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Abstract— We consider a mechanical system governed by
Lagrange’s equations under the assumption that its matrix of
inertia is not known exactly and that the system is subjected
to unknown bounded disturbances. We assume also that the
disturbances are smaller than the control forces which in
turn do not exceed the potential forces. A bounded control
is proposed which, under certain conditions, steers the system
from an arbitrary initial state to the prescribed terminal state
in finite time. To construct the control law and to justify it,
the Lyapunov function given implicitly is used. The algorithm
employs a linear feedback control with the gains which are
functions of the phase variables. The gains increase and tend
to infinity as the phase variables tend to zero; nevertheless, the
control forces are bounded and meet the imposed constraint.

The proposed approach is illustrated by the results of the
computer simulation of steering a plain two-link pendulum.

I. I NTRODUCTION

A lot of approaches to designing control for dynamical
systems with uncertain parameters are based on the stability
theory and consist in constructing regimes ensuring the
asymptotic stability of the desired motion (in particular, the
terminal state) of the system. In contrast to these approaches,
we are searching for the control laws bringing the system to
a prescribed terminal state in finite time. In recent years,
new approaches to constructing constrained controls for
steering perturbed mechanical systems with many degrees
of freedom into a prescribed terminal state in finite time
have been developed [1], [2], [3]. In [4], [5] a method
was elaborated which enables one to construct feedback
control for a generic Lagrangian mechanical system under
the assumption that the kinetic energy matrix is unknown
and the system is subjected to uncertain force disturbances.
The resulting control meets an imposed constraint and steers
the system to an arbitrary, but given in advance, terminal
state in finite time (the duration of the process is not fixed
in advance). In addition, the control function is continuously
differentiable everywhere, except for the terminal state. The
proposed method can be applied if the control force prevail
over all other forces acting on the system including the
potential forces. In the present investigation the method is
extended to the case when the control is small in comparison
with the potential forces.
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II. STATEMENT OF THE PROBLEM

Consider a mechanical system governed by Lagrange’s
equations of the second kind

d

dt

∂T

∂q̇
− ∂T

∂q
= u + s− ∂P

∂q
. (1)

Here q ∈ Rn is the vector of the generalized coordinates,
q̇ ∈ Rn is the vector of the generalized velocities,T is the
kinetic energy,P is the potential energy. The kinetic energy
of the system has the form

T (q, q̇) =
1
2
〈A(q)q̇, q̇〉

where〈·, ·〉 stands for the scalar product.
The potential energyP (q) ∈ C1 is a bounded from below

function which has a point of global minimum. Without loss
of the generality we assume that this point coincides with
the phase space originq = 0.

The vector of generalized control forcesu ∈ Rn is
bounded

‖u‖ ≤ U, U > 0 (2)

and so is the vector of unknown generalized forcesS

‖s(t, q, q̇)‖ ≤ S0, S0 > 0

which will be called disturbance.
Let us stress that the system under consideration is fully

actuated because the number of degrees of freedom of the
system coincides with the dimension of the control force
vector.

We assume that the disturbance is smaller than the control
force which in turn does not exceed the potential force.

Let the positive definite symmetric matrix of the kinetic
energyA(q) ∈ C1 have the form

A(q) = A0(q) + A1(q) (3)

where the matrixA0(q) is known and positive-definite but
the matrixA1(q) is unknown.

The potential energy is also presented as a sum of the
given functionP0(q) and the unknown functionP1(q)

P (q) = P0(q) + P1(q)

The matrixA1 and the vector-function∂P1/∂q are assumed
to be small in comparison withA0 and the control vector-
function u respectively.

We assume also that the eigenvalues of the matricesA(q)
andA0(q) for anyq belong to the interval[m, M ], 0 < m ≤
M . This implies the inequalities

∀q, z ∈ Rn mz2 ≤ 〈A(q)z, z〉 ≤ Mz2



mz2 ≤ 〈A0(q)z, z〉 ≤ Mz2

The matrixA1(q) and the partial derivatives of the matrices
A(q), A0(q), andA1(q) are bounded uniformly inq, that is

‖∂A(q)
∂qi

‖ ≤ C1, ‖∂A0(q)
∂qi

‖ ≤ C1, ‖A1(q)‖ ≤ D1

‖ ∂2A

∂qi∂qj
(q)‖ ≤ C2, ‖∂A1(q)

∂qi
‖ ≤ D2, ‖∂P1

∂q
‖ ≤ p0

C1, C2, D1, D2, p0 > 0, i = 1, . . . , n

(‖ · ‖ means the Euclidean norm of a vector or a matrix).
The phase variablesq, q̇ are supposed to be available for

measuring at every time instant.
Problem. For a given initial state(q0, q̇0) construct a

control law meeting constraint (2) and steering system (1)
to the prescribed terminal state(q∗, q̇∗) in a finite time,
whatever the matrixA1(q), the function∂P1/∂q, and the
disturbances, satisfying the above conditions, be.

