ENOC-2008, Saint Petersburg, Russia, June, 30-July, 4 2008
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Abstract

It’s illustrated with simple examples that for the
calculation of the momentum of waves and the force
exerted by the wave reflected from an obstacle it is
necessary to consider nonlinear factor in motion
equations of elastic systems and in boundary
conditions. It is shown that the method using concepts
of “wave momentum” and “wave pressure” for
solution this problems is unreasonable.
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1. Interest to influence of waves on the reflecting
obstacle has appeared long ago and is related with the
assumption that the reflection of any physical wave
exercises the nonzero pressure upon the reflector like
the pressure of electromagnetic waves on their
surface. There are many different points of view
concerning the question about the influence of waves
on the system boundary. The concept “wave
momentum” [Vesnitsky, 2001; Vesnitsky, Kaplan and
Utkin, 1983] is often used to answer this question.
The change of this quantity caused by interaction of
wave with obstacle explains the pressure existence on
boundary which is called “wave pressure” as well.

b
Let L=[Adx be a Lagrange functional of a one-
a

dimensional elastic system,
A= Axtu(x,t),u, (x0),u,(x,0)  is  the
function density and u(x,r) - the shift of system

points. The density of wave momentum is defined as
oA

w =y = 1).
P (xt) =—uy, o (1

where
Lagrange

The differential law of change p” and 77
provided that outside forces are absent is given by
w w
ap—+aT—:ﬂx, where 1" :/”L—ura—/1 - is so-
ot ox ~ Ou
called the wave pressure force in arbitrary elastic

system profile x.

To all appearance in [Leech, 1961] wave
characteristics concerned have been introduced for the
first time. It’s emphasized the quantity defined by (1)
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differs from 5—2 which is real medium momentum
Uy

density. “It is new differential quantity”, which is
proposed to term as “wave momentum density,
because it’s not equal to zero only in wave motion
when u, #07”. At [Ostrovsky and Potapov, 2003] it’s

stated that “wave momentum is one of the general
physical characteristics of wave processes and is true
for any type of waves”. The difference of generalized
momentum and wave momentum is accented at that.
“The first quantity is a linear function of variable u,
and is used in discrete systems as well as distributed
systems. The second one is a new field characteristic
of dynamical process and is reasonable only for
distributed systems”.

For string waves the transport equation of “wave
momentum” is a result of multiplication the equation
of string vibrations pu, — Nu,, =0 by u,:

0 0 |1
5(—putux)+a[;(puf+fvu§)}=o @)

where p — density on the unit of length, N - tighting
force.

3

Here p" =—pu,u_is the “wave momentum” density

on the unit of length, 7" =%[pu12 +Nu§] - the force

of “wave pressure”. In particular, for harmonic wave

u :asin(a)t—kx) " :pazka)cos2 (a)t—kx).

“Wave momentum” is proportional to the square of
amplitude and has the same direction with wave
motion. Therefore “wave pressure” is positive, that is
an obstacle is pushed forward. The average value of
mechanical momentum density for harmonic wave is
zero: p=pu, =0, whereas the average “wave

we get p

momentum” 5" = % paka® 0 .

Some questions occur about physical meaning of
“wave momentum” and “wave pressure”, about
necessity and reasonability of this quantities
introduction for studying the dynamics of distributed
systems, equations of which is following from
Newton’s equations and for which classical motion
characteristics - momentum and pressure - are
enough.



The equation (1) looks like a conservation law for
wave momentum —pu,u, and wave pressure

1
E(p“zz +Nu?):

Ga , Sk - (3)
ot Oxy
It can be construed as the balance equation for the rate
of quantity @ change and its flux across unit area. But
in general this ratio doesn’t determine single-valued
quantities. The fact is that a, ¢, can be added by
quantities a”, ¢”  satisfying an identity

oa® + ac,(j)

=0 which doesn’t change the form of
ot axk

initial equation (3) but changes included quantities. It
is a well-known fact, in particular, in the theory of
electromagnetic field. Such conversions are called
calibration.

