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Abstract: A rectilinear motion of a system of two bodies connected by a spring on
a rough horizontal plane is studied. The coefficient of friction between the bodies
and the plane is assumed to be small. The motion of the system is excited by two
identical unbalance rotors based on the respective bodies. Major attention is given
to the steady-state velocity-periodic motion. A nearly-resonant excitation mode,
for which the angular velocities of the rotor are close to the natural frequency of
the system, is considered. It is shown that control of the steady-state motion can
be provided by changing the phase shift between the rotations of the rotors and
the sign of the resonant detuning measured by the difference between the angular
velocity of the rotors and the natural frequency of the system. By varying the
phase shift one can control the magnitude of the average velocity and varying the
detuning enables one to change the direction of the motion.
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1. INTRODUCTION

In (Zimmermann et al., 2004; Zeidis et al., 2007),
the motion of a system of two identical point
masses connected by a spring along a straight
line on a rough horizontal plane is studied. Dry
(Coulomb’s) friction is assumed to act between
the masses and the plane. The motion is excited
by a harmonic force acting between the masses.

1 Partly supported by the Russian Foundation for Basic
Research (grant 05-08-33382)
2 Partly supported by Deutsche Forschungsgemeinschaft
(DFG, Zi 540/7-1)

The coefficient of friction is assumed to depend
on the direction of motion of the respective mass.
The characteristic of the spring is either linear
(Zimmermann et al., 2004) or nonlinear (cubic)
(Zeidis et al., 2007). Bolotnik et al. (2006) con-
sidered the rectilinear motion of one point mass
acted upon by two harmonic forces. The mass
moves on a horizontal rough plane. One of the
forces acts along the line of motion and the other
along the vertical. The excitation forces have the
same frequency but can have different amplitudes
and be shifted in phase. The coefficient of friction
is independent of the direction of motion.
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Fig. 1. The schematic of the system

The present paper deals with a system of two
identical bodies connected by a linear spring. The
rectilinear motion of this system on a horizontal
rough plane is investigated. The motion is excited
by two unbalance rotors attached to the respective
bodies. The coefficient of friction is independent
of the direction of motion. In the case of small
friction, an approximate algebraic equation is ob-
tained for the steady-state velocity of the entire
system. The steady-state velocity is studied as a
function of parameters of the system. The results
obtained can form a theoretical basis for the de-
sign of vibration-driven microrobots.

2. MATHEMATICAL MODEL

Consider two bodies (modeled by particles), 1 and
2, that have the same mass M and are connected
by a linear spring of stiffness c. The bodies are
based on a rough horizontal plane and can move
along the same straight line. There is Coulomb’s
friction acting between the bodies and the plane.
The coefficient of friction k is independent of the
direction of motion of the bodies. The motion of
the system is excited by two identical unbalance
rotors based on the respective bodies. The axes
of rotation of the rotors are perpendicular to the
vertical plane passing through the line of motion
of the system and the centers of mass of the rotors
lie in this plane. The schematic of the system is
shown in Fig. 1. Let m and l denote the mass
of each rotor and the distance between the axis
of rotation and the center of mass, respectively.
The rotors rotate in the same direction with the
angular velocities ω1 and ω2. Let x1 and x2 be the
displacements of bodies 1 and 2 relative to a fixed
(inertial) reference frame. The zero points for the
coordinates x1 and x2 are shifted by the length
of the undeformed spring. Denote by ϕi the angle
between the line of motion of the system and the
perpendicular dropped from the center of mass of
the ith rotor to its axis of rotation.

The motion of the mechanical system under con-
sideration is governed by the set of equations

(m + M)ẍ1 + c(x1 − x2) = mlω2
1 cosϕ1 + R1,

(m + M)ẍ2 + c(x2 − x1) = mlω2
2 cosϕ2 + R2,

ϕ1 = ω1t, ϕ2 = ω2t + ϕ0, (1)

where Ri, i = 1, 2, is the Coulomb friction force
acting on body i. According to Coulomb’s law,

Ri =





−kNisgn ẋi, if ẋi 6= 0,

−Fi, if ẋi = 0 and |Fi| ≤ kNi,

−kNisgn Fi, if ẋi = 0 and |Fi| > kNi,

(2)

where

F1 = mω2
1 cos ϕ1 − c(x1 − x2),

F2 = mω2
2 cos ϕ2 + c(x1 − x2),

Ni = (m + M)g −mlω2
i sin ϕi, i = 1, 2. (3)

Here g is the acceleration due to gravity.

