, q = Z16, and r = Z18, system 18 is achieved,
and for p = Z26, q = Z28, and r = Z30, system 19
is achieved. For the synchronization of systems 17, 18,
and 19, the symmetric part of the Jacobian of the virtual
system should be negative definite.
Let system 20 be:

Ṁ = ξ(M), where M = (p, q, r) ∈ R3.

The Jacobian of system 20 is:

B =
∂ξ

∂M
=

 −3k1 a1r + a2τr a1q
a3r + a4τr −3k2 a3p

a5q a5p −3k3


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A =

 −2k1
1
2 (a1r + a2τr + a3r + a4τr)

1
2 (a1q + a5q)

1
2 (a1r + a2τr + a3r + a4τr) −2k2

1
2 (a3p+ a5p)

1
2 (a1q + a5q)

1
2 (a3p+ a5p) −2k3



Figure 4. Bi-directional coupling of three nonlinear systems

The symmetric part of Jacobian is calculated as:

B =
1

2
(B +BT )

B =

−3k1 0 − q
2

0 −3k2
p
2

− q
2

p
2 −3k3


Conditions for the negative definite matrix are:

k1 > 0

k2 > 0

k3 > 0

And the contraction region is:

C :

{
(p, q, r) | p2

36k2k3
+

q2

36k1k3
< 1

}
3.3 Contraction Theory Application for n-

Quadcopters
This section presents the general method for synchro-

nization of n-quadcopters. The virtual system for the
synchronization of n-quadcopters looks like;



ṗ = a1qr + a2qτr + b1u2 − nk1p

+k1
∑n−1

i=0 Z2+12i

q̇ = a3pr + a4pτr + b2u3 − nk2q

+k2
∑n−1

i=0 Z4+12i

ṙ = a5pq + b3u4 − nk3r

+k3
∑n−1

i=0 Z6+12i

(21)

The corresponding Symmetric part of Jacobian is cal-
culated as;

B =

−nk1 0 − q
2

0 −nk2 p
2

− q
2

p
2 −nk3



And the contraction region is:

C :

{
(p, q, r) | p2

4n2k2k3
+

q2

4n2k1k3
< 1

}

4 Simulation and Results
MATLAB® has been used for the verification of this

work. Two scenarios have been considered:

Scenario-I: Synchronization of two quadcopter
models.
Scenario-II: Synchronization of three quadcopter
models.

The condition for a quadcopter to start the altitude op-
eration is that the force u1 must be greater than the grav-
itational force, i.e., u1 > mg. After using the parame-
ter values, u1 must be greater than 10.976 N. Addition-
ally, ω1, ω2, ω3, ω4 are the same for the hover condition,
which should be equal to 595.80 r/s.
For forward pitch operation, ω3 = ω4 > ω1 = ω2.
Thus, the assumption is that the speed of the propellers
are ω1 = ω2 = 600 r/s and ω3 = ω4 = 605 r/s. Simi-
larly, for clockwise roll operation, ω2 = ω3 > ω1 = ω4.
Thus, the assumption is that the speed of the propellers
are ω2 = ω3 = 605 r/s and ω1 = ω4 = 600 r/s. In both
operations, the yaw moment is zero, so it has not been
considered.

4.1 Synchronization of Two Quadcopters
Synchronization has been done for the roll and pitch

angles of two identical quadcopters. The design param-
eters are the same for both systems, but the difference
is in the initial conditions. When initial conditions are
zero, the roll angle and pitch angle trajectories follow
the same path for both quadcopters, as shown in Fig-
ure 5. For the first system, the initial conditions are
ϕ10, θ10, ψ10 = (−3,−2, 0), and for the second system,
the initial conditions are ϕ20, θ20, ψ20 = (3, 2, 0). The
initial condition for yaw is taken as zero because the yaw
angle is not considered in this work. Figure 6 shows
that without contraction theory, the systems do not fol-
low the same trajectory even when the system param-
eters are the same for both systems. After applying the
contraction theory, both systems start following the same
trajectory, as seen in Figure 7. The coupling strength is
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B =
1

2

 −3k1
1
2 (a1r + a2τr + a3r + a4τr)

1
2 (a1q + a5q)

1
2 (a1r + a2τr + a3r + a4τr) −3k2

1
2 (a3p+ a5p)

1
2 (a1q + a5q)

1
2 (a3p+ a5p) −3k3



taken as (k1, k2, k3) = (1, 1, 1). The error between the
trajectories after the application of contraction is shown
in Figure 8. Specifications, which include synchroniza-
tion time and steady-state error, are presented in Table 2
for a better understanding of performance.