Thus the notions of “wave momentum” and “wave
pressure” are the result of a mathematical reasoning.
The question about their meaning and validity of use
for studying wave motions in medium remains open.
It is known [Denisov, 1994; Denisov, 2001] that
formal application of these concepts and equations as
(3) can lead to wrong results. It is essential that
considered wave characteristics are proportional to
the square of deformation amplitude but are usually
used in linear model. Let demonstrate some
originating contradictions with the particular example
of the wave on a rod.

2. Let’s consider the one-dimensional case of small
vibrations of the rod bounded from one side. In the
second approximation of the perturbation theory, the
motion equation of the rod is

Uy _Cé”xx +ﬂ”xuxx =0, (4)
where u(x,t) — the longitudinal shift, § — the parameter
described nonlinear system properties. The boundary
condition at x=0 is u(0,t)=0.

Let’s represent a solution as the sum of the
quantities of the first and second infinitesimal order:
u=u;+u,. In that case the task (4) is reduced to the
next combined equations:

Uiy = CGttgy =0 _ (5)
Uy = Cligey + Pl =0
Consider the wave traveling to the left (in boundary
direction) and characterizing to a linear
approximation by u;(x,t)= f(x+cyt), a continuous
function specified in the range
Xg — ot <x<xy—cot +a. At initial instant of time =0
f(x0) = f(xo+a)=0. At t=0 the wave is entirely on
the right of limiter ( x, >0), at £>0 it moves to a fixed
end point of the rod. At x =xy—cot (x,>0) thereis a

leading wave front and x =x; —cyt +a corresponds to

the rear front. By 7 =20 the leading front reaches the
€0
limiter and the wave begins to reflect. At time

¢ the rear front reaches the fixed end point

too, that is at ¢ >¢, the wave reflected fully.

Let’s determine the pressure produced by the wave
at the fixed end point of the rod. For that let’s find the
solution of the equation at the second approximation

2 _ Bl
Upy = CoUpey = _?[fx (x+cof)

-
By the d’Alembert’s formula, using zero initial

conditions we obtain
x+cy(1-t")

Uy (x,t) = —%Idt' _[

00 x—cy(t-t)

2 +eor) Ldé =

t
- %({[fxz (v —cot +2¢ot") - f2(x+ COt)]dt’

The equation (4) can be written as

@, ©)
ot ox
where p=pu, - generalized momentum density,

2

T= p(— cdu, +§uxj— the force in profile x.

The force on the boundary is defined by T:
R :—T|x:0. On the other side, the integration of the

equation (6) over time at first and then over
coordinate gives:

t Ro!
1[Gy~ TG0t == [[pomp (5.12) = Py (ot i
0 X
This implies that the total force on the rod of the
distance x,-x; for the time ¢ is equal to the difference
between momentums of an incident wave and
reflected from the limiter wave. Taking an interest in
the force at the fixed end point set x;=0 and suppose
X, as such point which hasn’t been reached by
disturbance yet, that is 7(x,,r)=0. Then the left side
(xo+a)/cy

[T(0,¢)dt . The

Xo/Co

limits of integration are the time instants of the
beginning and ending of wave interaction with the
limiter. The right side of the rate is equal to

of the obtained rate is written as: —

Xo—Coti ta —Xotcot Xo
| o (x,17)dx — Ipomp (x,t)dx |, where ¢ <—
Xo—Coly —Xg—a+cyt, €o

- time when wave hasn’t reached the limiter yet,
Xg ta

ty > - time when the reflection has already
€0
completed.
Let’s calculate momentum P and force on boundary
R in linear model. The momentum of an incident

wave P, (f) is given by:

Xo—Cot ta Xogta—cyt
Pnad(tl): Ipult(x,tl)dx=p JCOfx(X+Cot1)dX:
Xo—Coly Xo—Coty .