The quantity Ni in (3) is the normal force ex-
erted on body i by the supporting plane. Contact
between the bodies and the supporting plate is a
unilateral constraint, since the plane resists pene-
tration but does not resist separation of the bodies
from the plane. Therefore, Ni ≥ 0 while body i has
contact with the plane. To ensure this inequality,
assume

mlω2
i

(m + M)g
≤ 1, i = 1, 2. (4)

Introduce the dimensionless variables

x∗i =
xi

l
, t∗ = t

√
c

M + m
, νi = ωi

√
M + m

c
,

ε =
(M + m)kg

cl
, α =

mcl

(M + m)2g
, β =

α

k
. (5)

Proceed to the dimensionless variables in Eqs. (1)–
(3) and then omit the asterisks identifying the
variables x∗ and t∗ to arrive at the relations

ẍ1 + x1 − x2 = εβν2
1 cos ϕ1 + r1,

ẍ2 + x2 − x1 = εβν2
2 cos ϕ2 + r2,

ϕ1 = ν1t, ϕ2 = ν2t + ϕ0,

(6)

where

ri =





−εnisgn ẋi, if ẋi 6= 0,

−fi, if ẋi = 0 and |fi| ≤ εni,

−εnisgn fi, if ẋi = 0 and |fi| > εni,

(7)

f1 = εβν2
1 cosϕ1 − x1 + x2,

f2 = εβν2
2 cosϕ2 + x1 − x2,

ni = 1− αν2
i sin ϕi.

(8)

The conditions of Eq. (4) become

αν2
1 ≤ 1, αν2

2 ≤ 1. (9)

In what follows we assume that ε ¿ 1 and εβ =
O(ε) and consider the motions that do not involve
stick-slip modes that may occur in mechanical
systems subject to dry friction forces. In this case,
one should set ri = −εnisgn ẋi in Eq. (6). Note
that εβ = m/(M +m) and, hence, the assumption



of εβ = O(ε) implies that the mass of the rotor is
small as compared with the mass of the body on
which this rotor is based.

For ε = 0, the general solution of Eq. (6) can be
represented in the form

x1 = A + V t− a cos(
√

2t + b),
x2 = A + V t + a cos(

√
2t + b),

(10)

where A, V , a, and b are arbitrary constants to
be determined by initial conditions. The motion
of the system corresponding to this solution is the
superposition of the uniform motion of the point
X = (x1 +x2)/2, the middle point of the segment
between bodies (particles) 1 and 2, and harmonic
oscillations of the distance between these bodies.
The oscillations have a frequency of

√
2 and the

point X moves at the velocity V . In what follows
we will study the motion of the system in the case
of nearly-resonant excitation, when the excitation
frequency is close to the frequency of natural
oscillations of bodies 1 and 2 connected by a
spring, i.e.,

ν1 =
√

2 + ε∆1, ν2 =
√

2 + ε∆2, (11)

where ∆1 and ∆2 are constant parameters.

Proceed from the variables x1, x2, ϕ1, and ϕ2 of
Eq. (6) to the variables X, a, ξ1, and ξ2 introduced
by the relations

x1 = X − a cos ϕ, x2 = X + a cosϕ,

ξ1 = ϕ1 − ϕ, ξ2 = ϕ2 − ϕ, V = Ẋ.
(12)

The variable X = (x1 + x2)/2 in (12) is the
coordinate of the middle point of the segment
between bodies 1 and 2. The point X will be
used as a representative point to characterize the
progressive motion of the entire system.