(a)

(b)

Figure 5. Synchronization (With zero initial conditions) for (a) Pitch,
(b) Roll

(a)

(b)

Figure 6. Synchronization (With different initial conditions) for (a)
Pitch, (b) Roll

(a)

(b)

Figure 7. Synchronization (With different initial conditions after con-
traction theory) for (a) Pitch, (b) Roll



CYBERNETICS AND PHYSICS, VOL. 13, NO. 2, 2024 149

(a)

(b)

Figure 8. Synchronization error (With different initial conditions af-
ter contraction theory) for (a) Pitch, (b) Roll

4.2 Synchronization of Three Quadcopters
Like two systems synchronization, three systems syn-

chronization has also been done in this paper. Initial con-
ditions for system one is ϕ10, θ10, ψ10 = (−2,−3, 0),
for system two is ϕ20, θ20, ψ20 = (2, 3, 0), and for sys-
tem three is ϕ30, θ30, ψ30 = (1, 1, 0). Before the con-
traction theory application, all the trajectories followed
altogether different paths because of the different initial
conditions but after the contraction theory application,
all the trajectories followed the same path for both, roll
angle and pitch angle which is shown in Figure 9. Cou-
pling strength is taken as (k1, k2, k3) = (0.7, 0.7, 2). Er-
rors between trajectories, after the application of con-
traction theory are shown in Figure 10. Table 3 presents
performance specifications, encompassing synchroniza-
tion time and steady-state error.

(a)

(b)

Figure 9. Synchronization (With different initial conditions after con-
traction theory) for (a) Pitch, (b) Roll

(a)

(b)

Figure 10. Synchronization error (With different initial conditions
and contraction theory) for (a) Pitch, (b) Roll

5 Conclusions
This research employs the concept of contraction the-

ory to achieve the synchronization of n-quadcopter mod-
els. The key finding of this work is that identical quad-
copter models follow the same trajectories when initial
conditions are the same, specifically with regard to roll
and pitch angles. However, even a small change in the
initial conditions of quadcopters has a significant effect
on the scenario. In order to tackle this difficulty and
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Table 1. Performance Specifications for two synchronized quadcopters

Steady State Error before
contraction theory
application (rad)

Steady State Error after
contraction theory
application (rad)

Synchronization Time after
the application of

contraction theory (sec)

Pitch 4 0.00042 3.6

Roll 6 0.00023 3.2

Table 2. Performance Specifications for three synchronized quadcopters

Steady State Error
(Quadcopter 1 –
Quadcopter 2)

Steady State Error
(Quadcopter 2 –
Quadcopter 3)

Steady State Error
(Quadcopter 3 –
Quadcopter 1)

Synchronization Time
after the application of
contraction theory (sec)

Pitch 0.00015 0.00006 0.00009 3.4

Roll 0.00012 0.00003 0.00009 3.2

enable effective and rapid synchronization of the sys-
tems, this work makes use of the contraction theory prin-
ciple, which permits the quadcopters to continue mov-
ing in sync even when the initial conditions are differ-
ent. First, this technique is applied on two quadcopters,
which took 3.2 seconds and 3.6 seconds to achieve the
synchronization of roll angles and pitch angles, respec-
tively the same concept is applied to the synchronization
of three quadcopters which took 3.2 seconds and 3.6 sec-
onds for the synchronization of roll angles and pitch an-
gles, respectively. By using these two scenarios, a gener-
alized approach is proposed which is able to synchronize
any number of quadcopters.
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