= peo(f(xg +a) - f(x))=0

For the momentum evaluation of a reflected wave

—Xotcoly

P(,mp(tz): [puy (v, )dx  we find its expression
—Xxg—atcyt,

Uiomp (X,) . Consider, following [Tikhonov and



Samarsky, 1977], a boundless rod with condition
u(0,1)=0. On the rod two waves
u, (x+cot) +u_(~x+cot) run towards to each other. In

u_ (cot) = Uy (cot).
u_(-x+cot) as a solution and

the profile x=0 Taking

u(x,t) = u+(x + cot)—
considering it at x>0, we obtain the solution of the
original problem. The reflected wave will be

Xog ta
tomp (5:8) =—f (- x+cot),  where 1> Oc . The
0
momentum of this wave
=Xy tcoly omp
Pomp(t2)= j Puy, (x,25)dx =0.
—Xp—atcgh

The disturbance of the first approximation doesn’t
carry momentum under arbitrary function f which
equals zero at the ends of interval. In that case the
force on the boundary is equal to:

R|x:0 = Pna()(tl)_Pomp(IZ) =0.

The same result for the force at the fixed end point is

)/‘0
[7(0,¢)dt » Where

xo/Co
7(0,2) = —pegur, (0.2) == peg (ulx (0.0)+up™ (0, t))

= —2pC§fx (C()t)
Let’s evaluate the

given by the expression _ b

waves of the second

approximation. For the momentum at the time ¢ < T
€0

Xo—Cot+a
[y, (w1, ) » where

Xo—Coh
__B [ 2 2
uy (x,t) =— » Sy (x+eoty) = [ (x—coty) +
0 .

+2¢0t [fx2 (x+coty) X]
Notice that, because of nonlinearity the activated
wave running to the left breaks up into the group of
waves traveling to the same direction and one wave
traveling to the right.

Considering waves interactive with the limiter we
get:

we have p() =

ﬂp Xo—Col ta
Paao (1) = - Sc .[
€0 Xg—Coty

Xo— cot1 +a

12 (x+eoty)dx -

x+a

x—— J fx (x)dx

—ﬁ—pcofl [fx (x+coty)),

400 xo—cotl
The final identity is written provided the assumptlon

felxo)= filxo +a)=0.

Xgta . .
The momentum P(z,) at 1, >=—= is given by:
o
X+l
P(ty)= [ puy (., )dx , where
—xg—a+cyt,

ug'”? (x,t5) = [fx2 (=x +coty) +2¢0ty [ff(—x + Cotz)]x] :
0

Integrating we obtain
Xota

J S2()dx = =B(1)) .

Pomp(lz) =

The force exerted by the wave on the boundary is

x+a

Rlx:() :Pnad(tl)_Pamp(tZ): J. fx (x)dx .
Xo
We get the same result in another way:

(xo+a)/cy

[T(0,0)dt >

Xo/Co

where 7(0,¢) = —pedu,, (0,1) + 2 ﬂ ut(0.1)-

Rl x=0 =

However, the first member in the expression

sz(x t)__i[fx (x COt) fx (X+COZ)+

+2Col[fx (x +Col)] ]
doesn’t influence on the limiter. So we don’t take it
into account. The wave F (x+c0t) incident on the
limiter generate the reflected wave —F(—x+c0t). At
that u(0,¢)= F(cot)- Flcot)=0, the time derivative
u,(0,)=0, but u,(0,6)=2F(cot).
consider coefficient 2 and not consider the first

member in the expression for u,, in the formula for
finding R. Provided that we  obtain:

=12 °J £2(ydx

That’s why we

‘ x=0

Thus, the problem solution of the force exerted by
the wave on the elastic system boundary is different in
the frame of linear and nonlinear model. The pressure
appears only in the presence of nonlinearity and can
be positive as well as negative according to the sign of
the nonlinearity coefficient f. The same is also
concerned with the momentum of wave. The
momentum isn’t connected with the wave traveling
direction. The sign of momentum depends on the
nonlinearity coefficient.