Using this change of variables, one can derive the
standard system of differential equations for the
slow variables, V , a, ξ1 and ξ2,

V̇ =
ε

2

{
2β[cos(ϕ + ξ2) + cos(ϕ + ξ1)]

−
[
(1− 2α sin(ϕ + ξ1))sgn(V + a

√
2 sin ϕ)

+ (1− 2α sin(ϕ + ξ2))sgn(V − a
√

2 sinϕ)
]}

,

ȧ = − ξ

2
√

2
sin ϕ

{
2β[cos(ϕ + ξ2)− cos(ϕ + ξ1)]

+
[
(1− 2α sin(ϕ + ξ1))sgn(V + a

√
2 sin ϕ)

− (1− 2α sin(ϕ+ ξ2))sgn(V− a
√

2 sinϕ)
]}

, (13)

ξ̇1 =
ε

2
√

2
1
a

cosϕ
{

2β[cos(ϕ + ξ2)− cos(ϕ + ξ1)]

+
[
(1− 2α sin(ϕ + ξ1))sgn(V + a

√
2 sin ϕ)

− (1− 2α sin(ϕ+ ξ2))sgn(V− a
√

2 sinϕ)
]}

+ ε∆1,

ξ̇2 =
ε

2
√

2
1
a

cosϕ
{

2β[cos(ϕ + ξ2)− cos(ϕ + ξ1)]

+
[
(1− 2α sin(ϕ + ξ1))sgn(V + a

√
2 sinϕ)

− (1− 2α sin(ϕ+ ξ2))sgn(V− a
√

2 sin ϕ)
]}

+ ε∆2.

The motion of the mechanical system under con-
sideration will be studied on the basis of the
method of averaging (Bolgolyubov and Mitropol-
skii, 1961) applied to Eq. (13). Major attention
will be given to the steady-state motion with con-
stant average velocity V and constant amplitude
of oscillations a.

3. ANALYSIS OF THE STEADY-STATE
MOTION

Average the right-hand sides of the relations of
Eq. (13) with respect to the fast variable ϕ in
accordance with Bolgolyubov and Mitropolskii
(1961) to arrive at the approximate (averaged)
system of equations

V̇ =





ε, V < −a
√

2,

−2ε

π

[
arcsin

V

a
√

2
+ α(cos ξ2

− cos ξ1)

√
1− V 2

2a2

]
, |V | ≤ a

√
2,

−ε, V > a
√

2,

(14)

ȧ =





ε

2
√

2

[
β(sin ξ2 − sin ξ1)

+α(cos ξ2 − cos ξ1)
]
, V < −a

√
2,

− ε

2
√

2π

[
4

√
1− V 2

2a2
− πβ(sin ξ2 − sin ξ1)

+2α(cos ξ2 − cos ξ1)

(
arcsin

V

a
√

2

− V

a
√

2

√
1− V 2

2a2

)]
, |V | ≤ a

√
2,

ε

2
√

2

[
β(sin ξ2 − sin ξ1)

−α(cos ξ2 − cos ξ1)
]
, V > a

√
2,

(15)

ξ̇1 =





ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1)− α(sin ξ2

− sin ξ1)
]

+ ε∆1, V < −a
√

2,

ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1) + 2α(sin ξ2

− sin ξ1)

(
arcsin

V

a
√

2
+

V

a
√

2

√
1−V 2

2a2

)]

+ε∆1, |V | ≤ a
√

2,
ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1) + α(sin ξ2

− sin ξ1)
]

+ ε∆1, V > a
√

2,

(16)



ξ̇2 =





ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1)− α(sin ξ2

− sin ξ1)
]

+ ε∆2, V < −a
√

2,

ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1) + 2α(sin ξ2

− sin ξ1)

(
arcsin

V

a
√

2
+

V

a
√

2

√
1−V 2

2a2

)]

+ε∆2, |V | ≤ a
√

2,
ε

2
√

2π

1
a

[
πβ(cos ξ2 − cos ξ1) + α(sin ξ2

− sin ξ1)
]

+ ε∆2, V > a
√

2.

(17)
Introduce the new variables

ψ =
ξ1 + ξ2

2
, χ =

ξ2 − ξ1

2
(18)

to represent the relations of Eq. (14)–(18) in the
form

V̇ =





ε, V < −a
√

2,

−2ε

π

[
arcsin

V

a
√

2

−2α sin χ sin ψ)

√
1− V 2

2a2

]
, |V | ≤ a

√
2,

−ε, V > a
√

2,
(19)

ȧ =





ε√
2

[
β sin χ cos ψ + α sin χ sin ψ

)
,

V < −a
√

2,

− ε√
2π

[
2

√
1− V 2

2a2
− πβ sin χ cos ψ

−2α sin χ sin ψ

(
arcsin

V

a
√

2

− V

a
√

2

√
1− V 2

2a2

)]
, |V | ≤ a

√
2,

− ε√
2

(
−β sin χ cosψ + α sin χ sin ψ

)
,

V > a
√

2,
(20)