To illustrate the statement of the problem, let us consider
a problem of steering a plain two-link pendulum to a
prescribed terminal state by means of joint torques (Fig. 1).
Suppose that we do not know exactly the mass-inertia
parameters of the pendulum. Then the kinetic energy matrix
A and the force of gravity∂P/∂q are not known exactly
also, and we come to the control problem described above.
It will be shown below that the pendulum can be brought
to the terminal state by the control which may be small in
comparison with the force of gravity.
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Fig. 1. Controlled double pendulum

III. C ONTROL ALGORITHM

The system will be brought to the terminal state in two
steps. First, we steer system (1) into the neighbourhood
of the phase space originq = 0 (which is the point of
minimum for the potential energyP (q), in agreement with
our assumption). The control algorithm for such steering is
not presented in this paper. To make the system approach
the minimal point of the potential energy one can use, for
example, the control law

u = − U

‖q̇‖ q̇

which is applied below for transferring the double pendulum
into the neighbourhood of the phase space origin.

Denote by(q1
∗, q̇

1
∗) the ending point of the trajectory of

system (1) at the first stage of process.

At the second stage of steering for some “reference”
system we design a trajectory starting in the neighbourhood
of the phase space origin and ending in the prescribed
terminal state(q∗, q̇∗). Then, using the trajectory tracking
procedure we steer the original system under consideration
to the prescribed terminal state.

A. The Reference System

Denote

T0(q, q̇) =
1
2
〈A0(q)q̇, q̇〉

and consider the reference system

d

dt

∂T0

∂q̇
− ∂T0

∂q
= u′ − ∂P 0

∂q
(4)

System (4) does not contain uncertainties and has the follow-
ing symmetry property: if a feedback controlu′(q, q̇) steers
system (4) from the state(q1, q̇1) to the state(q2, q̇2) then
the controlu′(q,−q̇) steers it from the state(q2, q̇2) to the
state(q1, q̇1). The same is true also for open-loop controls
u′(t) and u′(t̄ − t), t ∈ [t, t̄], where t̄ is the total time of
motion. To justify this property it is sufficient to note that
the only difference between the equations for the forward
and backward motion is the sign of the variables the control
functions depend on.

Let the controlu′ transfer the reference system from the
neighbourhood of the phase space origin to the state(q∗, q̇∗)
and satisfy the constraint‖u′‖ ≤ U/2. To design such control
one can use, for example, the function

u′(q, q̇) = − U

2‖q̇‖ q̇

which meets the imposed constraint and brings system (4) to
some point(q0

∗, q̇
0
∗) lying in the neighbourhood of the phase

space origin. Then, according to the symmetry property the
control function

u′(q, q̇) =
U

2‖q̇‖ q̇

transfers system (4) from the state(q0
∗, q̇

0
∗) to the terminal

state(q∗, q̇∗). Denote byq̃(t), ˙̃q(t) the vector-functions de-
scribing the trajectory of such transferring. We shall call this
trajectory the reference trajectory.

Thus, the point(q1
∗, q̇

1
∗) is the initial state of system (1)

at the beginning of the second stage of the motion, and the
reference trajectory starts at the point(q0

∗, q̇
0
∗). Both points

lie in the neighbourhood of the phase space origin.
Next we utilize the trajectory tracking procedure. We

design a controlu′′ that meets the constraint

|u′′| ≤ U

2
(5)

brings system (1) from the state(q1
∗, q̇

1
∗) to the reference

trajectoryq̃(t), ˙̃q(t) in finite time, and steers the system along
this trajectory to the terminal state(q∗, q̇∗).

To this end let us consider the auxiliary control problem
for the equations in deviations.
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Fig. 2. Trajectory tracking

B. Auxiliary Control Problem

Denote byx, ẋ the deviations of the state of the original
system from the reference trajectory

x(t) = q(t)− q̃(t), ẋ(t) = q̇(t)− ˙̃q(t)

The equations in deviations can be written as follows

Ã(t, x)ẍ = S + u′′ (6)

Here
Ã(t, x) = A(q̃(t) + x)

and the functionS satisfies the inequality [6]

‖S‖ ≤
(√

nC1Q2 +
3n

2
C2Q

2
1

)
‖x‖+

+3
√

nC1Q1‖ẋ‖+
3
2
√

nC1‖ẋ‖2 + s0 + p0

with the assumption that

| ˙̃q| ≤ Q1, ‖¨̃q‖ ≤ Q2

Since the trajectory of the original system starts from the
point (q1

∗, q̇∗1) at the time instantt0 at the beginning of the
second stage, the initial deviations are

x0 = x(t0) = q1
∗ − q0

∗, ẋ0 = ẋ(t0) = q̇1
∗ − q̇0

∗

Auxiliary problem. Design a feedback controlu′′(x, ẋ)
meeting constraint (5) and steering system (6) to the terminal
statex = ẋ = 0 in finite (unfixed) time.