Notice that in linear model a momentum transfer is
possible only if a longitudinal shifts function has a
discontinuity at the disturbance area boundary. This
condition is nonphysical. The analysis of wave motion
should be specified by introduction nonlinearity to the
model. In this case the local wave carries momentum
on the condition of zero longitudinal displacements at
the boundary too even if their first coordinate
derivatives are zero.

Let’s consider what the solution of the task would
be if we used the notions of “wave momentum” and
“wave pressure”. Multiplying the first equation of (5)
apW or”

Ox

by u, we get =0, where p" =—pu,u,

the “wave momentum” density, 7" = ’; (u2 +c§u2) -

“wave pressure” in profile x.
“Wave momentum” of the incident wave P, (tl)

for disturbance u(x,t) = f(x +c01) is given by:

Xota—cot

Pao(t1)=-p cof (x +eoty Jax =
Xo—Cohy ) (7)
Xota

=—pey | f{(x)ax

Xo

“Wave momentum” of the reflected wave Pomp( t5) is:



=Xy tcot,
POV;I;p( ):,0 COJ{xZ(_x*'COtZ)dx:

—Xg—a+tcyt, {
wota )

= Py ,[ fx( )dx__ naa(tl)

*o

In that case the force on the boundary is equal to:
Xpta

R _y = Prio (1) = Poy (12) = =2pcq T2 (dx

X0
what coincides with the result of integration of “wave
pressure” on time:

(x0+“)/50 Xpta
N A T EC T

Thus, “wave momentum” P” is nonzero and has the
same direction with a traveling wave direction. The
change of “wave momentum” because of the
reflection of wave from the limiter coincides with the
positive “wave pressure” on the fixed end point of the
rod. This result differs from the solution obtained by
using classical concepts.

Consider the same task in the case of free end of the
rod, that is on condition u,(0,£)=0 at x=0. Arguments
for finding the momentum of wave and its force on
the boundary are analogous to the fixed end case. In
the frame of a linear model the momentum P, (r,) of

U (x,t) = f(x + cot) and the

momentum Pomp() of the

the incident wave

reflected wave

+
Uiomp (x,)= f-x+cot), 2 &l are equal to zero.
€o
At that the force on the boundary is zero too.

Let’s consider waves in the second approximation.

As the previous case the momentum P(?;) at ¢, < 2o s

o
given by:
Xo—Coty+a
P(t)= " | puy (. Jdx , where
Xo—Coly
__ Bl 2
up, (x,1y) = S S (x+cot) = fi (x—coty) +
+2c¢oty [fx2 (x+coty) X]
Proceeding on the assumption that

f(x0)= f.(xo +a)=0 for momentum of the incident

wave we have
Y +a

f f3 (x)dx .

Pna()(tl)z_

Xota
€0

The momentum P(t,) at the time ¢, > is:

—Xo +50[2
J.p"‘zt (x t )dx , Where

—Xg—a+cyty

ug” (x.ty) = _%[fxz (=x *cot) +2¢ots [fxz(_x + Cofz)]X]-

P(ty) =

After calculating we obtain
Xota

Pomp(IZ)__g_ J. fvc (x)dx nad(tl)'

Thus, the momentum of wave doesn’t change its
direction after the wave reflection from the free end of

the rod and the total force on the boundary is equal to
zero in that case:
R|x:0 = Pna() (1) - Pomp(tz) =0.

However the solution of this task with the usage of
wave characteristics gives (7)-(9) as before. So the
“wave” method reduces to the false result and also
doesn’t make difference between cases of free end of
the rod and fixed end point.

So the wave momentum property to change or
conserve its direction with respect to wave
propagation direction under the type of boundary
condition exists. Note that it obtains in frame of linear
model too though it can be found the assertion about
the momentum transfer in the direction of wave
propagation.