ψ̇ =





ε√
2

1
a

[
β sin χ cos ψ + α sin χ sin ψ)

]

+
ε

2
(∆2 + ∆1), V < −a

√
2,

ε√
2π

1
a

[
πβ sinχ cosψ − 2α sin χ sin ψ

·
(

arcsin
V

a
√

2
+

V

a
√

2

√
1− V 2

2a2

)]

+
ε

2
(∆2 + ∆1), |V | ≤ a

√
2,

− ε√
2

1
a

[
−β sin χ cos ψ + α sin χ sinψ)

]

+
ε

2
(∆2 + ∆1), V > a

√
2,

(21)
χ̇ =

ε

2
(∆2 −∆1) . (22)

From Eq. (19) it follows that for ε 6= 0, the
identity V̇ ≡ 0 may hold only if |V | ≤ a

√
2.

Equations (19) and (20) imply that V̇ = const and
ȧ = const only if ψ = const. Then from Eq. (21) it
follows that χ̇ = const, and from Eq. (22) we find
that ∆1 = ∆2 = ∆. In this case, in accordance
with Eq. (11), we obtain ν1 = ν2 = ν. Then, in
accordance with Eqs. (6), (12), and (18),

χ =
ξ2 − ξ1

2
=

ϕ2 − ϕ1

2
=

ϕ0

2
. (23)

Denote

u =
V

a
√

2
, γ = sin χ = sin

ϕ0

2
(24)

and write the system of algebraic equations for
steady-state solution of the system of Eqs. (19)–
(22)

arcsinu− 2αγ sin ψ
√

1− u2 = 0, (25)

2
√

1− u2 − πβγ cos ψ

− 2αγ sinψ
(
arcsin u− u

√
1− u2

)
= 0, (26)

− πβγ sin ψ + 2αγ cosψ
(
arcsin u + u

√
1− u2

)

+
√

2π∆a = 0. (27)

Eliminate ψ from these equations to obtain the
expressions for γ and a as functions of u:

γ2 =
arcsin2 u

4α2(1− u2)
(28)

+

[
2(1− u2)− arcsinu

(
arcsinu− u

√
1− u2

)]2

π2β2(1− u2)
,

a =
1
∆

1
π
√

2(1− u2)

{
πβ

2α
arcsinu (29)

− 2α

πβ

[
(2 + u2)(1− u2) arcsin u

+2u(1− u2)
√

1− u2 arcsin3 u
]}

.

Given γ = sin(ϕ0/2), one can find u by solv-
ing Eq. (28) and substitute the resulting u into
Eq. (29) to calculate a. Then the desired value of
V is determined by the corresponding relation of
Eq. (24): V = ua

√
2.

Although detailed analysis of the nonlinear system
of Eqs. (28) and (29) is complicated, one can draw
a number of important conclusions. Let (u0, a0)
be a solution of the system of Eqs. (28) and (29)
for a given set of parameters (α, β, γ, ∆). Then
(-u0, a0) is a solution for the set of parameters (α,
β, γ, −∆). Hence, one can control the direction of
motion of the system by changing the detuning ∆
in sign.

Consider an important particular case. We will
find a solution of the system of Eqs. (28) and (29)
such that



ξ2 + ξ1 = π + 2δ
(
i.e., ψ =

π

2
+ δ

)
, |δ| ¿ 1,

ξ2 − ξ1 = π, γ = sin
ϕ0

2
. (30)

In this case, Eq. (25) can be written, to within the
terms of an order of δ2, as

f(u) = arcsin u− 2α
√

1− u2 = 0. (31)

Since f(0) = −2α < 0, f(1) = π/2 > 0, and
the derivative of the function f(u) is positive for
0 < u < 1,

f ′u(u) =
1 + 2αu√

1− u2
, 0 < u < 1, (32)

this function monotonically increases and has ex-
actly one root on the interval 0 < u < 1. For given
u, from Eq. (26) we find (to within the terms of
an order of δ2)

δ(u) =
2

πβ

[
αarcsin u− (αu +1)

√
1−u2

]
. (33)

Since δ(0) = −2/(πβ) < 0, δ(1) = α/β = k > 0,
and the derivative of the function δ(u) is positive
on the interval 0 < u < 1,

δ′u(u) =
2u(2αu + 1)
πβ
√

1− u2
, 0 < u < 1, (34)

the desired value of δ lies between −2/(πβ) and
k. By adjusting appropriately the parameter β
and the coefficient of friction k one can make δ
reasonably small.