Denote
Ã0(t, x) = A0(q̃(t) + x)

T̃0(t, x, ẋ) =
1
2
〈Ã0(t, x)ẋ, ẋ〉

The desired control is chosen as follows

u′′(t, x, ẋ) = −a(t, x, ẋ)Ã0(t, x)ẋ− b(t, x, ẋ)x (7)

where

a2(t, x, ẋ) =
b(t, x, ẋ)

M
, b(t, x, ẋ) =

3U2

32V (t, x, ẋ)
(8)

V (t, x, ẋ) = T̃0 +
1
2
b(t, x, ẋ)x2 +

(9)

+
1
2
a(t, x, ẋ)〈Ã0(t, x)ẋ, x〉, x2 + ẋ2 > 0

Relations (8) and (9) define the functionsa, b, andV in an
implicit form.

The justification of the proposed control law is based on
Lyapunov direct method. The functionV plays a principal
role in the present investigation. Given his function one can

find the feedback factorsa andb through the above relations,
and, consequently, the controlu according to formula (7).
In addition, the functionV has the dimension of energy
and serves as a Lyapunov function for the system under
consideration. It tends to zero as the system approaches
the terminal state. Since the functionV appears in the
denominators in relations (8) and (9), the feedback factors
tend to infinity as the trajectory approaches the origin.
Nevertheless, the proposed control does not go beyond the
admissible boundaries.

The justification of the control is based on the following
propositions.

Theorem 1.In the domainx2 + ẋ2 > 0 there exist
continuously differentiable positive functionsa, b and V
satisfying (8) and (9).

Theorem 2.The functionV satisfies the inequalities

V− ≤ V (t, x, ẋ) ≤ V+

where

V− =
1
8

(
mẋ2 +

[
m2ẋ4 +

3U2x2

16

]1/2
)

V+ =
3
8

(
Mẋ2 +

[
M2ẋ4 +

3U2x2

16

]1/2
)

Theorem 3. The derivative of the functionV (t) =
V (t, x, ẋ) satisfies the inequality

V̇ (t) ≤ − δ

3
V 1/2(t), t ≥ t0 (10)

along the trajectory of system (6). Here the constantδ
depends on the given parametersm,M,C1, C2, D1, D2, S0,
andp0.

The above theorems have been proved in [5] for the
rheonomic mechanical systems. For the system in deviations
the proof employs similar ideas and is not presented in this
paper.

By integrating inequality (10) we obtain the following
estimate from above for the timeτ it takes for system (6) to
come to the terminal statex = ẋ = 0:

τ ≤ 6
δ
V 1/2(t0, x0, ẋ0)

Thus, the control algorithm described above ensures van-
ishing of the deviationsx(t), ẋ(t) in finite time. This implies
that control (7) steers system (1) to the reference trajectory
q̃(t), ˙̃q(t) and confines the system to this trajectory (Fig. 2).
Therefore, system (1) comes along the reference trajectory
to the terminal state(q∗, q̇∗) in finite time.

IV. COMPUTER SIMULATION RESULTS

To demonstrate the efficiency of the proposed algorithm
we present the results of the computer simulation of steering
a plain two-link pendulum by means of joint torques. In all
figures the dashed lines correspond to the first link and the
solid lines correspond to the second link of the pendulum.



At the first stage the pendulum was transferred from the
initial state

q1 =
π

2
, q2 =

π

2
rad, q̇1 = q̇2 = 0 rad/s

into the neighbourhood of the phase space origin. The graphs
in Fig. 3 describes the behavior of the angular coordinates
of the links during such steering.
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Fig. 3. The first stage of steering

At the second stage the pendulum was brought to the
terminal state

q∗1 =
3π

4
, q∗2 =

3π

4
rad, q̇∗1 = q̇∗2 = 0 rad/s.

The graphs in Fig. 4 depict the time history of the angular
coordinates at the second stage of the motion.
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Fig. 4. The second stage of steering

Fig. 5 shows the graphs of the deviations of the current
state of the system from the reference trajectory at the second
stage.

V. CONCLUSION

The control laws constructed based upon the approach
proposed bring generic nonlinear mechanical systems to a
given state in a finite time. These laws are robust with respect

Fig. 5. Deviation from the reference trajectory

to change in the mass-inertia parameters of the system, since
they do not require knowing the kinetic energy matrix of the
system, and they happened to be effective even under the
action of uncontrolled perturbing forces. The approach is
also applicable for the systems subjected to action of large
potential forces.
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