Let f(xo)# f(xo+a)#0. The momentum of the
incident wave u;(x,7)= f(x+cyt) is equal to

Xo—Coty ta

[ oy, (e, ty)dx = peg (£ (xg + @)= £(x)) -

Xo—Coly

The momentum of the

Ulomp (x,t) = f(_ x+ Col),l > XOC+ a
0

condition u,(0,¢t)=0 is given by
—Xo+coly
Pump (t2)= .[ ,OMU (x tZ)dx pC()(f(X() +a)_«f(x0))
—Xog—a+cyt,
that is the momentum has the same value as well as
direction though the wave propagation direction
changes by the opposite one as the interaction result
with rod boundary.

It’s easy to check up that the wave momentum
direction coincides with the wave propagation
direction after reflection from the boundary under
boundary condition u(0,7) =0 .

Pnad([l):

reflected  wave

under free boundary

3. The investigation of the transverse motions of
elastic systems has another speciality which should be
considered for finding the force exerted on the
boundary of system. That is the necessity to take into
account the nonlinear connection of transverse and
longitudinal motions in motion equations as well as in
boundary conditions.

In case of the string transverse vibrations the
Lagrange function density is

ﬂ=%po(1 )(utz"'vt )_%To( (+B+u, ) +v} _1) (10)

where the longitudinal and transverse shifts of string
points are denoted by u(x,z) and v(x,t) respectively, p,
— unperturbed density value, 7, — tighting force,
B= 0570 - the initial constant string tension.
X
The motion equations in the second approximation
of the perturbation theory are given by:

2

_ 2 22
Uy —a Uy =UxUy +2”xtut TV ta (1 e ) ViVxx

=(uvy), +a2(1 _72)2(Vx”x)x

B
where a® =T—°, }/2 = .
Po 1+B

Representing a solution as the sum of two quantities
of the first and second infinitesimal order

2.2
7 4 Vxx




u=u, +u,,0 =y, +v,, in the first approximation we get

the independent equations of the string transverse and
longitudinal motions:

2 -
Uy =@ Uy =0
2 2 -0
Uy =7 @ Ujxx =0
The shifts u, and v, are determined by the solution
of the next system of equations:
2 _ 2 25\2
Upy — A Upyy = U Uy, +2u1xtult +UltUltx ta (1 -7 ) U Dy

Uy, = 77a%0, = (W,,), + @ (1= 77) (V)

The transverse waves excitation in the first
approximation leads to the longitudinal waves
generation in the second one. However, usually “wave
pressure” is calculated to get the solution of linear
problem. The inaccuracy of this method has been
illustrated with the example of the longitudinal
motions in a one-dimensional solid system. Here it
will be shown that the solution of the question
concerned with the force exerted by the wave on an
obstacle essentially depends on the obstacle type as
well as on its nonlinear factors. We’ll consider some
static problems to show this and also to represent the
obvious example.

Let’s consider the string of length /, in undistorted
state. At initial instant of time the string is tighten
between two fixed points which are positioned on the
distance 2/, from each other. The force of the constant
string tension is equal to 7, =k(2/, -1,), where k is the
elasticity modulus. At middle point the constant force
F acts on the string (fig.1). The angle of the string
deviation from horizontal line is @ (a <<1). At that
the connection of u, and v, with a follows from rates

du=dlcosa,dv=dlsina, where

dl = \/(1 +B+u, ) +vldx - the length of the string

element after deformation. In static case it is
u, =0,u, =0. So the calculation of the string force on

each fixed end point can be carried out from the

x+0
expression R =-— as it was in the second part
Uxlr-o
but it is possible to use the statics rates.
F

0 21,
Figure 1.