Having found u and δ, utilize Eq. (27) to calculate
the amplitude a:

a =
πβ + 2αδ

(
arcsin u + u

√
1− u2

)

π∆
√

2
. (35)

The amplitude a is positive if δ is nonnegative or
negative with sufficiently small absolute value. In
this case, the system moves forward, i.e., V > 0.
By changing δ to −δ and ∆ to −∆ we obtain the
velocity equal in absolute value but negative in
sign, which corresponds to the case of ξ2− ξ1 = π
and ξ2 + ξ1 = −π + 2δ, i.e., ψ = −π/2 + δ and
γ = sin(ϕ0/2) = 1.

4. NUMERICAL RESULTS

The numerical calculations were performed for the
experimental model of the vibration-driven sys-
tem shown in Fig. 2. This model has been designed
and constructed at the Technical University of
Ilmenau and has the following parameters:

M = 0.1 kg, m = 0.03 kg, l = 0.03 m,
ω = 25 s−1, k = 0.1, ∆ = 1.

(36)

Then, in accordance with Eq. (5), ε = 0.052,
α = 0.44, and β = 4.41.

Fig. 2. Experimental model of the vibration-
driven system
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Fig. 4. Amplitude a as a function of u

Figure 3 shows ϕ0 as a function of u. This plot
was constructed on the basis of Eq. (28) and the
relation γ = sin(ϕ0/2) of Eq. (24). Figure 4 shows
the graph of the function a(u) defined by Eq. (29).
The plot of Fig. 3 was used to calculate u for
ϕ0 = π (γ = 1), which yielded u ≈ 0.65. Then
Fig. 4 was used to obtain a ≈ 3.1, after which the
velocity V = au

√
2 ≈ 2.84 was calculated.

A close result is obtained on the basis of the
approximate system of Eqs. (31), (33), and (35).
Using Eq. (31) we find u ≈ 0.63, then use Eqs. (33)
to calculate δ ≈ −0.10, and finally determine a ≈
3.10 on the basis of Eq. (35). The corresponding
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Fig. 6. Numerical solution result for ϕ0 = π/2

value of the average velocity of the system is
V = au

√
2 ≈ 2.76. It is apparent from Figs. 3

and 4 that this velocity, corresponding to ϕ0 = π,
is maximal.

Figure 5 has been constructed on the basis of the
numerical solution of the exact equations of (6)
subject to zero initial conditions (x1(0) = x2(0) =
0, ẋ1(0) = ẋ2(0) = 0), for the initial phase shift
ϕ0 = π. It is apparent from this figure that the
average velocity of the steady-state motion of the
system is close to 3, which demonstrates good
agreement with the value V ≈ 2.84 calculated on
the basis of the averaged equations.

For ϕ0 = π/2 (γ =
√

2/2), we use Eq. (3.15)
to find u = 0.5, then use Eq. (29) to determine
a ≈ 2.2, and finally calculate V = au

√
2 ≈ 1.55.

Figure 6 presents the result of the numerical
solution of the exact equations of (6) for ϕ0 = π/2.
It is apparent from the curve of Fig. 6 that the
average steady-state velocity of motion of the
entire system is about 1.7.

5. CONCLUSION

The motion of the system that consists of two
bodies connected by a spring and is excited by
two unbalance rotors attached to the respective
bodies is studied. For small coefficients of friction
between the bodies and the rough plane along
which the system moves, a system of algebraic
equations is obtained for determining an approx-
imate value of the average steady-state velocity
of the entire system. It is shown that the velocity
can be controlled by changing the initial value of
phase shift between the rotations of the rotors.
The direction of the motion can be changed by
changing the difference between the natural fre-
quency of the system and the angular velocities of
the rotors in sign. An experimental model of the
vibration-driven system designed on the basis of
the concept presented in the paper was designed
and constructed.
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