Let’s denote by R; the j-th component of the force
exerted by the string on the boundary with number i
(i=1, 2; j=x, y). At the left fixed point the next
relations are valid:

Ry, =Tcosa,Ry, =Tsina,

2
cosa

where T = k( —loj - tighting force.

From this, considering the members of the first and
second infinitesimal order we obtain:

2
o
Rlx NTO +k107, Rly zToa .

In that case the string deviation leads to additional
longitudinal force which is in the opposite direction

2
from the boundary because kl a? >0.

Similarly we get the next force components for the
right fixed point:

(24
sz z—To —klOT, Rzy zT()CC .

The additional longitudinal force is directed to the left
tending to move the boundary to the left that is this
force exerts the additional negative “pressure”.

Thus, the string forces on boundaries in case of
fixed end points are equal and opposite directed. After
the angle o increasing, the force grows tending to join
boundaries. Notice that in linear model the forces
R, R,  are caused by the initial string tension:
Ry ==Ry =T -

Let’s consider the case of a fixed ended string as
before but at point 1 and 2 there is a ring limiter that
is the string is limited only in vertical displacement at
these points (fig.2). In this example the initial
tighting force is 1, = k(21 +21, -1,) -

F

) 0 2l 20+,

Figure 2.
The force exerted by the string on the limiter at
point 1 has the next components:
Ry =Tcosa-T, Ry, =Tsina,
and at point 2 the force components are:
Ry, =-Tcosa+T, Ry, =Tsina.

Here the tighting force of the string is
T:k[ 2 +212—10j.

cosa
By the expansion procedure of the given

expressions for force components in the second
approximation we get:

0!2

Rix~~Tg =Ry, = Toarand Ry, = TO%,RZy ~ Tyt .
The force longitudinal component on the fixed point
limiting only transverse shifts is nonlinear quantity
about o. The force occurs in the presence of
deviations only and is directed to limiters that is
“presses down” on its. This essentially differs from
the first case when at « =0 there is additional
negative pressure.

Thus, the solution of the question about influence of
elastic system on a boundary depends on the type of
boundary conditions. The difference of force value as
well as its sign becomes apparent only in the frame of
nonlinear model.

In spite of the fact that “wave pressure” is
proportional to the square of deformation amplitude it
is usually calculated in linear models. In the static



problems under consideration “wave” method gives
equal force at fixed points without dependence on the
type of limiter.

The Lagrange function density corresponding to
linear transverse vibrations of the string follows from

(10) and is given by ,1:%,30,)3 _%Toug, where py —

density on the unit of string length, o(x,7) - the
transverse shift of string points, 7)) — tighting force.
In static case there is v, =0, fga=v,. “Wave

oA 1. 2

pressure” 7" = 1-—"p_ is equal to ETOUX at that.

X

The horizontal force at fixed point x=x; is determined

x=x;+0 .
by R, =-T" 0 From this it follows that the
X=x—
force on the boundary at point 1 is equal to
1 x=+0 x=2[,+0
Ry, = ——Tyv? ,atpoint 2 - Ry, =——Tyv?
x==0 2 x=20,-0

At the small angle o of deviation from horizontal
line there is
1

- 2 )
Rlx ——ET()C( N sz —EToa .

In the frame of “wave” method this result is valid for
the both considered types of fixed points 1 and 2
(fig.1, fig.2). Presented solution coincides with the
previous result obtained by statics method in the case
of the ring limiters at point 1 and 2 only. These results
are different at fixed end points.

Thus, in the case of elastic solid wave motion the
formally introduced concepts of “wave momentum”
and “wave pressure” which are interpreted from
doubtful analogies and dimensions as the specific
characteristics of wave motion can lead to wrong
results.

The problems of wave influence on obstacles
require detailed analysis in every particular case with
consideration of different nonlinear factors. First of
all it is concerned those situations when the wave
doesn’t have momentum in linear model. The usage
of “wave momentum” and “wave pressure” for the
simplified solutions of questions about the dynamics
of elastic systems is unreasonable.
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